Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy
Abstract
:1. Introduction
2. General Description of Health as a Universal Human Value and Assumptions of a Long and Healthy Life Policy
- a long and healthy life index: life expectancy at birth,
- an education index: expected years of schooling,
- a decent standard of living index: gross national income (GNI) per capita at purchasing power parity (PP) (in international dollars).
- All healthy people must have the same health characteristics;
- Everyone is healthy in their own way;
- Health assessment criteria concern a set of universal and individual aspects.
3. The Impact of the COVID-19 Coronavirus Pandemic on the Health Situation in the World
- Two RNA vaccines (Pfizer—BioNTech and Moderna),
- Four conventional inactivated vaccines (BBIBP-CorV, Covaxin, CoronaVac, and CoviVac),
- Four vaccines with viral vectors (Oxford—AstraZeneca, Convidicea, Johnson & Johnson, and Sputnik V),
- One peptide vaccine (EpiVacCorona).
4. The Necessity for Physicians to Use Technical Solutions Supporting Medicine and Dentistry
5. Examples of Application of Various Biomaterials in Medicine and Dentistry
- contact or interaction with the body,
- contact with injured skin,
- contact with internal organs (e.g., heart, circulatory system),
- invasive nature with the holes in the body,
- implantation into the body,
- donating energy or substances to the body,
- period of application.
6. Economic Conditions for the Implementation of Various Groups of Biomedical Materials
7. Recapitulation and Final Remarks
Author Contributions
Funding
Note
Conflicts of Interest
References
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W., III. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; A Potomac Associates Book; Universe Books: New York, USA, 1972; Available online: https://collections.dartmouth.edu/teitexts/meadows/diplomatic/meadows_ltg-diplomatic.html (accessed on 1 March 2021).
- Holcombe, R.G. A theory of the theory of public goods. Rev. Austrian Econ. 1997, 10, 1–22. [Google Scholar] [CrossRef]
- Brundtland, G.H. (Ed.) Report of the World Commission on Environment and Development (WCED): Our Common Future (Also Known As the Brundtland Report). United Nations. 1987. Available online: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf (accessed on 1 March 2021).
- The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 1 March 2021).
- Proposal for a Regulation of the European Parliament and of the Council on the Establishment of a Programme for the Union’s Action in the Field of Health—for the Period 2021–2027 and Repealing Regulation (EU) No 282/2014 (“EU4Health Programme”). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020PC0405 (accessed on 1 March 2021).
- Constitution of the World Health Organization. Available online: https://www.who.int/governance/eb/who_constitution_en.pdf (accessed on 1 March 2021).
- Jakab, Z. Designing the road to better health and well-being in Europe. In Proceedings of the 14th European Health Forum Gastein, Bad Hofgastein, Austria, 7 October 2011; Available online: https://www.euro.who.int/__data/assets/pdf_file/0003/152184/RD_Dastein_speech_wellbeing_07Oct.pdf (accessed on 1 March 2021).
- EU Health Policy. Available online: https://ec.europa.eu/health/policies/overview_pl (accessed on 1 March 2021).
- Dobrzański, L.A. The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry. Arch. Mater. Sci. Eng. 2016, 80, 64–85. [Google Scholar] [CrossRef] [Green Version]
- United Nations Development Programme, Human Development Reports, Human Development Index (HDI). Available online: http://hdr.undp.org/en/indicators/138806# (accessed on 1 March 2021).
- Human Development Report 2020. The Next Frontier: Human Development and the Anthropocene. United Nations Development Programme. Available online: http://hdr.undp.org/sites/default/files/hdr2020.pdf (accessed on 1 March 2021).
- Malik, K. Director, Human Development Report Office, UNDP. Inaugural Mahbub ul Haq-Amartya Sen Lecture, University De Geneve. Advancing, Sustaining Human Progress: From Concepts to Policies. Available online: http://hdr.undp.org/sites/default/files/malik_mahbubulhaqlecture_2014.pdf (accessed on 1 March 2021).
- UNDP. Human Development Report 1990: Concept and Measurement of Human Development. 1990. Available online: http://www.hdr.undp.org/en/reports/global/hdr1990 (accessed on 1 March 2021).
- UNDP. Human Development Report 2010: The Real Wealth of Nations—Pathways to Human Development. 2010. Available online: http://hdr.undp.org/en/content/human-development-report-2010 (accessed on 1 March 2021).
- Inequality-Adjusted Human Development Index (IHDI). Available online: http://hdr.undp.org/en/content/inequality-adjusted-human-development-index-ihdi (accessed on 1 March 2021).
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D.; Dobrzańska, J. The Concept of Sustainable Development of Modern Dentistry. Processes 2020, 8, 1605. [Google Scholar] [CrossRef]
- OECD. Health at a Glance 2019: OECD Indicators; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Bernabé, E.; Masood, M.; Vujicic, M. The impact of out-of-pocket payments for dental care on household finances in low and middle income countries. BMC Public Health 2017, 17, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDI World Dental Federation. Available online: https://www.fdiworlddental.org/about-fdi (accessed on 1 March 2021).
- Holst, D.; Sheiham, A.; Petersen, P. Regulating entrepreneurial behaviour in oral care health services. In European Observatory on Health Care Systems Series: Regulating Entrepreneurial Behaviour in European Care Health Systems; Saltman, R., Busse, R., Mossialos, E., Eds.; Open University Press: Philadelphia, PA, USA, 2002; pp. 215–231. [Google Scholar]
- Statistics Poland. Health and Health Care in 2019. Available online: https://stat.gov.pl/obszary-tematyczne/zdrowie/zdrowie/zdrowie-i-ochrona-zdrowia-w-2019-roku,1,10.html (accessed on 1 March 2021).
- Concepts of Disease and Health. Available online: https://plato.stanford.edu/entries/health-disease/ (accessed on 1 March 2021).
- Cain, A.J. Thomas Sydenham, John Ray, and some contemporaries on species. Arch. Nat. Hist. 1999, 26, 55–83. [Google Scholar] [CrossRef] [PubMed]
- Hippius, H.; Müller, N. The work of Emil Kraepelin and his research group in München. Eur. Arch. Psychiatry Clin. Neurosc. 2008, 258, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Whitbeck, C. Causation in Medicine: The Disease Entity Model. Philos. Sci. 1977, 44, 619–637. [Google Scholar] [CrossRef]
- Snow, J. On Continuous Molecular Changes, More Particularly in their Relation to Epidemic Diseases. In Snow on Cholera; Frost, W.H., Ed.; Hafner: New York, NY, USA, 1965; pp. 147–175. [Google Scholar]
- Carter, K.C. The Rise of Causal Theories of Disease; Ashgate: Burlington, VT, Canada, 2003. [Google Scholar]
- Broome, M. Taxonomy and Ontology in Psychiatry: A survey of recent literature. Philos. Psychiatry Psychol. 2006, 13, 303–319. [Google Scholar] [CrossRef]
- Green, J.A. Prescribing by Numbers; Johns Hopkins: Baltimore, MD, USA, 2007; Chapter 2. [Google Scholar]
- Plutynski, A. Explaining Cancer; Oxford University Press: New York, NY, USA, 2018; Chapter 2. [Google Scholar]
- Bloomfield, P. Moral Reality; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Boorse, C. On The Distinction Between Disease and Illness. Philos. Pub. Aff. 1975, 5, 49–68. [Google Scholar]
- Ereshefsky, M. Defining ‘Health’ and ‘Disease’. Stud. Hist. Philos. Biol. Biomed. Sci. 2009, 40, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Culver, C.M.; Gert, B. Philosophy in Medicine; Oxford University Press: New York, NY, USA, 1982. [Google Scholar]
- Thagard, P. How Scientists Explain Disease; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Kennedy, I. The Unmasking of Medicine; Allen and Unwin: London, UK, 1983. [Google Scholar]
- Brown, P. The Name Game: Toward A Sociology of Diagnosis. J. Mind Behav. 1990, 11, 385–406. [Google Scholar]
- Kitcher, P. The Lives To Come: The Genetic Revolution and Human Possibilities, Revised Ed.; Simon & Schuster: New York, NY, USA, 1997; pp. 208–209. [Google Scholar]
- Boorse, C. What A Theory of Mental Health Should Be. J. Theory Soc. Behav. 1976, 6, 61–84. [Google Scholar] [CrossRef]
- Boorse, C. Health as a Theoretical Concept. Philos. Sci. 1977, 44, 542–573. [Google Scholar] [CrossRef] [Green Version]
- Boorse, C. A rebuttal on health. In What Is Disease? Humber, J.M., Almeder, R.F., Eds.; Humana Press: Totowa, NJ, USA, 1997; pp. 3–143. [Google Scholar]
- Murphy, D. Psychiatry in the Scientific Image; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Hatfield, G. René Descartes. In Stanford Encyclopedia of Philosophy; Winter 2017, Edition; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2017; Available online: https://plato.stanford.edu/archives/win2017/entries/descartes/ (accessed on 1 March 2021).
- Kulik, T.B. Zdrowie—Kategoria uniwersalna. Wych Fiz Zdrow 1996, 3, 103–105. [Google Scholar]
- Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death: Based on the Recommendations of the Ninth Revision Conference, 1975, and Adopted by the Twenty-Ninth World Health Assembly, 1975 Revision. Available online: https://apps.who.int/iris/handle/10665/40492 (accessed on 1 March 2021).
