A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications
Abstract
:1. Introduction
2. Preparations of PVDF and PVDF-HFP Blends and Composites
2.1. PVDF/and PVDF-HFP/Hydrophilic Imidazolium-Based Ionic Liquid Blends
2.2. PVDF/and PVDF-HFP/Hydrophobic Imidazolium-Based Ionic Liquid Blends
2.3. PVDF/and PVDF-HFP/Ionic Liquid-Modified Filler Composites
3. Effect of Imidazolium-Based Ionic Liquids on the Physicochemical Properties of the Blends and Composites
3.1. Effect of Hydrophilic Imidazolium-Based Ionic Liquids
3.2. Effect of Hydrophobic Imidazolium-Based Ionic Liquids
4. Applications of PVDF and PVDF-HFP Blends and Composites
4.1. PVDF/and PVDF-HFP/Hydrophilic Imidazolium-Based Ionic Liquid Blends and Composites
4.2. PVDF/and PVDF-HFP/Hydrophobic Imidazolium-Based Ionic Liquid Blends and Composites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, K.M.E.; Hamilton, I.P.; Penlidis, A. Investigation of the Interaction between Benzene and SXFA Using DFT. Processes 2018, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xiao, C.; Liu, H.; Huang, Q.; Hao, J.; Fu, H. Poly (Vinylidene Fluoride-Hexafluoropropylene) Porous Membrane with Controllable Structure and Applications in Efficient Oil/Water Separation. Materials (Basel) 2018, 11, 443. [Google Scholar] [CrossRef] [Green Version]
- Shamsuri, A.A.; Abdan, K.; Kaneko, T. A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids. Molecules 2021, 26, 216. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Jamil, S.N.A.M. Application of Quaternary Ammonium Compounds as Compatibilizers for Polymer Blends and Polymer Composites—A Concise Review. Appl. Sci. 2021, 11, 3167. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Md. Jamil, S.N.A.M. Compatibilization Effect of Ionic Liquid-Based Surfactants on Physicochemical Properties of PBS/Rice Starch Blends: An Initial Study. Materials (Basel) 2020, 13, 1885. [Google Scholar] [CrossRef] [Green Version]
- Shamsuri, A.A.; Jamil, S.N.A.M.; Abdan, K. Processes and Properties of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites—A Succinct Review. Processes 2021, 9, 480. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and Characterization of PVDF/TiO2 Hybrid Membranes with Ionic Liquid Modified Nano-TiO2 Particles. J. Memb. Sci. 2013, 427, 259–269. [Google Scholar] [CrossRef]
- Mejri, R.; Dias, J.C.; Besbes Hentati, S.; Botelho, G.; Esperança, J.M.S.S.; Costa, C.M.; Lanceros-Mendez, S. Imidazolium-Based Ionic Liquid Type Dependence of the Bending Response of Polymer Actuators. Eur. Polym. J. 2016, 85, 445–451. [Google Scholar] [CrossRef]
- Mejri, R.; Dias, J.C.; Lopes, A.C.; Bebes Hentati, S.; Silva, M.M.; Botelho, G.; Mão De Ferro, A.; Esperança, J.M.S.S.; Maceiras, A.; Laza, J.M.; et al. Effect of Ionic Liquid Anion and Cation on the Physico-Chemical Properties of Poly (Vinylidene Fluoride)/Ionic Liquid Blends. Eur. Polym. J. 2015, 71, 304–313. [Google Scholar] [CrossRef]
- Thomas, E.; Parvathy, C.; Balachandran, N.; Bhuvaneswari, S.; Vijayalakshmi, K.P.; George, B.K. PVDF-Ionic Liquid Modified Clay Nanocomposites: Phase Changes and Shish-Kebab Structure. Polymer (Guildf) 2017, 115, 70–76. [Google Scholar] [CrossRef]
- Mejri, R.; Dias, J.C.; Hentati, S.B.; Martins, M.S.; Costa, C.M.; Lanceros-Mendez, S. Effect of Anion Type in the Performance of Ionic Liquid/Poly (Vinylidene Fluoride) Electromechanical Actuators. J. Non-Cryst. Solids 2016, 453, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.; Wang, Y.; Zhang, C.; Li, L.; Li, Y.; Li, J. Immobilization of Ionic Liquids onto the Poly (Vinylidene Fluoride) by Electron Beam Irradiation. Ind. Eng. Chem. Res. 2015, 54, 9351–9359. [Google Scholar] [CrossRef]
