Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization
Abstract
:1. Introduction
2. Fundamentals of Pulsed Electric Field-Induced Electroporation
3. PEF Application Areas in Wastewater and Biomass Residuals Valorization
3.1. Biomass-to-Biogas Generation Improvement
3.2. Enhanced Phosphorous Recovery
3.3. Sludge Dewatering and Volume Reduction
3.4. Sustainable Biorefineries
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Shizas, I.; Bagley, D.M. Experimental Determination of Energy Content of Unknown Organics in Municipal Wastewater Streams. J. Energy Eng. 2004, 130, 45–53. [Google Scholar] [CrossRef]
- Sersa, G.; Cemazar, M. Tissue Reactions to Electroporation and Electrochemotherapy: Vascular Effects that have Implications in Tumor Treatment. In Proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies, IFMBE, Portorož, Slovenia, 6–10 September 2015. [Google Scholar]
- Toepfl, S.; Heinz, V.; Knorr, D. Overview of pulsed electric field processing for food. In Emerging Technologies for Food Processing: An Overview; Elsevier Ltd.: New York, NY, USA, 2005; pp. 69–97. [Google Scholar]
- Postma, P.; Pataro, G.; Capitoli, M.; Barbosa, M.; Wijffels, R.; Eppink, M.; Olivieri, G.; Ferrari, G. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment. Bioresour. Technol. 2016, 203, 80–88. [Google Scholar] [CrossRef]
- Golberg, A.; Sack, M.; Teissie, J.; Pataro, G.; Pliquett, U.; Saulis, G.; Stefan, T.; Miklavcic, D.; Vorobiev, E.; Frey, W. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol. Biofuels 2016, 9, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, U.; Pilwat, G.; Riemann, F. Dielectric breakdown of cell membranes. Biophys. J. 1974, 14, 881–899. [Google Scholar] [CrossRef] [Green Version]
- Kotnik, T.; Miklavčič, D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 2006, 90, 480–491. [Google Scholar] [CrossRef] [Green Version]
- Saulis, G.; Saulė, R. Size of the pores created by an electric pulse: Microsecond vs millisecond pulses. Biochim. et Biophys. Acta (BBA)-Biomembr. 2012, 1818, 3032–3039. [Google Scholar] [CrossRef] [Green Version]
- Eing, C.J.; Goettel, M.; Straessner, R.; Gusbeth, C.; Frey, W. Pulsed electric field treatment of microalgae—Benefits for microalgae biomass processing. IEEE Trans. Plasma Sci. 2013, 41, 2901–2907. [Google Scholar] [CrossRef]
- Buchmann, L.; Brändle, I.; Haberkorn, I.; Hiestand, M.; Mathys, A. Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresour. Technol. 2019, 291, 121870. [Google Scholar] [CrossRef]
- Gusbeth, C.; Eing, C.; Goettel, M.; Frey, W. Boost of algae growth by ultra short pulsed electric field treatment. In Proceedings of the Abstracts IEEE International Conference on Plasma Science (ICOPS), San Francisco, CA, USA, 16–21 June 2013. [Google Scholar]
- Buchmann, L.; Mathys, A. Perspective on Pulsed Electric Field Treatment in the Bio-based Industry. Front. Bioeng. Biotechnol. 2019. [Google Scholar] [CrossRef]
- US EPA. Wastewater Treatment by Pulsed Electric Field Processing; Phase I (2002); Final Report; Contract Number: 68D02089; Small Business Innovation Research (SBIR): Washington, DC, USA, 2002. [Google Scholar]
- Salerno, M.B.; Lee, H.S.; Parameswaran, P.; Rittmann, B.E. Using a Pulsed Electric Field as a Pretreatment for Improved Biosolids Digestion and Methanogenesis. Water Environ. Res. 2009, 81, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, L.; Wang, Y.; Hu, X. Enhancement of the ANAMMOX bacteria activity and granule stability through pulsed electric field at a lower temperature (16 ± 1 °C). Bioresour. Technol. 2019, 292, 1219602. [Google Scholar] [CrossRef] [PubMed]
- Han, S.F.; Jin, W.; Yang, Q.; Abomohra, A.E.F.; Zhou, X.; Tu, R.; Chen, C.; Xie, G.J.; Wang, Q. Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater. Renew. Energy 2019, 133, 233–239. [Google Scholar] [CrossRef]
