Thermal Hysteresis Control in Fe49Rh51 Alloy through Annealing Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fullerton, J. The 2017 Magnetism Roadmap. J. Phys. D Appl. Phys. 2017, 50, 363001. [Google Scholar]
- Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramírez, L.M. Magnetocaloric effect: From materials research to refrigeration devices. Conde Prog. Mater. Sci. 2018, 93, 112–232. [Google Scholar] [CrossRef]
- Liu, J.; Gottschall, T.; Skokov, K.P.; Moore, J.D.; Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 2012, 11, 620–626. [Google Scholar] [CrossRef]
- Annaorazov, M.P.; Asatryan, K.A.; Myalikgulyev, G.; Nikitin, S.A.; Tishin, A.M.; Tyurin, A.L. Alloys of the FeRh system as a new class of working material for magnetic refrigerators. Cryogenics 1992, 32, 867–872. [Google Scholar] [CrossRef]
- Aliev, A.M.; Batdalov, A.B.; Khanov, L.N.; Kamantsev, A.P.; Koledov, V.V.; Mashirov, A.V.; Shavrov, V.G.; Grechishkin, R.M.; Kaul, A.R.; Sampath, V. Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3. Appl. Phys. Lett. 2016, 109, 202407. [Google Scholar] [CrossRef]
- Nikitin, S.A.; Myalikgulyev, G.; Tishin, A.M.; Annaorazov, M.P.; Asatryan, K.A.; Tyurin, A.L. The magnetocaloric effect in Fe49Rh51 compound. Phys. Lett. A 1990, 148, 363–366. [Google Scholar] [CrossRef]
- Popescu, A.; Rodriguez-Lopez, P.; Haney, P.M.; Wood, L.M. Thermally driven anomalous Hall effect transitions in FeRh. Phys. Rev. B 2018, 97, 140407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arreguín-Hernández, M.L.; Sánchez-Valdés, C.F.; Sánchez Llamazaresa, J.L.; Ríos-Jara, D.; Pecharsky, V.K.; Blinov, M.I.; Prudnikov, V.N.; Kovalev, B.B.; Zverev, V.I.; Tishin, A.M. Magnetoelastic transition and magnetocaloric effect in induction melted Fe100−xRhx bulk alloys with x = 50, 51. J. Alloy Compd. 2021, 871, 159586. [Google Scholar] [CrossRef]
- Batdalov, A.B.; Aliev, A.M.; Khanov, L.N.; Kamantsev, A.P.; Mashirov, A.V.; Koledov, V.V.; Shavrov, V.G. Specific heat, electrical resistivity, and magnetocaloric study of phase transition in Fe48Rh52 alloy. J. Appl. Phys. 2020, 128, 013902. [Google Scholar] [CrossRef]
- Baranov, N.V.; Barabanova, E.A. Electrical resistivity and magnetic phase transitions in modified FeRh compounds. J. Alloys Compd. 1995, 219, 139–148. [Google Scholar] [CrossRef]
- Churyukanova, M.; Kaloshkina, S.; Shuvaeva, E.; Mitra, A.; Pand, A.K.; Roy, R.K.; Murugaiyan, P.; Corte-Leon, P.; Zhukova, V.; Zhukov, A. The effect of heat treatment on magnetic and thermal properties of Finemet-type ribbons and microwires. J. Magn. Magn. Mater. 2019, 492, 165598. [Google Scholar] [CrossRef]
- Kamantsev, A.P.; Amirov, A.A.; Koshkid’ko, Y.S.; Mejía, C.S.; Mashirov, A.V.; Aliev, A.M.; Koledov, V.V. Shavrov Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T. Phys. Solid State 2020, 62, 161–163. [Google Scholar] [CrossRef]
- Tohki, A.; Aikoh, K.; Iwase, A.; Yoneda, K.; Kosugi, S.; Kume, K.; Batchuluun, T.; Ishigami, R.; Matsui, T.J. Effect of high temperature annealing on ion-irradiation induced magnetization in FeRh thin films. Appl. Phys. 2012, 111, 07A742. [Google Scholar] [CrossRef]