- Xing, C.; You, J.; Li, Y.; Li, J. Nanostructured Poly (Vinylidene Fluoride)/Ionic Liquid Composites: Formation of Organic Conductive Nanodomains in Polymer Matrix. J. Phys. Chem. C 2015, 119, 21155–21164. [Google Scholar] [CrossRef]
- Maity, N.; Mandal, A.; Nandi, A.K. Interface Engineering of Ionic Liquid Integrated Graphene in Poly (Vinylidene Fluoride) Matrix Yielding Magnificent Improvement in Mechanical, Electrical and Dielectric Properties. Polymer (Guildf) 2015, 65, 154–167. [Google Scholar] [CrossRef]
- Nath, A.K.; Kumar, A. Ionic Transport Properties of PVdF-HFP-MMT Intercalated Nanocomposite Electrolytes Based on Ionic Liquid, 1-Butyl-3-Methylimidazolium Bromide. Ionics (Kiel) 2013, 19, 1393–1403. [Google Scholar] [CrossRef]
- Nath, A.K.; Kumar, A. Swift Heavy Ion Irradiation Induced Enhancement in Electrochemical Properties of Ionic Liquid Based PVdF-HFP-Layered Silicate Nanocomposite Electrolyte Membranes. J. Memb. Sci. 2014, 453, 192–201. [Google Scholar] [CrossRef]
- Xu, P.; Gui, H.; Wang, X.; Hu, Y.; Ding, Y. Improved Dielectric Properties of Nanocomposites Based on Polyvinylidene Fluoride and Ionic Liquid-Functionalized Graphene. Compos. Sci. Technol. 2015, 117, 282–288. [Google Scholar] [CrossRef]
- Mandal, A.; Nandi, A.K. Ionic Liquid Integrated Multiwalled Carbon Nanotube in a Poly (Vinylidene Fluoride) Matrix: Formation of a Piezoelectric β-Polymorph with Significant Reinforcement and Conductivity Improvement. ACS Appl. Mater. Interfaces 2013, 5, 747–760. [Google Scholar] [CrossRef]
- Angaiah, S.; Murugadoss, V.; Arunachalam, S.; Panneerselvam, P.; Krishnan, S. Influence of Various Ionic Liquids Embedded Electrospun Polymer Membrane Electrolytes on the Photovoltaic Performance of DSSC. Eng. Sci. 2018, 12, 44–51. [Google Scholar] [CrossRef]
- Fan, L.Q.; Tu, Q.M.; Geng, C.L.; Wang, Y.L.; Sun, S.J.; Huang, Y.F.; Wu, J.H. Improved Redox-Active Ionic Liquid-Based Ionogel Electrolyte by Introducing Carbon Nanotubes for Application in All-Solid-State Supercapacitors. Int. J. Hydrog. Energy 2020, 45, 17131–17139. [Google Scholar] [CrossRef]
- Gomez-Coma, L.; Garea, A.; Rouch, J.C.; Savart, T.; Lahitte, J.F.; Remigy, J.C.; Irabien, A. Membrane Modules for CO2 Capture Based on PVDF Hollow Fibers with Ionic Liquids Immobilized. J. Memb. Sci. 2016, 498, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K.; Sabin, K.C.; Chen, X. Ionic Liquid–Solid Polymer Electrolyte Blends for Supercapacitor Applications. Polym. Bull. 2016, 73, 255–263. [Google Scholar] [CrossRef]
- Che, Q.; Zhou, L.; Wang, J. Fabrication and Characterization of Phosphoric Acid Doped Imidazolium Ionic Liquid Polymer Composite Membranes. J. Mol. Liq. 2015, 206, 10–18. [Google Scholar] [CrossRef]
- Okada, D.; Kaneko, H.; Kato, K.; Furumi, S.; Takeguchi, M.; Yamamoto, Y. Colloidal Crystallization and Ionic Liquid Induced Partial β-Phase Transformation of Poly (Vinylidene Fluoride) Nanoparticles. Macromolecules 2015, 48, 2570–2575. [Google Scholar] [CrossRef]
- Wang, F.; Lack, A.; Xie, Z.; Frübing, P.; Taubert, A.; Gerhard, R. Ionic-Liquid-Induced Ferroelectric Polarization in Poly (Vinylidene Fluoride) Thin Films. Appl. Phys. Lett. 2012, 100, 062903. [Google Scholar] [CrossRef]
- Tuhania, P.; Singh, P.K.; Bhattacharya, B.; Dhapola, P.S.; Yadav, S.; Shukla, P.K.; Gupta, M. PVDF-HFP and 1-Ethyl-3-Methylimidazolium Thiocyanate–Doped Polymer Electrolyte for Efficient Supercapacitors. High Perform. Polym. 2018, 30, 911–917. [Google Scholar] [CrossRef]