- Kotnik, T.; Kramar, P.; Pucihar, G.; Miklavcic, D. Cell membrane electroporation—Part 1: The phenomenon. IEEE Electr. Insul. M. 2012, 28, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Parpinello, G.P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to improve polyphenol extraction and color release during red winemaking. Beverages 2018, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Bot, F.; Verkerk, R.; Mastwijk, H.; Anese, M.; Fogliano, V.; Capuano, E. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix. Food Chem. 2017, 240, 415–421. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L.; Hobaika, Z. Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour. Technol. 2018, 247, 881–889. [Google Scholar] [CrossRef]
- Kovacic, D.; Rupcic, S.; Kralik, D.; Jovicic, D.; Spajic, R.; Tišma, M. Pulsed electric field: An emerging pretreatment technology in a biogas production. Waste Manag. 2021, 120, 467–483. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Feedstock and process influence on biodiesel produced from waste sewage sludge. J. Environ. Manag. 2018, 216, 176–182. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Henkanatte-Gedera, M.S.; Selvaratnam, T.; Caskan, N.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P.J. Algal-based, single-step treatment of urban wastewaters. Bioresour. Technol. 2015, 189, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A.G. Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 384–436. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Ragauskas, A.J. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front. Chem. 2016, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Salerno, M.; Nurdogan, Y.; Lundquist, T.J. Biogas Production from Algae Biomass Harvested at Wastewater Treatment Ponds; BIO-098023; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009. [Google Scholar]
- Su, Y.; Mennerich, A.; Urban, B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios. Bioresour. Technol. 2012, 105, 67–73. [Google Scholar] [CrossRef]
- Raboni, M.; Viotti, P.; Capodaglio, A.G. A comprehensive analysis of the current and future role of biofuels for transport in the European Union (EU). Rev. Ambiente Agua 2015, 10, 9–21. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Lopez, M.V. European framework for the diffusion of biogas uses: Emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability 2016, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G.; Ranieri, E.; Torretta, V. Process enhancement for maximization of methane production in codigestion biogas plants. Manag. Environ. Qual. Intern. J. 2016, 27, 289–298. [Google Scholar] [CrossRef]
- Park, C.; Lee, C.; Kim, S.; Chen, Y.; Chase, H.A. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J. Biosci. Bioeng. 2005, 100, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, S.; Banu, J.R.; Kumar, V.K.; Rajkumar, M. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration. Bioresour. Technol. 2016, 217, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, A.V.; Kaliappan, S.; Adish Kumar, S.; Yeom, I.T.; Rajesh Banu, J. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge. Bioresour. Technol. 2015, 185, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Gabric, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S.M.T.; Radojcin, M.; Putnik, P.; Kovacevic, D.B. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. J. Food Process Eng. 2018, 41, 12638. [Google Scholar] [CrossRef]
- Safavi, S.M.; Unnthorsson, R. Methane yield enhancement via electroporation of organic waste. Waste Manag. 2017, 66, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-S.; Rittmann, B.E. Effect of low solids retention time and focused pulsed pre-treatment on anaerobic digestion of waste activated sludge. Bioresour. Technol. 2011, 102, 2542–2548. [Google Scholar] [CrossRef] [PubMed]
- Houtmeyers, S.; Degrève, J.; Willems, K.; Dewil, R.; Appels, L. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresour. Technol. 2014, 171, 44–49. [Google Scholar] [CrossRef]
- Garoma, T.; Shackelford, T. Electroporation of Chlorella vulgaris to enhance biomethane production. Bioresour. Technol. 2014, 169, 778–783. [Google Scholar] [CrossRef]