- Zakharov, A.I.; Kadomtsewa, A.M.; Levitin, R.Z.; Ponyatovskii, E.G. Magnetic and magnetoelastic properties of a metamagnetic iron-rhodium alloy. Soviet Phys. JETP 1964, 19, 1348. [Google Scholar]
- Walter, P.H.L. Exchange Inversion in Ternary Modifications of Iron Rhodium. J. Appl. Phys. 1964, 35, 938–939. [Google Scholar] [CrossRef]
- Polovov, V.M.; Ponomarev, B.K.; Antonov, V.E. Some peculiarities of thermodynamics of transition antiferro-ferromagnetism in iron-rhodium alloys. Fiz. Met. I Metalloved. 1975, 39, 977–986. [Google Scholar]
- Amirov, A.A.; Cugini, F.; Kamantsev, A.P.; Gottschall, T.; Solzi, M.; Aliev, A.M.; Spichkin, Y.I.; Koledov, V.V.; Shavrov, V.G. Direct measurements of the magnetocaloric effect of Fe49Rh51 using the mirage effect. J. Appl. Phys. 2020, 127, 233905. [Google Scholar] [CrossRef]
- Stern-Taulats, E.; Castan, T.; Planes, A.; Lewis, L.H.; Barua, R.; Pramanick, S.; Majumdar, S.; Manosa, L. Giant multicaloric response of bulk Fe49Rh51. Phys. Rev. B 2017, 95, 104424. [Google Scholar] [CrossRef]
- Flippen, R.B.; Darnell, F.J. Entropy Changes of Ferromagnetic-Antiferromagnetic Transitions from Magnetic Measurements. J. Appl. Phys. 1963, 34, 1094–1095. [Google Scholar] [CrossRef]
- Zakharov, A. Crystal lattice parameter and structural distortions in Fe-Rh alloy during phase transformations. Fiz. Met. I Metalloved. 1967, 24, 84–90. [Google Scholar]
- Kouvel, J.S. Unusual Nature of the Abrupt Magnetic Transition in FeRh and Its Pseudobinary Variants. J. Appl. Phys. 1966, 37, 1257. [Google Scholar] [CrossRef]
- Wayne, R. Pressure Dependence of the Magnetic Transitions in Fe-Rh Alloys. Phys. Rev. 1968, 170, 523–527. [Google Scholar] [CrossRef]
- Stern-Taulats, E.; Planes, A.; Lloveras, P.; Barrio, M.; Tamarit, J.-L.; Pramanick, S.; Majumdar, S.; Frontera, C.; Manosa, L. Barocaloric and magnetocaloric effects in Fe49Rh51. Phys. Rev. B 2014, 89, 214105. [Google Scholar] [CrossRef] [Green Version]
- Cherifi, R.O.; Ivanovskaya, V.; Phillips, L.C.; Zobelli, A.; Infante, I.C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P.R.; Guiblin, N.; et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 2014, 13, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amirov, A.A.; Baraban, I.A.; Grachev, A.A.; Kamantsev, A.P.; Rodionov, V.V.; Yusupov, D.M.; Rodionova, V.V.; Sadovnikov, A.V. Voltage-induced strain to control the magnetization of bi FeRh/PZT and tri PZT/FeRh/PZT layered magnetoelectric composites. AIP Adv. 2020, 10, 025124. [Google Scholar] [CrossRef] [Green Version]
- Amirov, A.A.; Rodionov, V.V.; Starkov, I.A.; Starkov, A.S.; Aliev, A.M. Magneto-electric coupling in FeRh -PZT multiferroic composite. J. Magn. Magn. Mater. 2019, 470, 77–80. [Google Scholar] [CrossRef]
- Lommel, J.M. Effects of Mechanical and Thermal Treatment on the Structure and Magnetic Transitions in FeRh. J. Appl. Phys. 1967, 38, 1263. [Google Scholar] [CrossRef]