- Kuberský, P.; Altšmíd, J.; Hamáček, A.; Nešpůrek, S.; Zmeškal, O. An Electrochemical NO2 Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity. Sensors (Switzerland) 2015, 15, 28421–28434. [Google Scholar] [CrossRef]
- Lopes, A.C.; Gutiérrez, J.; Barandiarán, J.M. Direct Fabrication of a 3D-Shape Film of Polyvinylidene Fluoride (PVDF) in the Piezoelectric β-Phase for Sensor and Actuator Applications. Eur. Polym. J. 2018, 99, 111–116. [Google Scholar] [CrossRef]
- Sarkar, R.; Kundu, T.K. Density Functional Theory Studies on PVDF/Ionic Liquid Composite Systems. J. Chem. Sci. 2018, 130, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Guo, J.; Sun, L.; Zhang, X.; Zhao, Y. Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics. Research 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.; Han, Y.; Huang, J.; Meng, E.; Ma, L.; Zhang, H.; Ding, Y. Hydrophilic Poly (Vinylidene Fluoride) Film with Enhanced Inner Channels for Both Water- and Ionic Liquid-Driven Ion-Exchange Polymer Metal Composite Actuators. ACS Appl. Mater. Interfaces 2019, 11, 2386–2397. [Google Scholar] [CrossRef]
- Feng, L.; Wang, K.; Zhang, X.; Sun, X.; Li, C.; Ge, X.; Ma, Y. Flexible Solid-State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte. Adv. Funct. Mater. 2018, 28, 1–9. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Na, B.; Lv, R.; Chen, B.; Zhu, J. Polar Phase Formation and Competition in the Melt Crystallization of Poly (Vinylidene Fluoride) Containing an Ionic Liquid. Mater. Chem. Phys. 2014, 144, 194–198. [Google Scholar] [CrossRef]
- Chaurasia, S.K.; Singh, R.K. Crystallization Behaviour of a Polymeric Membrane Based on the Polymer PVdF-HFP and the Ionic Liquid BMIMBF4. RSC Adv. 2014, 4, 50914–50924. [Google Scholar] [CrossRef]
- Chaurasia, S.K.; Singh, R.K.; Chandra, S. Thermal Stability, Complexing Behavior, and Ionic Transport of Polymeric Gel Membranes Based on Polymer PVdF-HFP and Ionic Liquid, [BMIM][BF4]. J. Phys. Chem. B 2013, 117, 897–906. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A. Solid Polymer Electrolyte Based on PVDF-HFP and Ionic Liquid Embedded with TiO 2 Nanoparticle for Electric Double Layer Capacitor (EDLC) Application. J. Electrochem. Soc. 2017, 164, F1348–F1353. [Google Scholar] [CrossRef]
- Pandey, G.P.; Liu, T.; Hancock, C.; Li, Y.; Sun, X.S.; Li, J. Thermostable Gel Polymer Electrolyte Based on Succinonitrile and Ionic Liquid for High-Performance Solid-State Supercapacitors. J. Power Sources 2016, 328, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Xing, C.; Wang, Y.; Li, Y.; Li, J. Poly (Vinylidene Fluoride) Dielectric Composites with Both Ionic Nanoclusters and Well Dispersed Graphene Oxide. Compos. Sci. Technol. 2017, 138, 98–105. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, C.; Guan, J.; Li, Y. Towards Flexible Dielectric Materials with High Dielectric Constant and Low Loss: PVDF Nanocomposites with Both Homogenously Dispersed CNTs and Ionic Liquids Nanodomains. Polymers (Basel) 2017, 9, 562. [Google Scholar] [CrossRef] [Green Version]
- Suleman, M.; Kumar, Y.; Hashmi, S.A. Structural and Electrochemical Properties of Succinonitrile-Based Gel Polymer Electrolytes: Role of Ionic Liquid Addition. J. Phys. Chem. B 2013, 117, 7436–7443. [Google Scholar] [CrossRef]
- Correia, D.M.; Barbosa, J.C.; Costa, C.M.; Reis, P.M.; Esperança, J.M.S.S.; De Zea Bermudez, V.; Lanceros-Méndez, S. Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly (Vinylidene Fluoride)-Based Soft Actuators. J. Phys. Chem. C 2019, 123, 12744–12752. [Google Scholar] [CrossRef]