- Lindmark, J.; Lagerkvist, A.; Nilsson, E.; Carlsson, M.; Thorin, E.; Dahlquist, E. Evaluating the Effects of Electroporation Pre-treatment on the Biogas Yield from Ley Crop Silage. Appl. Biochem. Biotechnol. 2014, 174, 2616–2625. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chen, T.; Qin, X.; Wu, Q.; Zhao, Y.; Bai, S.; Peng, W.; Feng, B. Effect of high-voltage pulsed electric field (HPEF) pretreatment on biogas production rates of hybrid Pennisetum by anaerobic fermentation. Nat. Gas Ind. B 2018, 5, 48–53. [Google Scholar] [CrossRef]
- Kovacic, Ð.; Kralik, D.; Rupcic, S.; Jovicic, D.; Spajic, R.; Tišma, M. Electroporation of harvest residues for enhanced biogas production in anaerobic co-digestion with dairy cow manure. Bioresour. Technol. 2019, 274, 215–224. [Google Scholar] [CrossRef]
- Gao, Y.; Deng, Y.D.; Zhang, J.; Liu, F.J.; Men, Y.K.; Wang, Z.; Du, B.X. Effect of pulsed electric field on pretreatment efficiency in anaerobic digestion of excess sludge. In Proceedings of the 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2015. [Google Scholar] [CrossRef]
- Kopplow, O.; Barjenbruch, M.; Heinz, V. Sludge pre-treatment with pulsed electric fields. Water Sci. Technol. 2004, 49, 123–129. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, S.-W.; Chung, Y.-J. Enhanced anaerobic gas production of waste activated sludge pretreated by pulse power technique. Bioresour. Technol. 2006, 97, 198–203. [Google Scholar] [CrossRef]
- Ki, D.; Parameswaran, P.; Rittmann, B.E.; Torres, C.I. Effect of pulsed electric field pretreatment on primary sludge for enhanced bioavailability and energy capture. Environ. Eng. Sci. 2015, 32, 831–837. [Google Scholar] [CrossRef]
- Rittmann, B.E.; Lee, H.; Zhang, H.; Alder, J.; Banaszak, J.E.; Lopez, R. Full-scale application of focused-pulsed pre-treatment for improving biosolids digestion and conversion to methane. Water Sci. Technol. 2008, 58, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Banaszak, J.E.; Parameswaran, P.; Alder, J.; Krajmalnik-Brown, R.; Rittmann, B.E. Focused-Pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Res. 2009, 43, 4517–4526. [Google Scholar] [CrossRef] [PubMed]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Marti, N.; Ferrer, J.; Seco, A.; Bouzas, A. Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Res. 2008, 42, 4609–4618. [Google Scholar] [CrossRef] [Green Version]
- Daneshgar, S.; Buttafava, A.; Capsoni, D.; Callegari, A.; Capodaglio, A.G. Impact of pH and Ionic Molar Ratios on Phosphorous Forms Precipitation and Recovery from Different Wastewater Sludges. Resources 2018, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Tomei, M.C.; Stazi, V.; Daneshgar, S.; Capodaglio, A.G. Holistic Approach to Phosphorus Recovery from Urban Wastewater: Enhanced Biological Removal Combined with Precipitation. Sustainability 2020, 12, 575. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Liu, J.; Bao, H.; Wu, L.; Jiang, L.; Zou, L.; Wu, Y.; Qian, G.; Li, Y.-Y. Enhancing phosphorus release from waste activated sludge by combining high-voltage pulsed discharge pretreatment with anaerobic fermentation. J. Clean Prod. 2018, 196, 1044–1051. [Google Scholar] [CrossRef]
- Daneshgar, S.; Vanrolleghem, P.A.; Vaneeckhaute, C.; Buttafava, A.; Capodaglio, A.G. Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination. Sci. Total Environ. 2019, 668, 668–677. [Google Scholar] [CrossRef]
- Wang, O.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ. 2017, 587, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Zhu, R.; An, H.; Zhou, G.; Huang, H.; Ren, H.; Zhang, Y. Influence of wastewater sludge properties on the performance of electro-osmosis dewatering. Environ. Technol. 2018, 40, 2853–2863. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Energy use and recovery in wastewater treatment facilities. Renew. Energy Power Qual. J. 2020, 18, 425–430. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Dondi, D. Microwave induced pyrolysis for production of sustainable biodiesel from waste sludges. Waste Biomass Valor. 2016, 7, 703–709. [Google Scholar] [CrossRef]