- Firek, W. W stronę filozofii zdrowia. In Zdrowie I Jego Uwarunkowania; Mucha, D., Zięba, H., Eds.; PPWSZ: Nowy Targ, Poland, 2011; pp. 22–33. [Google Scholar]
- Reznek, L. The Nature of Disease; Routledge: New York, NY, USA, 1987. [Google Scholar]
- Glackin, S. Tolerance and illness: The politics of medical and psychiatric classification. J. Med. Philos. 2010, 35, 449–465. [Google Scholar] [CrossRef]
- Barnes, E. The Minority Body; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Amundson, R. Against Normal Function. Stud. Hist. Phil. Biol. Biomed. Sci. 2000, 31, 33–53. [Google Scholar] [CrossRef]
- Inkpen, S.A. Health, Ecology and the Microbiome. eLife 2019, 8, e47626. [Google Scholar] [CrossRef] [PubMed]
- Maszczak, T. Zdrowie jako wartość. Kult Fiz 2006, 9–12, 23. [Google Scholar]
- Puchalski, K. Pojecie Świadomości Zdrowotnej. In Zdrowie W Świadomości Społecznej; KCPZMP: Łódź, Poland, 1997; p. 18. [Google Scholar]
- Tatarkiewicz, W. O szczęściu; PWN: Warszawa, CA, USA, 1979; pp. 216–217. [Google Scholar]
- Puchalski, K. Zdrowie Jako Wartość. In Zdrowie W Świadomości Społecznej; KCPZMP: Łódź, Poland, 1997; p. 71. [Google Scholar]
- Díaz-Guerrero, R. Psychology of the Mexican: Culture and Personality; University of Texas Press: Austin, TX, USA, 1975. [Google Scholar]
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D.; Dobrzańska, J.; Kraszewska, M. The synergistic ethics interaction with nanoengineering, dentistry and dental engineering. In Ethics in Nanotechnology; Jeswani, G., Van De Voorde, M., Eds.; De Gruyter: Berlin, Germany, 2020; (prepared for printing). [Google Scholar]
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D.; Dobrzańska, J.; Kraszewska, M. Development prospects of the dentistry 4.0, dental engineering and nanotechnology triad towards ethical imperatives. In Ethics in Nanotechnology; Jeswani, G., Van De Voorde, M., Eds.; De Gruyter: Berlin, Germany, 2020; (prepared for printing). [Google Scholar]
- Steinke, H. Der Hippokratische eid: Ein schwieriges erbe. Horizonte medizingeschichte, schweizerische ärztezeitung. Bull. Médecins Suisses Boll. Med. Svizz 2016, 97, 1699–1701. [Google Scholar]
- Murgic, L.; Hébert, P.C.; Sovic, S.; Pavlekovic, G. Paternalism and autonomy: Views of patients and providers in a transitional (post-communist) country. BMC Med. Ethics. 2015, 29, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Will, J.F. A brief historical and theoretical perspective on patient autonomy and medical decision making: Part II: The autonomy model. Chest 2011, 139, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Baumann, A.; Audibert, G.; Guibet Lafaye, C.; Puybasset, L.; Mertes, P.M.; Claudot, F. Elective non-therapeutic intensive care and the four principles of medical ethics. J. Med. Ethics. 2013, 39, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Jotterand, F. The hippocratic oath and contemporary medicine: Dialectic between past ideals and present reality? J. Med. Philos. 2005, 30, 107–128. [Google Scholar] [CrossRef]
- Gillon, R. Medical ethics: Four principles plus attention to scope. BMJ 1994, 309, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchamp, T.L.; Childress, J.F. Principles of Biomedical Ethics, 8th ed.; Oxford University Press: New York, NY, USA, 2019. [Google Scholar]
- Holm, S. Not just autonomy—The principles of American biomedical ethics. J. Med. Ethics. 1995, 21, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchamp, T.L.; Childress, J.F. Principles of Biomedical Ethics, 1st ed.; Oxford University Press: New York, NY, USA, 1979. [Google Scholar]
- Veatch, R.M. The impossibility of a morality internal to medicine. J. Med. Philos. A Forum. Bioeth. Philos. Med. 2001, 26, 621–642. [Google Scholar] [CrossRef]
- Nash, D.A. Ethics in dentistry: Review and critique of principles of ethics and code of professional conduct. J. Am. Dent. Assoc. 1984, 109, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Seear, J.E.; Walters, L. Law and Ethics in Dentistry Paperback, 3rd ed.; Butterworth-Heinemann Ltd.: Oxford, UK, 1991. [Google Scholar]
- Jessri, M.; Fatemitabar, S.A. Implication of ethical principles in chair-side dentistry. Iran. J. Allergy Asthma Immunol. 2007, 6 (Suppl. S5), 53–59. [Google Scholar]
- Nash, D.A. On ethics in the profession of dentistry and dental education. Eur. J. Dent. Educ. 2007, 11, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Covid-19. Available online: https://www.oed.com/view/Entry/88575495 (accessed on 1 March 2021).
- Symptoms of Coronavirus. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed on 1 March 2021).
- Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19 (accessed on 1 March 2021).
- Nussbaumer-Streit, B.; Mayr, V.; Dobrescu, A.I.; Chapman, A.; Persad, E.; Klerings, I.; Wagner, G.; Siebert, U.; Christof, C.; Zachariah, C.; et al. Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database Syst. Rev. 2020, 4, 1–45. [Google Scholar] [CrossRef]
- COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (accessed on 1 March 2021).
- Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html (accessed on 1 March 2021).
- Oran, D.P.; Topol, E.J. The Proportion of SARS-CoV-2 Infections That Are Asymptomatic. A Systematic Review. Ann. Intern. Med. 2021, M20, 6976. [Google Scholar] [CrossRef]
- Transmission of COVID-19. Available online: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/transmission (accessed on 1 March 2021).
- Long-Term Effects of COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects.html (accessed on 1 March 2021).
- Coronavirus Disease: COVID-19—Appendices. Available online: https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html#contact (accessed on 1 March 2021).
- Quarantine for Coronavirus (COVID-19). Available online: https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/quarantine-for-coronavirus-covid-19#what-is-a-close-contact (accessed on 1 March 2021).
- How COVID-19 Spreads. Available online: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html (accessed on 1 March 2021).
- Coronavirus Disease (COVID-19): How Is It Transmitted? Available online: https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (accessed on 1 March 2021).
- Coronavirus Disease (COVID-19): Frequently Asked Questions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/faq.html (accessed on 1 March 2021).
- Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. Available online: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (accessed on 1 March 2021).
- Clinical Questions about COVID-19: Questions and Answers. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html (accessed on 1 March 2021).
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D.; Dobrzańska, J.; Rudziarczyk, K.; Achtelik-Franczak, A. Non-Antagonistic Contradictoriness of the Progress of Advanced Digitized Production with SARS-CoV-2 Virus Transmission in the Area of Dental Engineering. Processes 2020, 8, 1097. [Google Scholar] [CrossRef]
- Funk, C.D.; Laferrière, C.; Ardakani, A. A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic. Front. Pharm. 2020, 11, 937. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Barbier, L.; Stuart, H.; Amraei, M.; Pelech, S.; Dennis, J.W.; Metalnikov, P.; O’Donnell, P.; Nabi, I.R. Tumor cell pseudopodial protrusions. Localized signaling domains coordinating cytoskeleton remodeling, cell adhesion, glycolysis, RNA translocation, and protein translation. J. Biol. Chem. 2005, 280, 30564–30573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef] [PubMed]
- How Furin and ACE2 Interact with the Spike on SARS-CoV-2. Available online: https://www.assaygenie.com/how-furin-and-ace2-interact-with-the-spike-on-sarscov2 (accessed on 1 March 2021).
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letko, M.; Munster, V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. bioRxiv 2020, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genomic Characterization of the 2019 Novel Coronavirus. Available online: https://www.jwatch.org/na50823/2020/02/06/genomic-characterization-2019-novel-coronavirus (accessed on 1 March 2021).
- Gralinski, L.E.; Menachery, V.D. Return of the Coronavirus: 2019-nCoV. Viruses 2020, 12, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, M.M.; Beumer, J.; van der Vaart, J.; Knoops, K.; Puschhof, J.; Breugem, T.I.; Ravelli, R.B.G.; Paul van Schayck, J.; Mykytyn, A.Z.; Duimel, H.Q.; et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020, 369, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020, 181, 905–913.e7. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 2020, 176, 104742. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, C.; Yang, Y.; Liu, Y.; Zhang, P.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Zheng, M.; et al. Furin, a potential therapeutic target for COVID-19. ChinaXiv 2020, 1–34. [Google Scholar] [CrossRef]
- Thailand Medical News. Breaking! Latest Coronavirus Research Reveals That The Virus Has Mutated Gene Similar To HIV and Is 1,000 Times More Potent. Available online: https://www.thailandmedical.news/news/breaking!-latestcoronavirus-research-reveals-that-the-virus-has-mutated-gene-similar-to-hiv-and-is-1,000-times-more-potent- (accessed on 1 March 2021).
- Harcourt, J.; Tamin, A.; Lu, X.; Kamili, S.; Sakthivel, S.K.; Murray, J.; Queen, K.; Tao, Y.; Paden, C.R.; Zhang, J.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. Emerg. Infect. Dis. 2020, 26, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020, 11, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasiński, G. Koronawirus Zakaża skuteczniej niż SARS? Nowe fakty ws. wirusa z Chin. Available online: https://www.rmf24.pl/raporty/raport-koronawirus-z-chin/najnowsze-fakty/news-koronawirus-zakaza-skuteczniej-niz-sars-nowe-fakty-ws-wirusa,nId,4352687 (accessed on 1 March 2021).
- Huggins, D.J. Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2. J. Mol. Graph. Model. 2020, 100, 107710. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol. 2020, 38, 379–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thailand Medical News. Coronavirus Drug Research: German Researchers Identify Japanese Drug, Camostat Mesylate That Could Be Repurposed To Treat Covid-19. Available online: https://www.thailandmedical.news/news/coronavirus-drug-research-german-researchers-identify-japanese-drug,-camostat-mesylate-that-could-be-repurposed-to-treat-covid-19 (accessed on 1 March 2021).