- Chirkova, A.; Bittner, F.; Nenkov, K.; Schultz, N.V.B.L.; Nielsch, K.; Woodcock, T.G. The effect of the microstructure on the antiferromagnetic to ferromagnetic transition in FeRh alloys. Acta Mater. 2017, 131, 31–38. [Google Scholar] [CrossRef]
- Takahashi, M.; Oshima, R. Annealing Effect on Phase Transition of Equiatomic FeRh Alloy. Mater. Trans. JIM 1995, 36, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Manekar, M.; Roy, S.B. Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh. J. Phys. D Appl. Phys. 2011, 44, 242001. [Google Scholar] [CrossRef]
- Barua, R.; Jimenez-Villacorta, F.; Lewis, L.H. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds. J. Appl. Phys. 2014, 115, 17A903. [Google Scholar] [CrossRef]
- Kosugi, S.; Fujita, N.; Matsui, T.; Hori, F.; Saitoh, Y.; Ishikawa, N.; Okamoto, Y.; Iwase, A. Modification of magnetic properties of FeRh intermetallic compounds by energetic ion beam bombardment. Nucl. Instrum. Methods B 2009, 267, 1612–1615. [Google Scholar] [CrossRef]
- Kushwaha, P.; Lakhani, A.; Rawat, R.; Chaddah, P. Influence of thermal annealing and magnetic field on first order magnetic transition in Pd substituted FeRh. J. Phys. Conf. Ser. 2010, 200, 032038. [Google Scholar] [CrossRef]
- Chirkova, A.; Skokov, K.; Schultz, L.; Baranov, N.; Gutfleisch, O.; Woodcock, T. Magnetic response of FeRh to static and dynamic disorder. Acta Mater. 2016, 106, 15–21. [Google Scholar] [CrossRef]
- Chichay, K.; Rodionova, V.; Zhukova, V.; Kaloshkin, S.; Churyuknova, M.; Zhukov, A.J. Investigation of the magnetostriction coefficient of amorphous ferromagnetic glass coated microwires. Appl. Phys. 2014, 116, 173904. [Google Scholar] [CrossRef]
- Swartzendruber, L.J. The Fe–Rh (Iron-Rhodium) system. Bull. Alloy Phase Diagr. 1984, 5, 456–462. [Google Scholar] [CrossRef]
- Okamoto, H.J. Phase Equilibria Diffus. J. Phase Equilibria Diffus. 2011, 32, 472. [Google Scholar] [CrossRef] [Green Version]
- Pal, L.; Tarnoczi, T.; Szabo, P.; Kren, E.; Toth, J. Investigation of antiferromagnetic-ferromagnetic transformation in iron-rhodium alloys. Proc. Int. Conf. Magn. (Nottingham) 1964, 158–161. [Google Scholar]
- Zverev, V.I.; Saletsky, A.M.; Gimaev, R.R.; Tishin, A.M.; Miyanaga, T.; Staunton, J.B. Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6. Appl. Phys. Lett. 2016, 108, 192405. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Valdés, C.F.; Gimaev, R.R.; López-Cruz, M.; Llamazares, J.L.S.; Zverev, V.I.; Tishin, A.M.; Carvalho, A.M.G.; Aguiar, D.J.M.; Mudryk, Y.; Pecharsky, V.K. The effect of cooling rate on magnetothermal properties of Fe49Rh51. J. Magn. Magn. Mater. 2020, 498, 166130. [Google Scholar] [CrossRef]
№ | T1, K | t, min | T2, K | T3, K | Treatment Protocol | TAFM–FM, K | T/AFM–FM, K | TFM–AFM, K | T/FM–AFM, K | τ, K | τ/, K |
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | ||||||
1 | - | - | - | - | Annealing 1273 K, 72 h, cooling to RT with rate ~100 K/h | 371.8 | 358.5 | 344.8 | 345.4 | 27.0 | 13.1 |
1273 | 35 | 1273 | 473 | Quenching in oil | 334.2 | 332.3 | 321.2 | 321.7 | 13.0 | 10.6 | |