- Bolognesi, S.; Bernardi, G.; Callegari, A.; Dondi, D.; Capodaglio, A.G. Biochar production from sewage sludge and microalgae mixtures: Properties, sustainability and possible role in circular economy. Biomass Conv. Bioref. 2021, 11, 289–299. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, B.; Dai, X. Mechanism analysis to improve sludge dewaterability during anaerobic digestion based on moisture distribution. Chemosphere 2019, 227, 247–255. [Google Scholar] [CrossRef]
- Bazhal, M.I.; Lebovka, N.I.; Vorobiev, E. Pulsed electric field treatment of apple tissue during compression for juice extraction. J. Food Eng. 2001, 50, 129–139. [Google Scholar] [CrossRef]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G. Sustainable management of biological solids in small treatment plants: Overview of strategies and reuse options for a solar drying facility in Poland. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Wang, H.; Brown, S.L.; Magesan, G.N.; Slade, A.H.; Quintern, M.; Clinton, P.W.; Payn, T.W. Technological options for the management of biosolids. Environ. Sci. Pollut. R. 2008, 15, 308–317. [Google Scholar] [CrossRef]
- Kempkes, B.E. Pulsed electric field (PEF) systems for commercial food and juice processing, in Case Studies. In Novel Food Processing Technologies; Doona, C.J., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 73–102. [Google Scholar] [CrossRef]
- Chi, N.T.L.; Duc, P.A.; Mathimani, T.; Pugazhendhi, A. Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatal. Agricult. Biotechnol. 2019, 17, 184–188. [Google Scholar] [CrossRef]
- Eppink, M.H.M.; Olivieri, G.; Reith, H.; van den Berg, C.; Barbosa, M.J.; Wijffels, R.H. From current algae products to future biorefinery practices: A review. Adv. Biochem. Eng. Biotechnol. 2019, 166, 99–123. [Google Scholar] [CrossRef] [PubMed]
- Fasaei, F.; Bitter, J.H.; Slegers, P.N.; van Boxtel, A.J.B. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal. Res. 2018, 31, 347–362. [Google Scholar] [CrossRef]
- Smetana, S.; Sandmann, M.; Rohn, S.; Pleissner, D.; Heinz, V. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: Life cycle assessment. Bioresour. Technol. 2017, 245, 162–170. [Google Scholar] [CrossRef]
- Goettel, M.; Eing, C.; Gusbeth, C.; Straessner, R.; Frey, W. Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res. 2013, 2, 401–408. [Google Scholar] [CrossRef]
- Neto, A.M.P.; de-Souza, R.A.S.; Leon-Nino, A.D.; da-Costa, J.D.A.; Tiburcio, R.S.; Nunes, T.A.; de-Mello, T.C.S.; Kanemoto, F.T.; Saldanha-Corrêa, F.M.P.; Gianesella, S.M.F. Improvement in microalgae lipid extraction using a sonication-assisted method. Renew. Energy 2013, 55, 525–531. [Google Scholar] [CrossRef]
- Araujo, G.S.; Matos, L.J.B.L.; Fernandes, J.O.; Cartaxo, S.J.M.; Gonçalves, L.R.B.; Fernandes, F.A.N.; Farias, W.R.L. Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrason. Sonochem. 2013, 20, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yu, T.; Li, T.; Zhou, J.; Cen, K. Using wet microalgae for direct biodiesel production via microwave Irradiation. Bioresour. Technol. 2013, 131, 531–535. [Google Scholar] [CrossRef]
- Teo, C.L.; Idris, A. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Bioresour. Technol. 2014, 171, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Ryckebosch, E.; Bruneel, C.; Termote-Verhalle, R.; Muylaert, K.; Foubert, I. Influence of extraction solvent system on extractability of lipid components from different microalgae species. Algal. Res. 2014, 3, 36–43. [Google Scholar] [CrossRef]
- Cheng, C.H.; Dub, T.B.; Pi, H.C.; Jang, S.M.; Lin, Y.H.; Lee, H.T. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour. Technol. 2011, 102, 10151–10153. [Google Scholar] [CrossRef]
- Horst, I.; Parker, B.M.; Dennis, J.S.; Howe, C.J.; Scott, S.A.; Smith, A.G. Treatment of Phaeodactylum tricornutum cells with papain facilitates lipid extraction. J. Biotechnol. 2012, 162, 40–49. [Google Scholar] [CrossRef]
- Fu, C.C.; Hung, T.C.; Chen, J.Y.; Su, C.H.; Wu, W.T. Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour. Technol. 2010, 101, 8750–8754. [Google Scholar] [CrossRef]