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 2020, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Xiao, R.; Lin, G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J. 2020, 34, 6017–6026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharat, A.; Querrey, M.; Markov, N.S.; Kim, S.; Kurihara, C.; Garza-Castillon, R.; Manerikar, A.; Shilatifard, A.; Tomic, R.; Politanska, Y.; et al. Lung transplantation for patients with severe COVID-19. Sci. Transl. Med. 2020, 12, eabe4282. [Google Scholar] [CrossRef] [PubMed]
- WHO Europe. Postępowanie Kliniczne W Ostrym Zakażeniu Dróg Oddechowych O Ciężkim Przebiegu (Sari) W Przypadku Podejrzenia Choroby COVID-9. Available online: https://apps.who.int/iris/bitstream/handle/10665/331809/WHO-2019-nCoV-clinical-2020.4-pol.pdf (accessed on 1 March 2021).
- Dobrzańska-Danikiewicz, A.D. Metodologia komputerowo zintegrowanego prognozowania rozwoju inżynierii powierzchni materiałów. In Open Access Library 1(7); Dobrzański, L.A., Ed.; International OCSCO World Press: Gliwice, Poland, 2012; pp. 1–289. [Google Scholar]
- Dobrzańska-Danikiewicz, A.D. Księga technologii krytycznych kształtowania struktury i własności powierzchni materiałów inżynierskich. In Open Access Library 8(26); Dobrzański, L.A., Ed.; International OCSCO World Press: Gliwice, Poland, 2013; pp. 1–823. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D. Inżynieria powierzchni materiałów: Kompendium wiedzy i podręcznik akademicki. In Open Access Library VIII(1); Dobrzański, L.A., Ed.; International OCSCO World Press: Gliwice, Poland, 2018; pp. 1–1138. [Google Scholar]
- Morrison, A.; Wensley, R. Boxing up or Boxed in?: A Short History of the Boston Consulting Group Share/Growth Matrix. J. Mark. Manag. 1991, 7, 105–129. [Google Scholar] [CrossRef]
- Beaumont, P. Covid-19 Vaccine: Who Are Countries Prioritising for First Doses? Available online: https://www.theguardian.com/world/2020/nov/18/covid-19-vaccine-who-are-countries-prioritising-for-first-doses (accessed on 1 March 2021).
- Coronavirus (COVID-19) Vaccinations—Ststistics and Research. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 23 February 2021).
- Geter, A.; Herron, A.R.; Sutton, M.Y. HIV-Related Stigma by Healthcare Providers in the United States: A Systematic Review. Aids. Patient Care Stds. 2008, 32, 418–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaratne, S.; Hensen, B.; Cordes, J.; Enstone, J.; Hargreaves, J.R. Interventions to strengthen the HIV prevention cascade: A systematic review of reviews. Lancet Hiv. 2016, 3, e307–e317. [Google Scholar] [CrossRef] [Green Version]
- Coates, T.J.; Richter, L.; Caceres, C. Behavioural strategies to reduce HIV transmission: How to make them work better. Lancet 2008, 372, 669–684. [Google Scholar] [CrossRef] [Green Version]
- Hurley, S.F.; Jolley, D.J.; Kaldor, J.M. Effectiveness of needle-exchange programmes for prevention of HIV infection. Lancet 1997, 349, 1797–1800. [Google Scholar] [CrossRef]
- Vlahov, D.; Junge, B. The role of needle exchange programs in HIV prevention. Public Health Rep. 1998, 113 (Suppl. S1), 75–80. [Google Scholar] [PubMed]
- Wszystko O Wariantach Brytyjskim, Brazylijskim I Południowoafrykańskim. Available online: https://www.medonet.pl/koronawirus/to-musisz-wiedziec,wariant-covid-19-brytyjski--brazylijski-i-poludniowoafrykanski--co-warto-wiedziec-,artykul,88341446.html (accessed on 1 March 2021).
- Bioengineering. Available online: https://bioe.uw.edu/wp-content/uploads/2013/05/bioengineering-vs-other-disciplines-alt1.png (accessed on 1 March 2021).
- Dobrzański, L.A. Introductory Chapter: Multi-Aspect Bibliographic Analysis of the Synergy of Technical, Biological and Medical Sciences Concerning Materials and Technologies Used for Medical and Dental Implantable Devices. In Biomaterials in Regenerative Medicine; Dobrzański, L.A., Ed.; IntechOpeen: Rijeka, Croatia, 2018; pp. 1–43. [Google Scholar] [CrossRef] [Green Version]
- Dobrzański, L.A.; Dobrzański, L.B. Approach to the Design and Manufacturing of Prosthetic Dental Restorations According to the Rules of Industry 4.0. Mater. Perform. Charact 2020, 9, 394–476. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B. Dentistry 4.0 Concept in the Design and Manufacturing of Prosthetic Dental Restorations. Processes 2020, 8, 525. [Google Scholar] [CrossRef]
- Dobrzański, L.A. Role of materials design in maintenance engineering in the context of industry 4.0 idea. J. Achiev. Mater. Manuf. Eng. 2019, 96, 12–49. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D. Why Are Carbon-Based Materials Important in Civilization Progress and Especially in the Industry 4.0 Stage of the Industrial Revolution. Mater. Perform. Charact 2019, 8, 337–370. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D. Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage. J. Achiev. Mater. Manuf. Eng. 2020, 98, 56–85. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D.; Kraszewska, M. Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage. Arch. Mater. Sci. Eng. 2020, 102, 13–41. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B.; Achtelik-Franczak, A.; Dobrzańska, J. Application Solid Laser-Sintered or Machined Ti6Al4V Alloy in Manufacturing of Dental Implants and Dental Prosthetic Restorations According to Dentistry 4.0 Concept. Processes 2020, 8, 664. [Google Scholar] [CrossRef]
- Dobrzański, L.A. Autorska koncepcja rozwoju implanto-skafoldów oraz materiałów biologiczno-inżynierskich do aplikacji w medycynie i stomatologii. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 535–580. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Achtelik-Franczak, A.; Szindler, M. Structure and properties of the skeleton microporous materials with coatings inside the pores for medical and dental applications. In Frontiers in Materials Processing, Applications, Research and Technology; Muruganant, M., Chirazi, A., Raj, B., Eds.; Springer Nature: Singapore, 2018; pp. 297–320. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Gaweł, T.G.; Achtelik-Franczak, A. Selective laser sintering and melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials. Arch. Metall. Mater. 2015, 60, 2039–2045. [Google Scholar] [CrossRef]
- Dobrzański, L.A. Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine. Arch. Mater. Sci. Eng. 2014, 69, 53–80. [Google Scholar]
- Dobrzański, L.A.; Achtelik-Franczak, A. Struktura i własności tytanowych szkieletowych materiałów mikroporowatych wytworzonych metodą selektywnego spiekania laserowego do zastosowań w implantologii oraz medycynie regeneracyjnej. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 186–244. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Malara, P.; Gaweł, T.G.; Dobrzański, L.B.; Achtelik-Franczak, A. Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method. AMM 2015, 60, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Dobrzański, L.A. Metale i ich stopy. In Open Access Library VII(2); Dobrzański, L.A., Ed.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 1–982. [Google Scholar]
- Dobrzański, L.A.; Achtelik-Franczak, A. Struktura i własności materiałów kompozytowych do zastosowań medycznych o osnowie odlewniczych stopów aluminium wzmacnianych tytanowymi szkieletami wytworzonymi metoda selektywnego spiekania laserowego. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 376–433. [Google Scholar]
- Dobrzański, L.A. Stan wiedzy o materiałach stosowanych w implantologii oraz medycynie regeneracyjnej. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library, VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 117–120. [Google Scholar]
- Dobrzański, L.A. Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering. Arch. Mater. Sci. Eng. 2015, 76, 53–114. [Google Scholar]
- Nowacki, J.; Dobrzański, L.A.; Gustavo, F. Implanty śródszpikowe w osteosyntezie kości długich. In Open Access Library 11(17); Dobrzański, L.A., Ed.; International OCSCO World Press: Gliwice, Poland, 2012; pp. 1–150. [Google Scholar]
- Dobrzańska-Danikiewicz, A.D.; Gaweł, T.G.; Kroll, L.; Dobrzański, L.A. Nowe porowate materiały kompozytowe metalowo-polimerowe wytwarzane z udziałem selektywnego stapiania laserowego. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library, VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 245–288. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D. (Eds.) Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library VII(1); International OCSCO World Press: Gliwice, Poland, 2017; pp. 1–580. [Google Scholar]
- Dobrzański, L.A.; Matula, G.; Dobrzańska-Danikiewicz, A.D.; Malara, P.; Kremzer, M.; Tomiczek, B.; Kujawa, M.; Hajduczek, E.; Achtelik-Franczak, A.; Dobrzański, L.B.; et al. Composite materials infiltrated by aluminium alloys based on porous skeletons from alumina, Mullite and titanium produced by powder metallurgy techniques. In Powder Metallurgy—Fundamentals and Case Studies; Dobrzański, L.A., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 95–137. [Google Scholar] [CrossRef] [Green Version]
- Dobrzański, L.A. (Ed.) Polymer Nanofibers Produced by Electrospinning Applied in Regenerative Medicine; Open Access Library V(3); International OCSCO World Press: Gliwice, Poland, 2015; pp. 1–168. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Achtelik-Franczak, A.; Dobrzański, L.B.; Hajduczek, E.; Matula, G. Fabrication Technologies of the Sintered Materials Including Materials for medical and dental application. In Powder Metallurgy—Fundamentals and Case Studies; Dobrzański, L.A., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 17–52. [Google Scholar] [CrossRef] [Green Version]
- Dobrzański, L.A. (Ed.) Powder Metallurgy—Fundamentals and Case Studies; IntechOpen: Rijeka, Croatia, 2017; pp. 1–392. [Google Scholar]
- Dobrzańska-Danikiewicz, A.D.; Dobrzański, L.A.; Szindler, M.; Achtelik-Franczak, A.; Dobrzański, L.B. Obróbka powierzchni materiałów mikroporowatych wytworzonych metodą selektywnego spiekania laserowego w celu uefektywnienia proliferacji żywych komórek. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library, VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 289–375. [Google Scholar]
- Dobrzański, L.A. Korszerű mérnöki anyagok kutatásának nanotechnológiai aspektusai. Miskolci Egy. Multidiszcip. Tudományok 2016, 6, 21–44. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Achtelik-Franczak, A.; Dobrzański, L.B.; Szindler, M.; Gaweł, T.G. Porous selective laser melted Ti and Ti6Al4V materials for medical applications. In Powder Metallurgy—Fundamentals and Case Studies; Dobrzański, L.A., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 161–181. [Google Scholar] [CrossRef] [Green Version]
- Davis, M. Thinking Like an Engineer: Studies in the Ethics of a Profession; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Davis, M. Engineering Ethics; Routledge: London, UK, 2005. [Google Scholar] [CrossRef]
- Martin, M.W.; Schinzinger, R. Ethics in Engineering, 4th ed.; McGraw-Hill: Boston, MA, USA, 2005. [Google Scholar]
- Harris, C.E.; Pritchard, M.S.; Rabins, M.J. Engineering Ethics: Concepts and Cases, 4th ed.; Wadsworth: Belmont, TN, USA, 2008. [Google Scholar]
- Hansson, S.O. Ethical Criteria of Risk Acceptance. Erkenntnis 2003, 59, 291–309. [Google Scholar] [CrossRef]
- Regulation (EU) 2017/745 of the European Parliament and of the Council on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745 (accessed on 1 March 2021).
