Microporous Oxide-Based Surface-Enhanced Raman Scattering Film for Quadrillionth Detection of Mercury Ion (II)
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. Morphology, Structure, and Composition Characterizations
3.2. SERS Activities
3.3. Visible-Light-Driven Photoresponse Properties
3.4. Mechanism for SERS of Ag@ZnO Hybrid Nanoparticles Induced by Charge Transfer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Nriagu, J.O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 1979, 279, 409–411. [Google Scholar] [CrossRef]
- Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443–3480. [Google Scholar] [CrossRef]
- Clevenger, W.L.; Smith, B.W.; Winefordner, J.D. Critical Reviews in Analytical Chemistry Trace Determination of Mercury: A Review. Crit. Rev. Anal. Chem. 1997, 27, 1–26. [Google Scholar] [CrossRef]
- Song, C.; Yang, B.; Yang, Y.; Wang, L. SERS-based mercury ion detections: Principles, strategies and recent advances. Sci. China Chem. 2016, 59, 16–29. [Google Scholar] [CrossRef]
- Khani, H.; Rofouei, M.K.; Arab, P.; Gupta, V.K.; Vafaei, Z. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II). J. Hazard. Mater. 2010, 183, 402–409. [Google Scholar] [CrossRef]
- Freeman, R.; Finder, T.; Willner, I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem. Int. Ed. 2009, 48, 7818–7821. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Han, M.S.; Mirkin, C.A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Xu, H.; Zhang, Z.; Zhong, X. Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles. Talanta 2011, 84, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.K.; Yook, K.J.; Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 2005, 127, 16760–16761. [Google Scholar] [CrossRef]
- Smith, W.E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 2008, 37, 955–964. [Google Scholar] [CrossRef]
- Liu, R.; Liu, B.; Guan, G.; Jiang, C.; Zhang, Z. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays. Chem. Commun. 2012, 48, 9421–9423. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Duyne, R.P. VAN Surface Raman Spectroelectrochemistry Part1. Heterocyclic. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Pieczonka, N.P.W.; Aroca, R.F. Single molecule analysis by surfaced-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37, 946–954. [Google Scholar] [CrossRef]
- Kang, T.; Yoo, S.M.; Kang, M.; Lee, H.; Kim, H.; Lee, S.Y.; Kim, B. Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab Chip 2012, 12, 3077–3081. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Lim, S.Y.; Kim, B.J.; Piao, L.; Chung, T.D. Mercury(ii) detection by SERS based on a single gold microshell. Chem. Commun. 2010, 46, 5587–5589. [Google Scholar] [CrossRef]
- Kang, T.; Yoo, D.S.M.; Yoon, D.I.; Lee, S.; Choo, P.J.; Lee, S.Y.; Kim, P.B. Au Nanowire-on-Film SERRS Sensor for Ultrasensitive Hg2+ Detection. Chem. A Eur. J. 2011, 17, 2211–2214. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Yang, M.; Lai, Y.; Yuan, J.; Zhan, J. A colorimetric and surface-enhanced Raman scattering dual-signal sensor for Hg2+ based on Bismuthiol II-capped gold nanoparticles. Anal. Chim. Acta 2012, 723, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, J.; Lai, Y.; Wu, C.; Sun, S.; He, Y.; Ma, H. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens. Bioelectron. 2013, 39, 82–87. [Google Scholar] [CrossRef]
- Grasseschi, D.; Zamarion, V.M.; Araki, K.; Toma, H.E. Surface enhanced Raman scattering spot tests: A new insight on Feigl’s analysis using gold nanoparticles. Anal. Chem. 2010, 82, 9146–9149. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Liu, X.; Wang, L.; Liu, B. Electrophoretic deposition of ZnO photoanode for plastic dye-sensitized solar cells. Electrochem. Commun. 2010, 12, 1241–1244. [Google Scholar] [CrossRef]
- Kathalingam, A.; Marimuthu, K.P.; Karuppasamy, K.; Chae, Y.S.; Lee, H.; Park, H.C.; Kim, H.S. Structural and Mechanical Characterization of Platinum Thin Films Prepared Electrochemically on ITO/Glass Substrate. Met. Mater. Int. 2019. [Google Scholar] [CrossRef]
- Wang, H.H.; Liu, C.Y.; Wu, S.B.; Liu, N.W.; Peng, C.Y.; Chan, T.H.; Hsu, C.F.; Wang, J.K.; Wang, Y.L. Highly raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 2006, 18, 491–495. [Google Scholar] [CrossRef]
- Sun, S.; Jiao, S.; Zhang, K.; Wang, D.; Li, H.; Gao, S.; Wang, J.; Yu, Q.; Guo, F.; Zhao, L.; et al. Morphology and properties of ZnO nanostructures by electrochemical deposition: Effect of the substrate treatment. J. Mater. Sci. Mater. Electron. 2013, 24, 85–88. [Google Scholar] [CrossRef]
- Zak, A.K.; Majid, W.H.A.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by WilliamsoneHall and sizeestrain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar] [CrossRef]
- Dehimi, M.; Touam, T.; Chelouche, A.; Boudjouan, F.; Djouadi, D.; Solard, J.; Fischer, A.; Boudrioua, A.; Doghmane, A. Effects of low Ag doping on physical and optical waveguide properties of highly oriented sol-gel zno thin films. Adv. Condens. Matter Phys. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Sun, K.; Chao, K.; Alharbi, N.S.; Li, J.; Huang, Q. Fabrication of a Novel Transparent SERS Substrate Comprised of Ag-nanoparticle Arrays and its Application in Rapid Detection of Ractopamine on Meat. Food Anal. Methods 2018, 11, 2329–2335. [Google Scholar] [CrossRef]