- Daghrir, R.; Igounet, L.; Brar, S.K.; Drogui, P. Novel electrochemical method for the recovery of lipids from microalgae for biodiesel production. J. Taiwan Inst. Chem. Eng. 2014, 45, 153–162. [Google Scholar] [CrossRef]
- Steriti, A.; Rossi, R.; Concas, A.; Cao, G. A novel cell disruption technique to enhance lipid extraction from microalgae. Bioresour. Technol. 2014, 164, 70–77. [Google Scholar] [CrossRef]
- Flisar, K.; Meglic, S.H.; Morelj, J.; Golob, J.; Miklavcic, D. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry 2014, 100, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Vannela, R.; Rittmann, B.E. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ. Sci. Technol. 2011, 45, 3795–3802. [Google Scholar] [CrossRef]
- Halim, R.; Harun, R.; Danquah, M.K.; Webley, P.A. Microalgal cell disruption for biofuel development. Appl. Energy 2012, 91, 116–121. [Google Scholar] [CrossRef]
- Carullo, D.; Abera, B.D.; Casazza, A.A.; Donsì, F.; Perego, P.; Ferrari, G.; Pataro, G. Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res. 2018, 31, 60–69. [Google Scholar] [CrossRef]
- Kempkes, M. Pulsed Electric Fields for Algal Extraction and Predator Control. In Handbook of Electroporation; Miklavcic, D., Ed.; Springer International Publishing AG: London, UK, 2016; pp. 1–15. [Google Scholar]
- Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Impact of electrical treatment on the extraction of polyphenol from Norway spruce bark. Ind. Crop. Products 2016, 80, 50–58. [Google Scholar] [CrossRef]
- Coustets, M.; Al-Karablieh, N.; Thomsen, C.; Teissié, J. Flow process for electroextraction of total proteins from microalgae. J. Membr. Biol. 2013, 246, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Boussetta, N.; Vorobiev, E.; Le, L.H.; Cordin-Falcimaigne, A.; Lanoisellé, J.L. Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT Food Sci. Technol. 2012, 46, 127–134. [Google Scholar] [CrossRef]
- Boussetta, N.; Soichi, E.; Lanoisellé, J.L.; Vorobiev, E. Valorization of oilseed residues: Extraction of polyphenols from flaxseed hulls by pulsed electric fields. Ind. Crop. Prod. 2014, 52, 347–353. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Pulsed electric field pretreatment of switchgrass and wood chip species for biofuel production. Ind. Eng. Chem. Res. 2011, 50, 10996–11001. [Google Scholar] [CrossRef]
- Brown, L.E.; Sprecher, S.L.; Keller, L.R. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol. Cell Biol. 1991, 11, 2328–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rego, D.; Redondo, L.M.; Geraldes, V.; Costa, L.; Navalho, J.; Pereira, M.T. Control of predators in industrial scale microalgae cultures with Pulsed Electric Fields. Bioelectrochemistry 2015, 103, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Roth, I. Application of Pulsed Electric Fields to the Extraction of Oil from Microalgae; SBIR Final Report for IIP-1013814; National Science Foundation: Alexandria, VA, USA, 2011. [Google Scholar]
- ‘tLam, G.P.; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.-H.; Barbosa, M.J.; Eppink, M.H.M.; Wijffelsad, R.H.; Olivieri, G. Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Res. 2017, 24, 181–187. [Google Scholar]
- Bochmann, G.; Montgomery, L.F.R. Storage and pre-treatment of substrates for biogas production. In The Biogas Handbook; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 85–103. [Google Scholar]
- Cano, R.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Energy feasibility study of sludge pretreatments: A review. Appl. Energy 2015, 149, 176–185. [Google Scholar] [CrossRef]
Feedstock | Description | Reference |
---|---|---|
Sewage sludge, Pig manure | E = 24.5 kV/cm, HRT = 0.01 s, TI = 4.0–19.8 kWh/m3. Solubilized ~10% of total COD, soluble COD increased from ~20 to ˃1000 mg/L. Increased methane production after 25–30 days: 80% for pig manure, up to 100% for WAS. | [15] |