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D. Applications of Laser Processing of Materials in Surface Engineering in the Industry 4.0 Stage of the Industrial Revolution. Mater. Perform. Charact 2019, 8, 1091–1129. [Google Scholar] [CrossRef]
- Dobrzański, L.A. Effect of heat and surface treatment on the structure and properties of the Mg-Al-Zn-Mn casting alloys. In Magnesium and Its Alloys; Dobrzański, L.A., Totten, G.E., Bamberger, M., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 91–202. [Google Scholar]
- Dobrzański, L.A. Structural Phenomena Accompanying the Production of Composite and Nanocomposite Materials Using Selected Technologies. In Proceedings of the 22nd Physical Metallurgy and Materials Science Conference: Advanced Materials and Technologies, Bukowina Tatrzańska, Poland, 9–12 June 2019. [Google Scholar]
- Dobrzański, L.A. Stage 4.0 of the Technological Revolution in the Context of the Development of Engineering & Dental Materials; Lviv Polytechnic National University: Lviv, Ukraine, 2019. [Google Scholar]
- Dobrzański, L.A. Rola inżynierii materiałowej w etapie 4.0 rewolucji technologicznej. In Proceedings of the the 24th Seminar of the Polish Society of Materials Science, Jachranka, Poland, 12–15 May 2019. [Google Scholar]
- Dobrzański, L.A. The Importance of Materials Engineering in Stage 4.0 of the Technological Revolution; Institute of Fundamental Technological Research: Warsaw, Poland, 27 May 2019. [Google Scholar]
- Dobrzański, L.A. Role of Materials Design in Maintenance Engineering in the Context of Industry 4.0 Idea. In Proceedings of the the International Maintenance Technologies Congress and Exhibition, Denizli, Turkey, 26–28 September 2019. [Google Scholar]
- Jose, R.; Ramakrishna, S. Materials 4.0: Materials Big Data Enabled Materials Discovery. Appl. Mat. Today 2018, 10, 127–132. [Google Scholar] [CrossRef]
- Dobrzański, L.A. Komputerowa nauka o materiałach jako metoda projektowania współczesnych materiałów i produktów inżynierskich. In Seminary of Research and Education Programmes in Materials Engineering; Polish Society of Materials Science: Myczkowce, Poland, 2004; pp. 55–88. [Google Scholar]
- Ruehle, M.; Dosch, H.; Mittemeijer, E.; van de Voorde, M.H. (Eds.) European White Book on Fundamental Research in Materials Science; Max-Planck-Institute für Metallforschung: Stuttgart, Germany, 2001. [Google Scholar]
- Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Final Report of the Industrie 4.0 Working Group; Federal Ministry of Education and Research: Bonn, Germany, 2013. [Google Scholar]
- Kagermann, H. Chancen Von Industrie 4.0 Nutzen. In Industrie 4.0 in Produktion, Automatisierung und Logistik; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; pp. 603–614. [Google Scholar]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios: A Literature Review; Technische Universität Dortmund: Dortmund, Germany, 2015. [Google Scholar]
- Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries; Boston Consulting Group: Boston, MA, USA, 2015. [Google Scholar]
- European Commission. Commission Sets Out Path to Digitise European Industry. Available online: https://ec.europa.eu/growth/content/commission-sets-out-path-digitise-european-industry-0_en (accessed on 1 March 2021).
- Danieluk, K. Digital Innovation Hubs on Smart Factories in New EU Member States. Available online: https://ec.europa.eu/futurium/en/implementing-digitising-european-industry-actions/digital-innovation-hubs-smart-factories-new-eu (accessed on 1 March 2021).
- Lu, B.H.; Bateman, R.J.; Cheng, K. RFID Enabled Manufacturing: Fundamentals, Methodology and Applications. Int. J. Agil. Syst. Manag. 2006, 1, 73–92. [Google Scholar] [CrossRef]
- Giusto, D.; Iera, A.; Morabito, G.; Atzori, L. (Eds.) The Internet of Things; Springer: New York, NY, USA, 2010. [Google Scholar]
- Zhu, Q.; Wang, R.; Chen, Q.; Liu, Y.; Qin, W. IOT Gateway: Bridging Wireless Sensor Networks into Internet of Things. In Proceedings of the 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, Hong Kong, China, 11–13 December 2010; The Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2010; pp. 347–352. [Google Scholar]
- Wan, J.; Yan, H.; Liu, Q.; Zhou, K.; Lu, R.; Li, D. Enabling Cyber-Physical Systems with Machine-to-Machine Technologies. Int. J. Ad. Hoc. Ubiquitous Comput. 2013, 13, 187–196. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.Y.; Li, Z.; Pang, L.Y.; Pan, Y.; Qu, T.; Huang, G.Q. RFID-Enabled Real-Time Advanced Planning and Scheduling Shell for Production Decision Making. Int. J. Comput. Integr. Manuf. 2013, 26, 649–662. [Google Scholar] [CrossRef]
- Wu, D.-Z.; Greer, M.J.; Rosen, D.W.; Schaefer, D. Cloud Manufacturing: Strategic Vision and State-of-the-Art. J. Manuf. Syst. 2013, 32, 564–579. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Vozmediano, R.; Montero, R.S.; Llorente, I.M. Key Challenges in Cloud Computing: Enabling the Future Internet of Services. IEEE Internet Comput. 2013, 17, 18–25. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.-A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Proc. Cirp 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Bi, Z.; Xu, L.D.; Wang, C. Internet of Things for Enterprise Systems of Modern Manufacturing. IEEE Trans. Indust. Inf. 2014, 10, 1537–1546. [Google Scholar] [CrossRef]
- Brettel, M.; Friederichsen, N.; Keller, M.; Rosenberg, M. How Virtualization, Decentralization, and Network-Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. Int. J. Mech. Aerospac. Indust. Mechatron. Manuf. Eng. 2014, 8, 37–44. [Google Scholar]
- Buer, S.-V.; Strandhagen, J.O.; Chan, F.T.S. The Link between Industry 4.0 and Lean Manufacturing: Mapping Current Research and Establishing a Research Agenda. Int. J. Prod. Res. 2018, 56, 2924–2940. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.; Cassou, D. Enabling High-Level Application Development for the Internet of Things. J. Syst. Softw. 2015, 103, 62–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Wang, J.; Sun, S.; Si, S.; Yang, T. Real-Time Information Capturing and Integration Framework of the Internet of Manufacturing Things. Int. J. Comput. Integr. Manuf. 2015, 28, 811–822. [Google Scholar] [CrossRef]
- Qiu, X.; Luo, H.; Xu, G.; Zhong, R.-Y.; Huang, G.Q. Physical Assets and Service Sharing for IoT-Enabled Supply Hub in Industrial Park (SHIP). Int. J. Prod. Econ. 2015, 159, 4–15. [Google Scholar] [CrossRef]
- Posada, J.; Toro, C.; Barandiaran, I.; Oyarzun, D.; Stricker, D.; de Amicis, R.; Pinto, E.B.; Eisert, P.; Döllner, J.; Vallarino, I. Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet. IEEE Comp. Graph. Appl. 2015, 35, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.U.; Waseem, M.; Mazhar, S.; Khairi, A.; Kamal, T. A Review on Internet of Things (IoT). Int. J. Comp. Appl. 2015, 113, 1–7. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Almada-Lobo, F. The Industry 4.0 Revolution and the Future of Manufacturing Execution Systems (MES). J. Innov. Manag. 2015, 3, 16–21. [Google Scholar] [CrossRef]
- Wamba, S.F.; Akter, S.; Edwards, A.; Chopin, G.; Gnanzou, D. How ‘Big Data’ Can Make Big Impact: Findings from a Systematic Review and a Longitudinal Case Study. Int. J. Prod. Econ. 2015, 165, 234–246. [Google Scholar] [CrossRef]
- Yin, Y.H.; Nee, A.Y.C.; Ong, S.K.; Zhu, J.Y.; Gu, P.H.; Chen, L.J. Automating Design with Intelligent Human-Machine Integration. Cirp Ann. 2015, 64, 655–677. [Google Scholar] [CrossRef]
- Colin, M.; Galindo, R.; Hernández, O. Information and Communication Technology as a Key Strategy for Efficient Supply Chain Management in Manufacturing SMEs. Proc. Comp. Sci. 2015, 55, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Hozdic, E. Smart Factory for Industry 4.0: A Review. Int. J. Mod. Manuf. Tech. 2015, 7, 28–35. [Google Scholar]
- Zhong, R.Y.; Huang, G.Q.; Lan, S.; Dai, Q.Y.; Zhang, T.; Xu, C. A Two-Level Advanced Production Planning and Scheduling Model for RFID-Enabled Ubiquitous Manufacturing. Adv. Eng. Inf. 2015, 29, 799–812. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards Smart Factory for Industry 4.0: A Self-Organized Multi-Agent System with Big Data Based Feedback and Coordination. Comp. Netw. 2016, 101, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Monostori, L.; Kádár, B.; Bauernhansl, T.; Kondoh, S.; Kumara, S.; Reinhart, G.; Sauer, O.; Schuh, G.; Sihn, W.; Ueda, K. Cyber-Physical Systems in Manufacturing. Cirp. Ann. 2016, 65, 621–641. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Lan, S.; Xu, C.; Dai, Q.; Huang, G.Q. Visualization of RFID-Enabled Shopfloor Logistics Big Data in Cloud Manufacturing. Int. J. Adv. Manuf. Technol. 2016, 84, 5–16. [Google Scholar] [CrossRef]