- Yan, X.; Li, P.; Zhou, B.; Tang, X.; Li, X.; Weng, S.; Yang, L.; Liu, J. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection. Anal. Chem. 2017, 89, 4875–4881. [Google Scholar] [CrossRef]
- Zhong, F.; Wu, Z.; Guo, J.; Silicon, D.J.P. Photonic Crystals Coated with AgNanoparticles as Efficient Substrates for DetectingTrace Explosives Using SERS. Nanomaterials 2018, 8, 872. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Li, X.; Song, W.; Xu, W.; Zhao, B.; Zhang, G. Vibrational spectroscopy and density functional theory study on 1,4-bis[2-(4-pyridyl) ethenyl]-benzene. Chem. Phys. Lett. 2005, 405, 344–351. [Google Scholar] [CrossRef]
- Zhuang, Z.; Ruan, W.; Ji, N.; Shang, X.; Wang, X.; Zhao, B. Surface-enhanced Raman scattering of 4,4′-bipyridine on silver by density functional theory calculations. Vib. Spectrosc. 2009, 49, 118–123. [Google Scholar] [CrossRef]
- Wei, H.; Xu, H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 2013, 5, 10794–10805. [Google Scholar] [CrossRef]
- Zhuang, Z.; Cheng, J.; Wang, X.; Zhao, B.; Han, X.; Luo, Y. Surface-enhanced Raman spectroscopy and density functional theory study on 4,4′-bipyridine molecule. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2007, 67, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, R.; Liu, B.; Wang, S.; Han, M.Y.; Zhang, Z. Surface-enhanced raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Anal. Chem. 2013, 85, 3160–3165. [Google Scholar] [CrossRef] [PubMed]
- Morsali, A.; Zhu, L.G. (4,4′-bipyridine)mercury(II) coordination polymers, syntheses, and structures. Helv. Chim. Acta 2006, 89, 81–93. [Google Scholar] [CrossRef]
- Pal, A.K.; Chandra, G.K.; Umapathy, S.; Bharathi Mohan, D. Ultra-sensitive, reusable, and superhydrophobic Ag/ZnO/Ag 3D hybrid surface enhanced Raman scattering substrate for hemoglobin detection. J. Appl. Phys. 2020, 127. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Peng, C.; Liang, Y.; Wang, W. Sensitive surface-enhanced Raman scattering of TiO2/Ag nanowires induced by photogenerated charge transfer. J. Colloid Interface Sci. 2017, 507, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Villani, M.; Calestani, D.; Lazzarini, L.; Zanotti, L.; Mosca, R.; Zappettini, A. Extended functionality of ZnO nanotetrapods by solution-based coupling with CdS nanoparticles. J. Mater. Chem. 2012, 22, 5694–5699. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, J.; Li, R.; Ning, J.; Han, R.; Shen, Z.; Zhao, X.; Xue, Z.; Wu, Q. First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology 2005, 16, 239–244. [Google Scholar] [CrossRef]
- Tang, H.; Meng, G.; Huang, Q.; Zhang, Z.; Huang, Z.; Zhu, C. Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv.Fun. Mater. 2012, 22, 218–224. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, X.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J.R. Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution. J. Phys. Chem. C 2008, 112, 20095–20098. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, X.; Yin, D.; Li, X.; Yang, M.; Han, X.; Yang, L.; Zhao, B. Recyclable Au–TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys. Chem. Chem. Phys. 2017, 19, 11212–11219. [Google Scholar] [CrossRef] [PubMed]
- Djurišić, A.B.; Leung, Y.H.; Tam, K.H. Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl. Phys. Lett. 2006, 88, 103107. [Google Scholar] [CrossRef] [Green Version]
Element | ZnO | ||
---|---|---|---|
Space Group | P63 mc (186) | ||
Lattice parameters | a (Å) | 3.25 | |
b (Å) | 3.25 | ||
c (Å) | 5.21 | ||
Element parameters | Zn | x | 0.33 |
y | 0.67 | ||
z | 20.69 | ||
O | x | 0.33 | |
y | 0.67 | ||
z | 21.08 | ||
Lattice symbol | hP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangsuwanjinda, S.; Chen, Y.-Y.; Lai, C.-H.; Jhou, G.-T.; Chiang, Y.-W.; Cheng, H.-M. Microporous Oxide-Based Surface-Enhanced Raman Scattering Film for Quadrillionth Detection of Mercury Ion (II). Processes 2021, 9, 794. https://doi.org/10.3390/pr9050794
Tangsuwanjinda S, Chen Y-Y, Lai C-H, Jhou G-T, Chiang Y-W, Cheng H-M. Microporous Oxide-Based Surface-Enhanced Raman Scattering Film for Quadrillionth Detection of Mercury Ion (II). Processes. 2021; 9(5):794. https://doi.org/10.3390/pr9050794
Chicago/Turabian StyleTangsuwanjinda, Sripansuang, Yu-Yu Chen, Ching-Hsiang Lai, Guan-Ting Jhou, Yu-Wei Chiang, and Hsin-Ming Cheng. 2021. "Microporous Oxide-Based Surface-Enhanced Raman Scattering Film for Quadrillionth Detection of Mercury Ion (II)" Processes 9, no. 5: 794. https://doi.org/10.3390/pr9050794
APA StyleTangsuwanjinda, S., Chen, Y. -Y., Lai, C. -H., Jhou, G. -T., Chiang, Y. -W., & Cheng, H. -M. (2021). Microporous Oxide-Based Surface-Enhanced Raman Scattering Film for Quadrillionth Detection of Mercury Ion (II). Processes, 9(5), 794. https://doi.org/10.3390/pr9050794