- Correia, D.M.; Sabater i Serra, R.; Gómez Tejedor, J.A.; de Zea Bermudez, V.; Andrio Balado, A.; Meseguer-Dueñas, J.M.; Gomez Ribelles, J.L.; Lanceros-Méndez, S.; Costa, C.M. Ionic and Conformational Mobility in Poly (Vinylidene Fluoride)/Ionic Liquid Blends: Dielectric and Electrical Conductivity Behavior. Polymer (Guildf) 2018, 143, 164–172. [Google Scholar] [CrossRef]
- Dias, J.C.; Lopes, A.C.; Magalhães, B.; Botelho, G.; Silva, M.M.; Esperança, J.M.S.S.; Lanceros-Mendez, S. High Performance Electromechanical Actuators Based on Ionic Liquid/Poly (Vinylidene Fluoride). Polym. Test. 2015, 48, 199–205. [Google Scholar] [CrossRef]
- Dias, J.C.; Correia, D.C.; Lopes, A.C.; Ribeiro, S.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Esperança, J.M.S.S.; Laza, J.M.; Vilas, J.L.; et al. Development of Poly (Vinylidene Fluoride)/Ionic Liquid Electrospun Fibers for Tissue Engineering Applications. J. Mater. Sci. 2016, 51, 4442–4450. [Google Scholar] [CrossRef]
- Yuan, C.; Zhu, X.; Su, L.; Yang, D.; Wang, Y.; Yang, K.; Cheng, X. Preparation and Characterization of a Novel Ionic Conducting Foam-Type Polymeric Gel Based on Polymer PVdF-HFP and Ionic Liquid [EMIM][TFSI]. Colloid Polym. Sci. 2015, 293, 1945–1952. [Google Scholar] [CrossRef]
- Zhang, X.; Kar, M.; Mendes, T.C.; Wu, Y.; MacFarlane, D.R. Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Adv. Energy Mater. 2018, 8, 1702702. [Google Scholar] [CrossRef]
- Dias, J.C.; Correia, D.M.; Costa, C.M.; Ribeiro, C.; Maceiras, A.; Vilas, J.L.; Botelho, G.; de Zea Bermudez, V.; Lanceros-Mendez, S. Improved Response of Ionic Liquid-Based Bending Actuators by Tailored Interaction with the Polar Fluorinated Polymer Matrix. Electrochim. Acta 2019, 296, 598–607. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, S.; Abraham, J.; Thomas, S. Flexible EMI Shielding Materials Derived by Melt Blending PVDF and Ionic Liquid Modified MWNTs. Mater. Res. Express 2014, 1, 035003. [Google Scholar] [CrossRef] [Green Version]
- Jindaratsamee, P.; Ito, A.; Komuro, S.; Shimoyama, Y. Separation of CO 2 from the CO 2/N 2 Mixed Gas through Ionic Liquid Membranes at the High Feed Concentration. J. Memb. Sci. 2012, 423–424, 27–32. [Google Scholar] [CrossRef]
- Singh, R.; Bhattacharya, B.; Gupta, M.; Rahul; Khan, Z.H.; Tomar, S.K.; Singh, V.; Singh, P.K. Electrical and Structural Properties of Ionic Liquid Doped Polymer Gel Electrolyte for Dual Energy Storage Devices. Int. J. Hydrog. Energy 2017, 42, 14602–14607. [Google Scholar] [CrossRef]
- Hwang, S.K.; Park, T.J.; Kim, K.L.; Cho, S.M.; Jeong, B.J.; Park, C. Organic One-Transistor-Type Nonvolatile Memory Gated with Thin Ionic Liquid-Polymer Film for Low Voltage Operation. ACS Appl. Mater. Interfaces 2014, 6, 20179–20187. [Google Scholar] [CrossRef]
- Ortega, P.F.R.; Trigueiro, J.P.C.; Silva, G.G.; Lavall, R.L. Improving Supercapacitor Capacitance by Using a Novel Gel Nanocomposite Polymer Electrolyte Based on Nanostructured SiO2, PVDF and Imidazolium Ionic Liquid. Electrochim. Acta 2016, 188, 809–817. [Google Scholar] [CrossRef]
- Pandey, G.P.; Hashmi, S.A. Performance of Solid-State Supercapacitors with Ionic Liquid 1-Ethyl-3-Methylimidazolium Tris (Pentafluoroethyl) Trifluorophosphate Based Gel Polymer Electrolyte and Modified MWCNT Electrodes. Electrochim. Acta 2013, 105, 333–341. [Google Scholar] [CrossRef]