- Georgakopoulos, D.; Jayaraman, P.P.; Fazia, M.; Villari, M.; Ranjan, R. Internet of Things and Edge Cloud Computing Roadmap for Manufacturing. IEEE Cloud Comp. 2016, 3, 66–73. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Newman, S.T.; Huang, G.Q.; Lan, S. Big Data for Supply Chain Management in the Service and Manufacturing Sectors: Challenges, Opportunities, and Future Perspectives. Comp. Indust. Eng. 2016, 101, 572–591. [Google Scholar] [CrossRef]
- Misra, G.; Kumar, V.; Agarwal, A.; Agarwal, K. Internet of Things (IoT)—A Technological Analysis and Survey on Vision, Concepts, Challenges, Innovation Directions, Technologies, and Applications (An Upcoming or Future Generation Computer Communication System Technology). Am. J. Electr. Electro. Eng. 2016, 4, 23–32. [Google Scholar] [CrossRef]
- Schumacher, A.; Erol, S.; Sihn, W. A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Proc. Cirp 2016, 52, 161–166. [Google Scholar] [CrossRef]
- Sipsas, K.; Alexopoulos, K.; Xanthakis, V.; Chryssolouris, G. Collaborative Maintenance in Flow-Line Manufacturing Environments: An Industry 4.0 Approach. Proc. Cirp 2016, 55, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Liu, Y.; Grosvenor, R. A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Proc. Cirp 2016, 52, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Referenzarchitekturmodell Industrie 4.0 (RAMI4.0); DIN SPEC 91345:2016-04; Beuth Verlag: Berlin, Germany, 2016.
- Dobrzański, L.A. Comparative Analysis of Mechanical Properties of Scaffolds Sintered from Ti and Ti6Al4V Powders. In Proceedings of the Winter International Scientific Conference on Achievements in Mechanical and Materials Engineering, Zakopane, Poland, 6–9 December 2015. [Google Scholar]
- Adolphs, P.; Auer, S.; Bedenbender, H.; Billmann, M.; Hankel, M.; Heidel, R.; Hoffmeister, M.; Huhle, H.; Jochem, M.; Kiele-Dunsche, M.; et al. Structure of the Administration Shell: Continuation of the Development of the Reference Model. for the Industrie 4.0 Component; Federal Ministry for Economic Affairs and Energy: Berlin, Germany, 2016. [Google Scholar]
- Bahrin, M.A.K.; Othman, M.F.; Azli, N.H.N.; Talib, M.F. Industry 4.0: A Review on Industrial Automation and Robotic. J. Tekno. 2016, 78, 137–143. [Google Scholar]
- Mosterman, P.J.; Zander, J. Industry 4.0 as a Cyber-Physical System Study. Softw. Syst. Model. 2016, 15, 17–29. [Google Scholar] [CrossRef]
- Harrison, R.; Vera, D.; Ahmad, B. Engineering Methods and Tools for Cyber-Physical Automation Systems. Proc. IEEE 2016, 104, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Proc. Cirp 2016, 40, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, S. Robots, Industry 4.0 and Humans, or Why Assembly Work Is More than Routine Work. Societies 2016, 6, 16. [Google Scholar] [CrossRef]
- Gorkhali, A.; Xu, L.D. Enterprise Application Integration in Industrial Integration: A Literature Review. J. Indust. Integr. Manag. 2016, 1, 1650014. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Thoben, K.-D.; Wiesner, S.; Wuest, T. ‘Industrie 4.0’ and Smart Manufacturing—A Review of Research Issues and Application Examples. Int. J. Autom. Techn. 2017, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Xu, X. Machine Tool 4.0 for the New Era of Manufacturing. Int. J. Adv. Manuf. Techn. 2017, 92, 1893–1900. [Google Scholar] [CrossRef]
- Li, B.-H.; Hou, B.-C.; Yu, W.-T.; Lu, X.-B.; Yang, C.-W. Applications of Artificial Intelligence in Intelligent Manufacturing: A Review. Front. Infor. Techn. Electro. Eng. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Lu, Y. Industry 4.0: A Survey on Technologies, Applications and Open Research Issues. J. Indust. Infor. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A Glimpse. Proc. Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Kumar, K.; Zindani, D.; Davim, J.P. Industry 4.0: Developments towards the Fourth Industrial Revolution; Springer Nature: Singapore, 2019. [Google Scholar]
- Łobaziewicz, M. Zarządzanie Inteligentnym Przedsiębiorstwem W Dobie Przemysłu 4.0; Towarzystwo Naukowe Organizacji i Kierownictwa: Toruń, Poland, 2019. [Google Scholar]
- Ardito, L.; Petruzzelli, A.M.; Panniello, U.; Garavelli, A.C. Towards Industry 4.0: Mapping Digital Technologies for Supply Chain Management-Marketing Integration. Bus. Proc. Manag. J. 2019, 25, 323–346. [Google Scholar] [CrossRef]
- Boston Consulting Group. Putting Industry 4.0 to Work. Available online: https://www.bcg.com/capabilities/manufacturing/industry-4.0 (accessed on 1 March 2021).
- Tietenberg, T.; Lewis, L. Environmental and Natural Resource Economics; Pearson Education: London, UK, 2003. [Google Scholar]
- Dobrzański, L.A. Significance of Materials Science and Engineering for Advances in Design and Manufacturing Processes, Computer Integrated Manufacturing. In Advanced Design and Management; Skołud, B., Krenczyk, D., Eds.; WNT: Warsaw, Poland, 2003; pp. 128–140. [Google Scholar]
- Dobrzański, L.A. The importance of the development of materials science and materials engineering to improve the quality of life of modern societies. Wisnyk Technol. Univ. PodillaKhmelnytskyUkr. 2003, I, 34–47. [Google Scholar]
- Dobrzański, L.A. Heat Treatment as Fundamental Technological Process of Formation of Structure and Properties of Metals. In Proceedings of the 8th Seminar of the International Federation for Heat Treatment and Surface Engineering, Cavtat, Croatia, 12–14 Semptember 2001; International Federation for Heat Treatment and Surface Engineering: Winterthur, Switzerland, 2001; pp. 1–12. [Google Scholar]
- Dobrzański, L.A. Significance of Materials Science for Advances in Products Design and Manufacturing; General Assembly of the International Academy for Production Engineering: Cracow, Poland, 2004. [Google Scholar]
- Tay, S.I.; Lee, T.C.; Hamid, N.A.A.; Ahmad, A.N.A. An Overview of Industry 4.0: Definition, Components, and Government Initiatives. J. Adv. Res. Dyn. Control. Syst. 2018, 10, 1379–1387. [Google Scholar]
- Dobrzański, L.A. Podstawy Metodologii Projektowania Materiałowego; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2009. [Google Scholar]
- Dobrzański, L.A. Significance of materials science for the future development of societies. J. Mater. Process. Technol. 2006, 175, 133–148. [Google Scholar] [CrossRef]
- Dobrzański, L.A. Materiały Inżynierskie I Projektowanie Materiałowe. Podstawy Nauki O Materiałach I Metaloznawstwo, 2nd ed.; suppl. & changed; WNT: Warsaw, Poland, 2006. [Google Scholar]
- Al-Fadda, S.A.; Zarb, G.A.; Finer, Y.A. A comparison of the accuracy of fit of 2 methods for fabricating implant-prosthodontic frameworks. Int. J. Prosthodont. 2007, 20, 125–131. [Google Scholar] [PubMed]
- Helmus, M.N. Overview of Biomedical Materials. Bullet 1991, 16, 33–38. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, P. An Overview of Biomedical Materials and Techniques for Better Functional Performance, Life, Sustainability and Biocompatibility of Orthopedic Implants. Indian J. Sci. Tech. 2018, 11, 1–7. [Google Scholar] [CrossRef]
- Hin, T.S. (Ed.) Engineering Materials for Biomedical Applications; World Scientific: Singapore, 2004. [Google Scholar] [CrossRef]
- Wang, X. Overview on Biocompatibilities of Implantable Biomaterials. In Advances in Biomaterials Science and Biomedical Applications; Pignatello, R., Ed.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef] [Green Version]
- Pignatello, R. (Ed.) Advances in Biomaterials Science and Biomedical Applications; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Bronzino, J.D.; Peterson, D.R. The Biomedical Engineering Handbook, Volume 1: Biomedical Engineering Fundamentals. Physiologic Systems. Biomechanics. Biomaterials. Bioelectric Phenomena. Neuroengineering, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bronzino, J.D.; Peterson, D.R. The Biomedical Engineering Handbook, Volume 2: Medical Devices and Systems. Biomedical Sensors. Medical Instrumentation and Devices. Human Performance Engineering. Rehabilitation Engineering. Clinical Engineering, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bronzino, J.D.; Peterson, D.R. The Biomedical Engineering Handbook, Volume 3: Biomedical Signals, Imaging and Informatics. Biosignal Processing. Medical Imaging. Infrared Imaging. Medical Informatics, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bronzino, J.D.; Peterson, D.R. The Biomedical Engineering Handbook, Volume 4: Molecular, Cellular and Tissue Engineering. Molecular Biology. Transport. Phenomena and Biomimetic Systems. Physiological Modeling, Simulation and Control. Stem Cell Engineering; An. Introduction. Tissue Engineering. Artificial Organs. Drug Design, Delivery Systems and Devices. Personalized Medicine. Ethics, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kokubo, T. (Ed.) Biocermics and Their Clinical Applications; Woodhead Publishing: Cambridge, England, 2008; pp. 1–784. [Google Scholar]