2 | - | - | - | - | Annealing 1273 K, 72 h, cooling to RT with rate ~100 K/h | 369.4 | 359.8 | 344.4 | 345.2 | 25.0 | 11.6 |
1273 | 35 | 1273 | 274 | Quenching in water | 325.2 | 324.2 | 313.2 | 313.2 | 12.0 | 11.0 | |
3 | - | - | - | - | Annealing 1273 K, 72 h, cooling to RT with rate ~100 K/h | 368.6 | - | 343.2 | - | 25.4 | - |
1273 | 35 | 513 | 275 | Quenching in water | 362.2 | 354.2 | 337.2 | 338.4 | 25.0 | 15.8 | |
4 | - | - | - | - | Annealing 1273 K, 72 h, cooling to RT with rate ~100 K/h | 367.8 | - | 344.2 | - | 23.6 | - |
1273 | 35 | 723 | 278 | Quenching in water | 362.8 | 355.6 | 341.0 | 339.1 | 21.8 | 16.5 | |
5 | - | - | - | - | Annealing 1273 K, 72 h, cooling to RT with rate ~100 K/h | 368.2 | - | 341.9 | - | 26.3 | - |
1273 | 60 | 1258 | 753 | Quenching in liquid Ga | 337.5 | 331.6 | 325.4 | 329.3 | 12.1 | 6.3 | |
6 | 1300 | 5 | 1300 | 275 | Quenching in water | 339.5 | 333.7 | 325.8 | 326.8 | 13.7 | 6.9 |
7 | 1300 | 440 | 1300 | 275 | Quenching in water | 324.7 | 318.0 | 311.0 | 311.0 | 13.7 | 7.0 |
8 | - | - | - | - | Annealing 1273 K, 72 h, cooling to RT with rate ~100 K/h | 353.2 | - | 319.1 | - | 34.1 | - |
9 | 1371 | - | 1208 | 789 | Quenching in air | 333.0 | - | 317.0 | - | 16.0 | - |
1371 | - | 1364 | 987 | Quenching in air | 323.2 | 320.7 | 303.2 | 303.4 | 20.0 | 17.3 |
Sample | Treatment Protocol | TAFM–FM, K | TFM–AFM, K | τ, K | Type of Measurement | Ref. |
---|---|---|---|---|---|---|
Fe49Rh51 | Annealing 1273 K, 72 h in vacuum, quenching in air | 320.5 | 314 | 6.5 | M(T) at 0.1 T | [17] |
314 | 308 | 6 | M(T) at 1 T | |||
Fe48Rh52 | Annealing 1273 K, 336 h in vacuum, quenching in water | 321 | 318 | 3 | M(T) at 1 T | [28] |
Fe49.5Rh50.5 | Annealing 1370 K, 48 h in vacuum, quenching in water | 309 | 300 | 9 | ρ(T) | [29] |
Fe49Rh51 | Annealing 1273 K, 168 h in vacuum, quenching in air | 316 | 308.5 | 7.5 | M(T) at 1 T | [34] |
Fe49Rh51 | Annealing 1273 K, 48 h in vacuum, quenching in ice water | 329 | 318 | 11 | M(T) at 5 mT | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodionov, V.; Amirov, A.; Annaorazov, M.; Lähderanta, E.; Granovsky, A.; Aliev, A.; Rodionova, V. Thermal Hysteresis Control in Fe49Rh51 Alloy through Annealing Process. Processes 2021, 9, 772. https://doi.org/10.3390/pr9050772
Rodionov V, Amirov A, Annaorazov M, Lähderanta E, Granovsky A, Aliev A, Rodionova V. Thermal Hysteresis Control in Fe49Rh51 Alloy through Annealing Process. Processes. 2021; 9(5):772. https://doi.org/10.3390/pr9050772
Chicago/Turabian StyleRodionov, Vladimir, Abdulkarim Amirov, Murad Annaorazov, Erkki Lähderanta, Alexander Granovsky, Akhmed Aliev, and Valeria Rodionova. 2021. "Thermal Hysteresis Control in Fe49Rh51 Alloy through Annealing Process" Processes 9, no. 5: 772. https://doi.org/10.3390/pr9050772
APA StyleRodionov, V., Amirov, A., Annaorazov, M., Lähderanta, E., Granovsky, A., Aliev, A., & Rodionova, V. (2021). Thermal Hysteresis Control in Fe49Rh51 Alloy through Annealing Process. Processes, 9(5), 772. https://doi.org/10.3390/pr9050772