- Xing, C.; Guan, J.; Li, Y.; Li, J. Effect of a Room-Temperature Ionic Liquid on the Structure and Properties of Electrospun Poly (Vinylidene Fluoride) Nanofibers. ACS Appl. Mater. Interfaces 2014, 6, 4447–4457. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Zhao, M.; Zhao, L.; You, J.; Cao, X.; Li, Y. Ionic Liquid Modified Poly (Vinylidene Fluoride): Crystalline Structures, Miscibility, and Physical Properties. Polym. Chem. 2013, 4, 5726–5734. [Google Scholar] [CrossRef]
- Ke, K.; Po, P.; Gao, S.; Voit, B. An Ionic Liquid as Interface Linker for Tuning Piezoresistive Sensitivity and Toughness in Poly (Vinylidene Fluoride)/Carbon Nanotube Composites. ACS Appl. Mater. Interfaces 2017, 9, 5437–5446. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Zhao, L.; You, J.; Dong, W.; Cao, X.; Li, Y. Impact of Ionic Liquid-Modified Multiwalled Carbon Nanotubes on the Crystallization Behavior of Poly (Vinylidene Fluoride). J. Phys. Chem. B 2012, 116, 8312–8320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Xiao, J.; Song, F.; Wang, C.; Wang, H. Fabrication of Enhanced Dielectric PVDF Nanocomposite Based on the Conjugated Synergistic Effect of Ionic Liquid and Graphene. Mater. Today Proc. 2019, 16, 1512–1517. [Google Scholar] [CrossRef]
- Xu, P.; Fu, W.; Luo, X.; Ding, Y. Enhanced Dc Conductivity and Conductivity Relaxation in PVDF/Ionic Liquid Composites. Mater. Lett. 2017, 206, 60–63. [Google Scholar] [CrossRef]
- Chen, H.Z.; Li, P.; Chung, T.S. PVDF/Ionic Liquid Polymer Blends with Superior Separation Performance for Removing CO2 from Hydrogen and Flue Gas. Int. J. Hydrog. Energy 2012, 37, 11796–11804. [Google Scholar] [CrossRef]
- Pandey, G.P.; Hashmi, S.A. Ionic Liquid 1-Ethyl-3-Methylimidazolium Tetracyanoborate-Based Gel Polymer Electrolyte for Electrochemical Capacitors. J. Mater. Chem. A 2013, 1, 3372–3378. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Daik, R. Mechanical and Thermal Properties of Nylon-6/LNR/MMT Nanocomposites Prepared through Emulsion Dispersion Technique. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 73, 1–12. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Md. Jamil, S.N.A.M. A Short Review on the Effect of Surfactants on the Mechanico-Thermal Properties of Polymer Nanocomposites. Appl. Sci. 2020, 10, 4867–4882. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Md. Jamil, S.N.A.M. Functional Properties of Biopolymer-Based Films Modified with Surfactants: A Brief Review. Processes 2020, 8, 1039. [Google Scholar] [CrossRef]
Hydrophilic Imidazolium-Based Ionic Liquid | Abbreviation | References |
---|---|---|
1-Methyl-3-carboxymethylimidazolium chloride | [Mcmim][Cl] | [7] |
1-Ethyl-3-methylimidazolium chloride | [Emim][Cl] | [8,9] |
1-Butyl-3-methylimidazolium chloride | [Bmim][Cl] | [10] |
1-Hexyl-3-methylimidazolium chloride | [Hmim][Cl] | [8,9,11] |
1-Decyl-3-methylimidazolium chloride | [Dmim][Cl] | [8,9] |
1-Vinyl-3-butylimidazolium chloride | [Vbim][Cl] | [12,13] |
1-(2-Amino-ethyl)-3-methylimidazolium bromide | [Aemim][Br] | [14] |
1-Butyl-3-methylimidazolium bromide | [Bmim][Br] | [15,16] |
1-Hexadecyl-3-methylimidazolium bromide | [Hdmim][Br] | [17] |
3-Aminoethylimidazolium bromide | [Aeim][Br] | [18] |
1,3-Dimethylimidazolium iodide | [Mmim][I] | [19] |
1-Propyl-3-methylimidazolium iodide | [Pmim][I] | [19] |
1-Butyl-3-methylimidazolium iodide | [Bmim][I] | [19,20] |
1-Hexyl-3-methylimidazolium iodide | [Hmim][I] | [19] |
1-Ethyl-3-methylimidazolium acetate | [Emim][OAc] | [21] |
1-Ethyl-3-methylimidazolium dicyanamide | [Emim][DCA] | [22] |
1-Butyl-3-methylimidazolium dihydrogenphosphate | [Bmim][H2PO4] | [23] |