Landfill leachate and vegetable slurry | E = 20 kV/cm; TI = 15, 30, 50 kWh/m3. CH4 production from landfill leachate increased up to 44% and COD removal by 100% at the highest TI, production from vegetable slurry increased by 7% at lowest TI, with COD removal of +17%. | [37] |
Sludge (primary + secondary) from wastewater treatment | TI = 30.0–35.8 kWh/m3. CH4 production increased by 33%, COD removal by 18%. | [38] |
Biological sewage sludge | E = 5.88 to 14.7 kV/cm, Energy input = 150–280 kJ/L. Pretreatment efficiency increased with E level. Increase of T also increased pretreatment efficiency. | [44] |
Biological sludge (60% WAS, 40% primary) from WWTP | E = 8 to 30 kV/cm. Biogas yield improved by up to 20%, and reduced sludge foaming during AD. | [45] |
Thickened WAS | V = 20 kV (coaxial and multiple ring electrodes) Biogas yield increased by 150%. | [46] |
Primary WWTP sludge | V = 30 kV; TI = 33 kWh/m3. Increased AD production of CH4 by 8%, of VFAs by 7%. | [47] |
Method | Operating Conditions | Microalgal Strain | Lipid Extraction Yield (% wt) | Reference |
---|---|---|---|---|
Ultrasound + solvent | Ultrasonication in ice/ water bath for 20 min | Chlorella minutissima, Thalassiosira fluviatiis, Thalassiosira pseudonana | 15.5–40.3 | [71] |
Ultrasound + solvent | US: 40 kHz, 2.68 W/m2, 25 °C 2-step extraction with: 1)CH3OH + CHCl3/US40min or CH3OH/US3min or C3H7OH/US4min 2)CHCl3 + Na2SO4/US20min or CH2Cl2/US27min or C6H14/US56min | Chlorella vulgaris | 2.2–52.5 | [72] |
Ultrasound + Soxlet | 40 kHz, 2.68 W/m2, Soxhlet for 8 h with acetone | Chlorella vulgaris | 1.8 | [72] |
MW + solvent | 2.45 GHz, 400 W30min CH3OH + CHCl3 | Chlorella pyrenoidosa | 19.03 | [73] |
MW + solvent | 500 W5min, 65 °C Various extraction methods (2 stage) with CH3OH, CHCl3 + Na2SO4, CH2Cl2, C3H7OH, C6H14 | Nannochloropsis sp. Tetraselmis sp. | 4.2–8.4 5.4–8.2 | [74] |
Osmotic shock + solvent | 10% NaCl 48 h, then CHCl3 + CH3OH | Botryococcus sp. Scenedesmus sp./Chlorella vulgaris | ~11 ~8 | [75] |
Solvent extraction | CHCl3 + CH3OH | Isochrysis galbana, Nannochloropis gaditana, Nannochloropsis sp., Phaeodactylum tricornutum | 17.8–30.2 | [76] |
Bead-beating + Supercritical CO2 extraction | 1500 rpm for 5 min. SC-CO2: 306 bar, 60 °C, 6 h | Pavlova sp. | 17.9 | [77] |
Enzymatic | 37 °C for 2 h with: Viscozyme or Papain or Proteinase K or Driselase | Phaeodactylum tricornutum Thalassiosira pseudonana | 92–104 88 | [78] |
Enzymatic + solvent | Papain, 37 °C, 2 h plus C7H16 or C7H16 + C3H7OH | Phaeodactylum tricornutum | 56–96 | [78] |
Enzymatic + solvent | Cellulase 60 °C, 4.6 pH, 72 h then n-C6H14, 28 °C | Chlorella sp. | 10.6 | [79] |
Electric Field lysis | 0.3A, 60min, 14.3–30.7 V/cm | Chlorella vulgaris | 2.08–3.7 | [80] |
Fenton Reaction + solvent | H2O2 + n-C6H14 | Chlorella vulgaris | 9.24–17.37 | [81] |
PEF | 2.7 kV/cm, W = 14.4 kJ/L | Chlorella vulgaris | 22 | [82] |
PEF | 35 kV/cm, 200 kJ/kgss | Auxenochlorella protothecoides | 22 | [10] |
PEF + solvent | >35 kWh/m3, Isopropanol | Synechocystis PCC 6803 | 25–75 | [83] |
Feedstock | Purpose | Description | Reference |
---|---|---|---|
Algae A. protothecoides, C. vulgaris, N. salina | Protein extraction | E = 3–34 kV/cm | |
Protein extraction yields: 3.5–5 μg protein/100 μL | [88] | ||
Foodcrops residuals | High value products extraction | E = 5–20 kV/cm >50% energy saving compared with traditional methods, extraction yield of polyphenols increased by 150% | [89,90] |
LCB | Biofuel production | E = 8–10 kV/cm | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodaglio, A.G. Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization. Processes 2021, 9, 736. https://doi.org/10.3390/pr9050736
Capodaglio AG. Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization. Processes. 2021; 9(5):736. https://doi.org/10.3390/pr9050736
Chicago/Turabian StyleCapodaglio, Andrea G. 2021. "Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization" Processes 9, no. 5: 736. https://doi.org/10.3390/pr9050736
APA StyleCapodaglio, A. G. (2021). Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization. Processes, 9(5), 736. https://doi.org/10.3390/pr9050736