- Curtis, R.V.; Watson, T.F. (Eds.) Dental Biomaterials; Woodhead Publishing: Cambridge, UK, 2008; pp. 1–528. [Google Scholar]
- Jenkins, M. (Ed.) Biomedical Polymers; Woodhead Publishing: Cambridge, UK, 2007; pp. 1–236. [Google Scholar]
- Wiliams, D.F. (Ed.) Definitions in Biomaterials; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Dobrzański, L.A. Metaloznawstwo Opisowe; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2013. [Google Scholar]
- Wang, S.; Qu, X.; Zhao, R.C. Clinical applications of mesenchymal stem cells. J. Hematol. Oncol. 2012, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heness, G.; Ben-Nissan, B. Innovative bioceramics. Mater. Forum. 2004, 27, 104–114. [Google Scholar]
- Parida, P.; Behera, A.; Mishra, S.C. Classification of Biomaterials used in Medicine. Int. J. Adv. Appl. Sci. 2012, 1, 31–35. [Google Scholar] [CrossRef]
- Bronzino, J.D.; Peterson, D.R. The Biomedical Engineering Handbook, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. (Eds.) Biomaterials Science: An. Introduction to Materials in Medicine, 3rd ed.; Academic Press: Oxford, UK, 2013. [Google Scholar]
- Helmus, M.N.; Gibbons, D.F.; Cebon, D. Biocompatibility: Meeting a key functional requirement of next-generation medical devices. Toxicol. Pathol. 2008, 36, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Parida, P.; Mishra, S.C. Biomaterials in Medicine. Proceedings of the UGC Sponsored National Workshop on Innovative Experiments in Physics; Neelashaila Mahabidyalaya: Rourkela, India, 2012. [Google Scholar]
- Pramanik, S.; Agarwal, A.K.; Rai, K.N. Chronology of Total Hip Joint Replacement and Materials Development. Trends Biomater. Artif. Organs. 2005, 19, 15–26. [Google Scholar]
- Chakrabarty, G.V. Biomaterials: Metallic Implant. Materials, Technology, Review Essays. IJAAS 2011, 1, 125–129. [Google Scholar]
- Srivastav, A. An Overview of Metallic Biomaterials for Bone Support and Replacement. In Biomedical Engineering, Trends in Materials Science; Laskovski, A., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 153–168. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.R.; Cho, H.H.; Jang, S.G.; Lee, K.Y.; Son, H.Y.; Kim, J.G.; Kim, Y.S. Effect of Co Content on The Corrosion of High Performance Stainless Steels In Simulated Bio-solutions. Key Eng. Mater. 2007, 342–343, 585–588. [Google Scholar] [CrossRef]
- Billotte, W.G. Ceramic biomaterials. In The Biomedical Engineering Handbook, 2nd ed.; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 2000; Volume 1, pp. 1–33. [Google Scholar]
- Atala, A.; Lanza, R.; Nerem, R.; Thomson, J. Principles of Regenerative Medicine; Academic Press: Cambridge, MA, USA, 2007; pp. 1–1472. [Google Scholar]
- Lee, H.B.; Khang, G.; Lee, J.H. Polymeric Biomaterials. In Biomaterials; CRC Press: Boca Raton, FL, USA, 2007; pp. 55–78. [Google Scholar] [CrossRef]
- Ehrlich, H. Biological Materials of Marine Origin; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Jockisch, K.A.; Brown, S.A.; Bauer, T.W.; Merritt, K. Biological response to chopped-carbon-fiber-reinforced peek. J. Biomed. Mater. Res. 1992, 26, 133–146. [Google Scholar] [CrossRef]
- Bos, R.R.; Rozema, F.R.; Boering, G.; Nijenhuis, A.J.; Pennings, A.J.; Jansen, H.W. Bone-plates and screws of bioabsorbable poly (L-lactide)—An animal pilot study. Br. J. Oral Maxillofac. Surg. 1989, 27, 467–476. [Google Scholar] [CrossRef]
- Albertsson, A.C.; Varma, I.K. Aliphatic Polyesters: Synthesis, Properties and Applications. In Degradable Aliphatic Polyesters. Advances in Polymer Science; Albertsson, A.-C., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 157, pp. 1–40. [Google Scholar] [CrossRef]
- Zhu, S.L.; Wang, X.M.; Qin, F.X.; Inoue, A. A new Ti-based bulk glassy alloy with potential for biomedical application. Mater. Sci. Eng. A 2007, 459, 233–237. [Google Scholar] [CrossRef]
- Zhang, E.; Yin, D.; Xu, L.; Yang, L.; Yang, K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Mater. Sci. Eng. C 2009, 29, 987–993. [Google Scholar] [CrossRef]
- Li, S.J.; Niinomi, M.; Akahori, T.; Kasuga, T.; Yang, R.; Hao, Y.L. Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application. Biomaterials 2004, 25, 3369–3378. [Google Scholar] [CrossRef]
- Rajendran, V.; Bhandari, S.K. Bioactive Glasses for Implant Applications. Available online: https://www.drdo.gov.in/monograph/bioactive-glasses-implant-applications (accessed on 1 March 2021).
- Black, J. The education of the biomaterialist: Report of a survey, 1980–1981. J. Biomed. Mater. Res. 1982, 16, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Dobrzańska-Danikiewicz, A.D.; Łukowiec, D.; Cichocki, D.; Wolany, W. Nanokompozyty złożone z nanorurek węglowych pokrytych Nanokryształami Metali Szlachetnych. In Open Access Library V(2); Dobrzański, L.A., Ed.; International OCSCO World Press: Gliwice, Poland, 2015; pp. 1–131. [Google Scholar]
- Qiu, G.; Ding, W. Editorial for the Special Issue on Medical Additive Manufacturing. Engineering 2020, 6, 1205–1206. [Google Scholar] [CrossRef]
- Qiu, G.; Ding, W.; Tian, W.; Qin, L.; Zhao, Y.; Zhang, L.; Lu, J.; Chen, D.; Yuan, G.; Wu, C.; et al. Medical Additive Manufacturing: From a Frontier Technology to the Research and Development of Products. Engineering 2020, 6, 1217–1221. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Ma, J.; Xu, M.; Chang, J.; Gelinsky, M.; Wu, C. 3D Printing of Cell-Container-Like Scaffolds for Multicell Tissue Engineering. Engineering 2020, 6, 1276–1284. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, Q.; Pu, F.; Boone, D.; Zhang, M. A Review of the Application of Additive Manufacturing in Prosthetic and Orthotic Clinics from a Biomechanical Perspective. Engineering 2020, 6, 1258–1266. [Google Scholar] [CrossRef]
- Liu, G.; He, Y.; Liu, P.; Chen, Z.; Chen, X.; Wan, L.; Li, Y.; Lu, J. Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing Materials. Engineering 2020, 6, 1232–1243. [Google Scholar] [CrossRef]
- Li, C.; Pisignano, D.; Zhao, Y.; Xue, J. Advances in Medical Applications of Additive Manufacturing. Engineering 2020, 6, 1222–1231. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, P.; Wang, N.; Peng, L.; Kang, B.; Zeng, H.; Yuan, G.; Ding, W. Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants. Engineering 2020, 6, 1267–1275. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Czuba, Z.P.; Dobrzański, L.B.; Achtelik-Franczak, A.; Malara, P.; Szindler, M.; Kroll, L. The new generation of the biological-engineering materials for applications in medical and dental implant-scaffolds. Arch. Mater. Sci. Eng. 2018, 91, 56–85. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Czuba, Z.P.; Dobrzański, L.B.; Achtelik-Franczak, A.; Malara, P.; Szindler, M.; Kroll, L. Metallic skeletons as reinforcement of new composite materials applied in orthopaedics and dentistry. Arch. Mater. Sci. Eng. 2018, 92, 53–85. [Google Scholar] [CrossRef]
- Dobrzański, L.B.; Achtelik-Franczak, A.; Dobrzańska, J.; Dobrzański, L.A. Comparison of the Structure and Properties of the Solid Co-Cr-W-Mo-Si Alloys Used for Dental Restorations CNC Machined or Selective Laser-Sintered. Mater. Perform. Charact 2020, 9, 556–578. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D. Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics. J. Achiev. Mater. Manuf. Eng. 2020, 99, 14–41. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B.; Dobrzańska-Danikiewicz, A.D. Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics. Arch. Mater. Sci. Eng. 2020, 102, 59–85. [Google Scholar] [CrossRef]
- Liao, B.; Xia, R.F.; Li, W.; Lu, D.; Jin, Z.M. 3D-Printed Ti6Al4V Scaffolds with Graded Triply Periodic Minimal Surface Structure for Bone Tissue Engineering. J. Mater. Eng. Perform. 2021. [CrossRef]
- Xiong, Y.-Z.; Gao, R.-N.; Zhang, H.; Dong, L.-L.; Li, J.-T.; Li, X. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. J. Mech. Behav. Biomed. Mater. 2020, 104, 103673. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, Y.; Shukla, M.; Bhatt, A.D. Implicit-Function-Based Design and Additive Manufacturing of Triply Periodic Minimal Surfaces Scaffolds for Bone Tissue Engineering. J. Mater. Eng. Perform. 2019, 28, 7445–7451. [Google Scholar] [CrossRef]
- Kelly, C.N.; Francovich, J.; Julmi, S.; Safranski, D.; Guldberg, R.E.; Maier, H.J.; Gall, K. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomater. 2019, 94, 610–626. [Google Scholar] [CrossRef]