1-Ethyl-3-methylimidazolium ethylsulfate | [Emim][EtSO4] | [21] |
1-Ethyl-3-methylimidazolium nitrate | [Emim][NO3] | [24,25] |
1-Ethyl-3-methylimidazolium thiocyanate | [Emim][SCN] | [26] |
1-Ethyl-3-methylimidazolium tetrafluoroborate | [Emim][BF4] | [27,28,29,30,31,32] |
1-Butyl-3-methylimidazolium tetrafluoroborate | [Bmim][BF4] | [29,33,34,35,36,37] |
1-Vinyl-3-ethylimidazolium tetrafluoroborate | [Veim][BF4] | [38,39] |
1-Ethyl-3-methylimidazolium trifluoromethanesulfonate | [Emim][CF3SO3] | [40] |
1-Butyl-3-methylimidazolium trifluoromethanesulfonate | [Bmim][CF3SO3] | [27] |
Hydrophobic Imidazolium-Based Ionic Liquid | Abbreviation | References |
---|---|---|
1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Emim][NTf2] | [8,9,27,41,42,43,44,45,46,47,48] |
1-Ethyl-3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide | [Emmim][NTf2] | [41] |
1-Propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Pmim][NTf2] | [41] |
1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Bmim][NTf2] | [49] |
1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Hmim][NTf2] | [8,9,11] |
1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Dmim][NTf2] | [8,9] |
1,2-Dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide | [Mmpim][NTf2] | [50] |
1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide | [Emim][TFSA] | [51] |
1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide | [Emim][FSI] | [52] |
1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate | [Emim][FAP] | [53] |
1-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate | [Hmim][FAP] | [27] |
1-Butyl-3-methylimidazolium hexafluorophosphate | [Bmim][PF6] | [23,49,54,55,56,57,58] |
1-Benzyl-3-methylimidazolium hexafluorophosphate | [Bzmim][PF6] | [59] |
1-Ethyl-3-methylimidazolium tetracyanoborate | [Emim][B(CN)4] | [60,61] |
1-Hexyl-3-methylimidazolium tetrafluoroborate | [Hmim][BF4] | [29] |
Filler | Abbreviation | References |
---|---|---|
Graphene | Gr | [17,58] |
Graphene oxide | GO | [32,38] |
Carboxylated graphene oxide | GO-COOH | [14] |
Multi-walled carbon nanotubes | MWCNTs | [20,39,48,57] |
Carboxylated multi-walled carbon nanotubes | MWCNT-COOH | [18,56] |
Sodium montmorillonite | NaMMT | [10] |
Octadecylamine modified montmorillonite | OMMT | [15,16] |
Silicon dioxide | SiO2 | [52] |
Titanium dioxide | TiO2 | [7,36] |
Polyvinyl pyrrolidone grains | PVP grains | [31] |
Succinonitrile | SN | [37,40] |
Polymer Matrix | Hydrophilic Ionic Liquid | Blending Process | Blending Temp. (°C) | Time (Hour) | Final Process | Final Temp. (°C) | Time (Hour) | References |
---|---|---|---|---|---|---|---|---|
PVDF | [Emim][Cl] | SB | R | 3 | SC | 210 | 0.17 | [8,9] |
PVDF | [Hmim][Cl] | SB | R | 3 | SC | 200 | 0.17 | [8,9,11] |
PVDF | [Dmim][Cl] | SB | R | 3 | SC | 210 | 0.17 | [8,9] |
PVDF | [Vbim][Cl] | MB | 190 | 0.12 | HP | 210 | 0.17 | [12,13] |
PVDF | [Emim][OAc] | LI | R | 48 | U | U | U | [21] |
PVDF | [Emim][EtSO4] | LI | R | 48 | U | U | U | [21] |
PVDF | [Emim][NO3] | SB | R | U | S-C | 100 | 24 | [24,25] |
PVDF | [Bmim][H2PO4] | SB | 50 | 6 | SC | 120 | 24 | [23] |
PVDF | [Bmim][CF3SO3] | SB | 80 | U | SC | 25 | 24 | [27] |
PVDF | [Emim][BF4] | SB | R | U | MG | R | U | [27,28,29,30] |
PVDF | [Bmim][BF4] | SB | 60 | U | SC | 60 | U | [29,33] |
PVDF-HFP | [Mmim][I] | S | R | 24 | U | U | U | [19] |
PVDF-HFP | [Pmim][I] | S | R | 24 | U | U | U | [19] |
PVDF-HFP | [Bmim][I] | S | R | 24 | U | U | U | [19] |
PVDF-HFP | [Hmim][I] | S | R | 24 | U | U | U | [19] |
PVDF-HFP | [Emim][DCA] | SB | 60 | U | SC | R | U | [22] |
PVDF-HFP | [Emim][SCN] | SB | R | 12 | SC | R | U | [26] |
PVDF-HFP | [Bmim][BF4] | SB | 50 | 6 | SC | R | U | [34,35] |
Polymer Matrix | Hydrophobic Ionic Liquid | Blending Process | Blending Temp. (°C) | Time (Hour) | Final Process | Final Temp. (°C) | Time (Hour) | References |
---|---|---|---|---|---|---|---|---|
PVDF | [Emim][NTf2] | SB | R | 3 | SC | 210 | 0.17 | [8,9,27,41,42,43,44] |
PVDF | [Emmim][NTf2] | SB | R | U | SC | 210 | 0.17 | [41] |
PVDF | [Pmim][NTf2] | SB | R | U | SC | 210 | 0.17 | [41] |
PVDF | [Bmim][NTf2] | LI | R | 0.5 | U | U | U | [49] |
PVDF | [Hmim][NTf2] | SB | R | 3 | SC | 210 | 0.17 | [8,9,11] |
PVDF | [Dmim][NTf2] | SB | R | 3 | SC | 210 | 0.17 | [8,9] |
PVDF | [Emim][B(CN)4] | SB | R | 2 | SC | 50 | 24 | [60] |
PVDF | [Bmim][PF6] | SB | 50 | 6 | SC | 120 | 24 | [23,49,54,55] |
PVDF | [Bzmim][PF6] | SB | R | U | HP | 175 | U | [59] |
PVDF | [Hmim][FAP] | SB | 80 | U | SC | 25 | 24 | [27] |
PVDF-HFP | [Emim][NTf2] | SB | 50 | 12 | SC | R | U | [45,46,47] |
PVDF-HFP | [Mmpim][NTf2] | SB | R | 4 | SC | R | U | [50] |
PVDF-HFP | [Emim][TFSA] | SB | R | U | S-C | R | 0.02 | [51] |
PVDF-HFP | [Emim][FAP] | SB | R | 12 | SC | R | U | [53] |
PVDF-HFP | [Emim][B(CN)4] | SB | R | 12 | SC | R | U | [61] |
Polymer Matrix | Filler | Ionic Liquid | Mixing Process | Mixing Temp. (°C) | Time (Hour) | Final Process | Final Temp. (°C) | Time (Hour) | References |
---|---|---|---|---|---|---|---|---|---|
PVDF | Gr | [Hdmim][Br] | Ul | R | 0.17 | HP | 190 | U | [17] |
PVDF | Gr | [Bmim][PF6] | MB | 200 | U | U | U | U | [58] |
PVDF | GO | [Veim][BF4] | SB | R | U | HP | 200 | 0.05 | [38] |
PVDF | GO-COOH | [Aemim][Br] | Ul | R | U | SC | 60 | 48 | [14] |
PVDF | MWCNT-COOH | [Aeim][Br] | So | R | 0.17 | SC | 70 | 72 | [18] |
PVDF | MWCNTs | [Veim][BF4] | MB | 190 | U | HP | 190 | U | [39] |
PVDF | MWCNTs | [Emim][NTf2] | MB | 220 | 0.33 | CM | U | U | [48] |
PVDF | MWCNTs | [Bmim][PF6] | MB | 190 | 0.08 | HP | 200 | U | [57] |
PVDF | MWCNT-COOH | [Bmim][PF6] | MB | 210 | 0.25 | CM | 220 | U | [56] |
PVDF | NaMMT | [Bmim][Cl] | SB | R | 24 | SC | 100 | 2 | [10] |
PVDF | SiO2 | [Emim][FSI] | So | R | 2 | SC | 130 | 24 | [52] |
PVDF | TiO2 | [Mcmim][Cl] | SB | 200 | 4 | HP | 200 | U | [7] |
PVDF | PVP grains | [Emim][BF4] | SB | R | U | S | R | U | [31] |
PVDF-HFP | GO | [Emim][BF4] | SB | 50 | U | SC | R | 12 | [32] |
PVDF-HFP | MWCNTs | [Bmim][I] | SB | 60 | 2 | SC | 80 | 12 | [20] |
PVDF-HFP | OMMT | [Bmim][Br] | Ul | R | 0.5 | S | R | 5 | [15,16] |
PVDF-HFP | TiO2 | [Bmim][BF4] | So | R | 2 | SC | 90 | 24 | [36] |
PVDF-HFP | SN | [Bmim][BF4] | SB | R | 10 | SC | R | U | [37] |
PVDF-HFP | SN | [Emim][CF3SO3] | SB | R | 24 | SC | R | U | [40] |
Blend|Composite | Hydrophilic Ionic Liquid | Physicochemical Properties * | References | |||
---|---|---|---|---|---|---|
Crystalline | Mechanical | Thermal | Chemical | |||
PVDF | [Emim][Cl] | ▼ | ▼ | ▼ | ▲ | [9] |
PVDF-HFP | [Bmim][BF4] | ▼ | n/a | ▼ | ▲ | [35] |
PVDF/MWCNT-COOH | [Aeim][Br] | ▼ | ▲ ▲ | ▲ | ▲ | [18] |
PVDF/PVP grains | [Emim][BF4] | ▼ | ▼ | ▼ | ▲ | [31] |
PVDF-HFP/OMMT | [Bmim][Br] | ▼ | n/a | ▼ | ▲ | [15] |
PVDF-HFP/SN | [Emim][CF3SO3] | ▼ | n/a | ▲ ▲ | ▲ | [40] |
Blend|Composite | Hydrophobic Ionic Liquid | Physicochemical Properties * | References | |||
---|---|---|---|---|---|---|
Crystalline | Mechanical | Thermal | Chemical | |||
PVDF | [Emim][NTf2] | ▼ | ▼ | ▼ | ▲ | [43] |
PVDF | [Bmim][PF6] | ▼ | ▲ ▲ | ▲ ▲ | ▲ | [55] |
PVDF-HFP | [Emim][NTf2] | ▼ | ▼ | ▼ | ▲ | [47] |