- Ma, S.; Tang, Q.; Feng, Q.; Song, J.; Han, X.; Guo, F. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J. Mech. Behav. Biomed. Mater. 2019, 93, 158–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadroitsava, I.; du Plessis, A.; Yadroitsev, I. Bone regeneration on implants of titanium alloys produced by laser powder bed fusion: A review. In Titanium for Consumer Applications; Froes, F., Qian, M., Niinomi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 197–233. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, G.; Johnson, B.N.; Jia, X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019, 84, 16–33. [Google Scholar] [CrossRef]
- Ataee, A.; Li, Y.; Fraser, D.; Song, G.; Wen, C. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Des. 2018, 137, 345–354. [Google Scholar] [CrossRef]
- Surmeneva, M.A.; Surmenev, R.A.; Chudinova, E.A.; Koptioug, A.; Tkachev, M.S.; Gorodzha, S.N.; Rännar, L.-E. Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction. Mater. Des. 2017, 133, 195–204. [Google Scholar] [CrossRef]
- Fousová, M.; Vojtěch, D.; Kubásek, J.; Jablonská, E.; Fojt, J. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 2017, 69, 368–376. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Misra, R.D.K. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 2016, 59, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Arahira, T.; Maruta, M.; Matsuya, S.; Todo, M. Development and characterization of a novel porous β-TCP scaffold with a three-dimensional PLLA network structure for use in bone tissue engineering. Mater. Lett. 2015, 152, 148–150. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Young, P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015, 51, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, S.M.; Yavari, S.A.; Wauthle, R.; Pouran, B.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties. Materials 2015, 8, 1871–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, A.; Humayun, A.; Cohen, D.J.; Boyan, B.D.; Schwartz, Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 2014, 6, 045007. [Google Scholar] [CrossRef] [PubMed]
- Scherer, M.R.J. Double-Gyroid-Structured Functional Materials. Synthesis and Applications; Springer: Cham, Switzerland, 2013. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Hao, L.; Hussein, A.; Young, P.; Raymont, D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater. Des. 2014, 55, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012, 541, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.C.; Klemm, D.; Eckert, J.; Hao, Y.L.; Sercombe, T.B. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr. Mater. 2011, 65, 21–24. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.-P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 2010, 3, 249–259. [Google Scholar] [CrossRef] [PubMed]
- German, R.M. Sintering Theory and Practice; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- German, R.M. Powder Metallurgy Science; Metal Powder Industries Federation: Princeton, NJ, USA, 1984. [Google Scholar]
- German, R.M. Injection Molding of Metals and Ceramics; Metal Powder Industries Federation: Princeton, NJ, USA, 1997. [Google Scholar]
- German, R.M. Powder Injection Molding; Metal Powder Industries Federation: Princeton, NJ, USA, 1990. [Google Scholar]
- Sun, S.; Brandt, M.; Easton, M. Powder bed fusion processes: An overview. In Laser Additive Manufacturing; Materials, Design, Technologies, and Applications; Brandt, M., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 55–77. [Google Scholar] [CrossRef]
- Sahasrabudhe, H.; Bose, S.; Bandyopadhyay, A. Laser-based additive manufacturing processes. In Advances in Laser Materials Processing; Lawrence, J., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 507–539. [Google Scholar] [CrossRef]
- Huo, S.H.; Qian, M.; Schaffer, G.B.; Crossin, E. Aluminium powder metallurgy. In Fundamentals of Aluminium Metallurgy; Production, Processing and Applications; Lumley, R., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 655–701. [Google Scholar] [CrossRef]
- German, R.M. Phase diagrams in liquid phase sintering treatments. JOM 1986, 38, 26–29. [Google Scholar] [CrossRef]
- Schaffer, G.B.; Sercombe, T.B.; Lumley, R.N. Liquid phase sintering of aluminium alloys. Mater. Chem. Phys. 2001, 67, 85–91. [Google Scholar] [CrossRef]
- Kang, S.-J.L. Basis of Liquid Phase Sintering. In Sintering, Densification, Grain Growth and Microstructure; Lumley, R., Ed.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2005; pp. 199–203. [Google Scholar] [CrossRef]
- Kang, S.-J.L. Liquid phase sintering. In Sintering of Advanced Materials; Fang, Z.Z., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 110–129. [Google Scholar] [CrossRef]
- Lumley, R.N.; Schaffer, G.B. The effect of solubility and particle size on liquid phase sintering. Scr. Mater. 1996, 35, 589–595. [Google Scholar] [CrossRef]
- Kim, K.-B.; Kim, W.-C.; Kim, H.-Y.; Kim, J.-H. An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dent. Mater. 2013, 29, e91–e96. [Google Scholar] [CrossRef] [PubMed]
- Barro, Ó.; Arias-González, F.; Lusquiños, F.; Comesaña, R.; del Val, J.; Riveiro, A.; Badaoui, A.; Gómez-Baño, F.; Pou, J. Effect of four manufacturing techniques (casting, laser directed energy deposition, milling and selective laser melting) on microstructural, mechanical and electrochemical properties of co-CR dental alloys, before and after PFM firing process. Metals 2020, 10, 1291. [Google Scholar] [CrossRef]
- Dobrzański, L.B. Porównanie metod przyrostowych i ubytkowych wytwarzania uzupełnień protetycznych układu stomatognatycznego. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library, VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 434–499. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Malara, P.; Achtelik-Franczak, A.; Dobrzański, L.B.; Gaweł, T.G. Implanto-Skafold Lub Proteza Elementów Anatomicznych Układu Stomatognatycznego Oraz Twarzoczaszki. Patent nr PL229148, 9 January 2018. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Malara, P.; Achtelik-Franczak, A.; Dobrzański, L.B.; Gaweł, T.G. Implanto-Skafold Kostny. Patent nr PL229149, 9 January 2018. [Google Scholar]
- Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Malara, P.; Dobrzański, L.B.; Achtelik-Franczak, A.; Kremzer, M. Sposób wytwarzania materiałów kompozytowych o mikroporowatej szkieletowej strukturze wzmocnienia. Patent nr PL236090, 16 December 2019. [Google Scholar]
- Dobrzański, L.B.; Dobrzański, L.A.; Dobrzańska, J.; Achtelik-Franczak, A. Wysokorozwinięty Powierzchniowo Implant Stomatologiczny. Zgłoszenie patentowe P.434312, 15 June 2020. [Google Scholar]
- Dobrzański, L.B.; Dobrzański, L.A.; Dobrzańska, J.; Achtelik-Franczak, A. Wysokorozwinięty Powierzchniowo Implant Kostny W Tym Twarzoczaszki. Zgłoszenie patentowe P.434314, 15 June 2020. [Google Scholar]
- Dobrzańska, J. Analiza Szczelności Wypełnień Kanałów Korzeniowych. Ph.D. Thesis, Śląski Uniwersytet Medyczny, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym, Zabrze, Poland, 2012. [Google Scholar]
- Dobrzańska, J.; Gołombek, K.; Dobrzański, L.B. Polymer materials used in endodontic treatment—In vitro testing. Arch. Mater. Sci. Eng. 2012, 58, 110–115. [Google Scholar]
- Dobrzański, L.B.; Achtelik-Franczak, A.; Dobrzańska, J.; Pietrucha, P. Application of polymer impression masses for the obtaining of dental working models for the stereolithographic 3D printing. Arch. Mater. Sci. Eng. 2019, 95, 31–40. [Google Scholar] [CrossRef]
- Dobrzański, L.B.; Malara, P. Metodologia komputerowo wspomaganego projektowania i wytwarzania stomatologicznych uzupełnień protetycznych z litych materiałów inżynierskich. In Metalowe Materiały Mikroporowate I Lite Do Zastosowań Medycznych I Stomatologicznych; Open Access Library, VII(1); Dobrzański, L.A., Dobrzańska-Danikiewicz, A.D., Eds.; International OCSCO World Press: Gliwice, Poland, 2017; pp. 500–534. [Google Scholar]
- Dobrzański, L.B.; Dobrzański, L.A.; Dobrzańska, J.; Achtelik-Franczak, A.; Rudziarczyk, K. Akcesorium Montażowe Implantu Stomatologicznego. Zgłoszenie patentowe P.434313, 15 June 2020. [Google Scholar]
- Kaiser, L.R. The future of multihospital systems. Top. Health Care Financ. 1992, 18, 32–45. [Google Scholar] [PubMed]
- Arsiwala, A.; Desai, P.; Patravale, V. Recent advances in micro/nanoscale biomedical implants. J. Control. Release 2014, 189, 25–45. [Google Scholar] [CrossRef]
- Yang, F.; Williams, C.G.; Wang, D.A.; Lee, H.; Manson, P.N.; Elisseeff, J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005, 26, 5991–5998. [Google Scholar] [CrossRef]
- US National Institutes of Health. Regenerative Medicine 2006. Available online: https://stemcells.nih.gov/sites/all/themes/stemcells_theme/stemcell_includes/Regenerative_Medicine_2006.pdf (accessed on 1 March 2021).