PVDF/MWCNTs | [Emim][NTf2] | ▼ | ▲ | ▲ | ▲ | [48] |
PVDF/MWCNTs | [Bmim][PF6] | ▼ | n/a | ▲ ▲ | ▲ | [57] |
PVDF/MWCNT-COOH | [Bmim][PF6] | ▼ | ▲ ▲ | n/a | ▲ | [56] |
Blend|Composite | Application | References |
---|---|---|
PVDF/[Hmim][Cl] | Electromechanical actuators | [9,11] |
PVDF/[Vbim][Cl] | Superthin dielectric capacitors | [12,13] |
PVDF/[Emim][OAc] | Carbon dioxide capture fibers | [21] |
PVDF/[Emim][EtSO4] | Carbon dioxide capture fibers | [21] |
PVDF/[Bmim][H2PO4] | Proton exchange membranes | [23] |
PVDF/[Emim][BF4] | Flexible electronics | [30] |
PVDF-HFP/[Bmim][I] | Polymer electrolyte membranes | [19] |
PVDF-HFP/[Emim][DCA] | Electrochemical double-layer capacitors | [22] |
PVDF-HFP/[Emim][SCN] | Electrochemical double-layer capacitors | [26] |
PVDF-HFP/[Bmim][BF4] | Polymer electrolyte membranes | [34,35] |
PVDF/Gr/[Hdmim][Br] | High-charge storage capacitors | [17] |
PVDF/GO/[Veim][BF4] | Polymeric dielectric composites | [38] |
PVDF/MWCNTs/[Veim][BF4] | Flexible dielectric materials | [39] |
PVDF/TiO2/[Mcmim][Cl] | Antifouling membranes | [7] |
PVDF/PVP grains/[Emim][BF4] | Flexible actuators | [31] |
PVDF-HFP/GO/[Emim][BF4] | Flexible solid-state supercapacitors | [32] |
PVDF-HFP/MWCNTs/[Bmim][I] | All-solid-state supercapacitors | [20] |
PVDF-HFP/OMMT/[Bmim][Br] | Composite electrolyte membranes | [15,16] |
PVDF-HFP/TiO2/[Bmim][BF4] | Electrochemical double-layer capacitors | [36] |
PVDF-HFP/SN/[Bmim][BF4] | Solid-state supercapacitors | [37] |
PVDF-HFP/SN/[Emim][CF3SO3] | Electrochemical double-layer capacitors | [40] |
Blend|Composite | Application | References |
---|---|---|
PVDF/[Emim][NTf2] | Electromechanical actuators | [8,9] |
PVDF/[Emim][NTf2] | Nitrogen dioxide sensor | [27] |
PVDF/[Pmim][NTf2] | Electromechanical actuators | [41] |
PVDF/[Bmim][NTf2] | Carbon dioxide separation membranes | [49] |
PVDF/[Emim][B(CN)4] | Carbon dioxide separation membranes | [60] |
PVDF/[Bmim][PF6] | Carbon dioxide separation membranes | [49] |
PVDF/[Bmim][PF6] | Transparent anti-electrostatic films | [55] |
PVDF/[Bzmim][PF6] | Solid polymer-based electrolytes | [59] |
PVDF/[Hmim][FAP] | Nitrogen dioxide sensor | [27] |
PVDF-HFP/[Emim][NTf2] | Flexible supercapacitors | [46] |
PVDF-HFP/[Emim][NTf2] | Composite bending actuators | [47] |
PVDF-HFP/[Mmpim][NTf2] | Polymer electrolyte films | [50] |
PVDF-HFP/[Emim][TFSA] | Flexible organic memory | [51] |
PVDF-HFP/[Emim][FAP] | Electrochemical double-layer capacitors | [53] |
PVDF-HFP/[Emim][B(CN)4] | Electrochemical double-layer capacitors | [61] |
PVDF/Gr/[Bmim][PF6] | Flexible dielectric materials | [58] |
PVDF/MWCNTs/[Emim][NTf2] | Electromagnetic interference shielding materials | [48] |
PVDF/SiO2/[Emim][FSI] | Solid supercapacitors | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsuri, A.A.; Daik, R.; Md. Jamil, S.N.A. A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications. Processes 2021, 9, 761. https://doi.org/10.3390/pr9050761
Shamsuri AA, Daik R, Md. Jamil SNA. A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications. Processes. 2021; 9(5):761. https://doi.org/10.3390/pr9050761
Chicago/Turabian StyleShamsuri, Ahmad Adlie, Rusli Daik, and Siti Nurul Ain Md. Jamil. 2021. "A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications" Processes 9, no. 5: 761. https://doi.org/10.3390/pr9050761
APA StyleShamsuri, A. A., Daik, R., & Md. Jamil, S. N. A. (2021). A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications. Processes, 9(5), 761. https://doi.org/10.3390/pr9050761