- Cogle, C.R.; Guthrie, S.M.; Sanders, R.C.; Allen, W.L.; Scott, E.W.; Petersen, B.E. An overview of stem cell research and regulatory issues. Mayo Clin. Proc. 2003, 78, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Metallo, C.M.; Azarin, S.M.; Ji, L.; De Pablo, J.J.; Palecek, S.P. Engineering tissue from human embryonic stem cells. J. Cell Mol. Med. 2008, 12, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Placzek, M.R.; Chung, I.M.; Macedo, H.M.; Ismail, S.; Mortera Blanco, T.; Lim, M.; Cha, J.M.; Fauzi, I.; Kang, Y.; Yeo, D.C.; et al. Stem cell bioprocessing: Fundamentals and principles. J. R Soc. Interface 2009, 6, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Viola, J.; Lal, B.; Grad, O. The Emergence of Tissue Engineering as a Research Field. Available online: https://www.nsf.gov/pubs/2004/nsf0450/start.htm (accessed on 1 March 2021).
- Fung, Y.C. A Proposal to the National Science Foundation for An Engineering Research Center at UCSD: Center for the Engineering of Living Tissues. UCSD #865023; University of California: San Diego, CA, USA, 2001. [Google Scholar]
- Lanza, R.P.; Langer, R.; Vacanti, J. (Eds.) Principles of Tissue Engineering; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Atala, A.; Lanza, R.P. (Eds.) Methods of Tissue Engineering; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- MacArthur, B.D.; Oreffo, R.O. Bridging the gap. Nature 2005, 433, 19. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, M.; Crosby, W.H. Transplantation of marrow to extramedullary sites. Science 1968, 161, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culme-Seymour, E.J.; Davie, N.L.; Brindley, D.A.; Edwards-Parton, S.; Mason, C. A decade of cell therapy clinical trials (2000–2010). Regen Med. 2012, 7, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Trounson, A.; Thakar, R.G.; Lomax, G.; Gibbons, D. Clinical trials for stem cell therapies. BMC Med. 2011, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147, Erratum in Science 1998, 282, 1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamblott, M.J.; Axelman, J.; Wang, S.; Bugg, E.M.; Littlefield, J.W.; Donovan, P.J.; Blumenthal, P.D.; Huggins, G.R.; Gearhart, J.D. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 1998, 95, 13726–13731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cetrulo, C.L., Jr. Cord-blood mesenchymal stem cells and tissue engineering. Stem. Cell Rev. 2006, 2, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Branch, M.J.; Hashmani, K.; Dhillon, P.; Jones, D.R.; Dua, H.S.; Hopkinson, A. Mesenchymal stem cells in the human corneal limbal stroma. Invest. Ophthalmol. Vis. Sci. 2012, 53, 5109–5116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Americord. What Differentiates This Fast-Growth Cord Blood Bank? Available online: https://bioinformant.com/americord-what-differentiates-this-fast-growth-company-within-the-cord-blood-marketplace/ (accessed on 1 March 2021).
- Lee, E.H.; Hui, J.H. The potential of stem cells in orthopaedic surgery. J. Bone Jt. Surg. Br. 2006, 88, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Le Blanc, K.; Tammik, L.; Sundberg, B.; Haynesworth, S.E.; Ringdén, O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 2003, 57, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Maitra, B.; Szekely, E.; Gjini, K.; Laughlin, M.J.; Dennis, J.; Haynesworth, S.E.; Koç, O.N. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transpl. 2004, 33, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Raff, M. Adult stem cell plasticity: Fact or artifact? Annu. Rev. Cell Dev. Biol. 2003, 19, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.J.; Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994, 1, 661–673. [Google Scholar] [CrossRef]
- Bajada, S.; Mazakova, I.; Richardson, J.B.; Ashammakhi, N. Updates on stem cells and their applications in regenerative medicine. J. Tissue Eng. Regen Med. 2008, 2, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Johal, K.S.; Lees, V.C.; Reid, A.J. Adipose-derived stem cells: Selecting for translational success. Regen Med. 2015, 10, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177–182. [Google Scholar] [CrossRef]
- Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar] [CrossRef]
- Mooney, D.J.; Organ, G.; Vacanti, J.P.; Langer, R. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transpl. 1994, 3, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Virdi, A.S.; Ashhurst, D.E.; Simpson, A.H.; Triffitt, J.T. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: Localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell Biol. Int. 2000, 24, 25–33. [Google Scholar] [CrossRef]
- Sanders, J.E.; Malcolm, S.G.; Bale, S.D.; Wang, Y.N.; Lamont, S. Prevascularization of a biomaterial using a chorioallontoic membrane. Microvasc. Res. 2002, 64, 174–178. [Google Scholar] [CrossRef]
- Muschler, G.F.; Nakamoto, C.; Griffith, L.G. Engineering principles of clinical cell-based tissue engineering. J. Bone Jt. Surg. Am. 2004, 86, 1541–1558. [Google Scholar] [CrossRef]
- Wilson, C.E.; Dhert, W.J.A.; van Blitterswijk, C.A.; Verbout, A.J.; de Bruijn, J.D. Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue™ assay and the effect on in vivo bone formation. J. Mater. Sci. Mater. Med. 2002, 13, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Kruyt, M.C.; de Bruijn, J.D.; Wilson, C.E.; Oner, F.C.; van Blitterswijk, C.A.; Verbout, A.J.; Dhert, W.J. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Tissue Eng. 2003, 9, 327–336. [Google Scholar] [CrossRef]
- Peppas, N.A.; Langer, R. New challenges in biomaterials. Science 1994, 263, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, J.A. Biomaterials in tissue engineering. Biotechnnology 1995, 13, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, J.A. Bioactive biomaterials. Curr. Opin. Biotechnol. 1999, 10, 123–129. [Google Scholar] [CrossRef]
- Healy, K.E.; Rezania, A.; Stile, R.A. Designing biomaterials to direct biological responses. Ann. N. Y Acad. Sci. 1999, 875, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Tirrell, D.A. Designing materials for biology and medicine. Nature 2004, 428, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Lutolf, M.P.; Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55. [Google Scholar] [CrossRef]
- Elisseeff, J.; Ferran, A.; Hwang, S.; Varghese, S.; Zhang, Z. The role of biomaterials in stem cell differentiation: Applications in the musculoskeletal system. Stem. Cells Dev. 2006, 15, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Hwang, N.S.; Kim, M.S.; Sampattavanich, S.; Baek, J.H.; Zhang, Z.; Elisseeff, J. Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem. Cells 2006, 24, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Neeley, W.L.; Moore, M.J.; Karp, J.M.; Shukla, A.; Langer, R. Tissue Engineering: The Therapeutic Strategy of the Twenty-First Century. In Nanotechnology and Tissue Engineering: The Scaffold; Laurencin, C.T., Nair, L.S., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 3–32. [Google Scholar]
- Bettinger, C.J.; Borenstein, J.T.; Langer, R. Microfabrication Techniques in Scaffold Development. In Nanotechnology and Tissue Engineering: The Scaffold; Laurencin, C.T., Nair, L.S., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 87–122. [Google Scholar]
- Noga, M.; Pawlak, A.; Dybala, B.; Dabrowski, B.; Swieszkowski, W.; Lewandowska-Szumiel, M. Biological Evaluation of Porous Titanium Scaffolds (Ti-6Al-7Nb) with HAp/Ca-P Surface Seeded with Human Adipose Derived Stem Cells. In Proceedings of the E-MRS Fall Meeting, Warszawa, Poland, 16–20 September 2013. [Google Scholar]
- Rouwkema, J.; Rivron, N.C.; van Blitterswijk, C.A. Vascularization in tissue engineering. Trends Biotechnol. 2008, 26, 434–441. [Google Scholar] [CrossRef]
- Bramfeldt, H.; Sabra, G.; Centis, V.; Vermette, P. Scaffold vascularization: A challenge for threedimensional tissue engineering. Curr. Med. Chem. 2010, 17, 3944–3967. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Au, P.; Tam, J.; Duda, D.G.; Fukumura, D. Engineering vascularized tissue. Nat. Biotechnol. 2005, 23, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biomaterials Market Size, Share & Trends Analysis Report by Product (Natural, Metallic, Polymer), by Application (Cardiovascular, Orthopedics, Plastic Surgery), by Region, and Segment Forecasts, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/biomaterials-industry (accessed on 12 March 2021).
- Dental Biomaterial Market—Forecasts from 2020 to 2025. Available online: https://www.researchandmarkets.com/reports/5125071/dental-biomaterial-market-forecasts-from-2020#rela0-4989738 (accessed on 12 March 2021).
- Orthopedic Biomaterials Market Size, Share & Trends Analysis Report by Material Type (Ceramics & Bioactive Glasses, Polymers), by Application (Orthobiologics, Orthopedic Implants), by Region, and Segment Forecasts, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/orthopedic-biomaterials-market (accessed on 12 March 2021).
- Tissue Engineering Market Size, Share & Trends Analysis Report by Application (Cord Blood & Cell Banking, Cancer, GI & Gynecology, Dental, Orthopedics, Musculoskeletal, & Spine), by Region, and Segment Forecasts, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/tissue-engineering-and-regeneration-industry (accessed on 12 March 2021).
- Regenerative Medicine Market Size, Share & Trends Analysis by Product (Primary Cell-based, Stem & Progenitor Cell-based), by Therapeutic Category (Dermatology, Oncology) and Segment Forecasts, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/regenerative-medicine-market (accessed on 12 March 2021).
- Cell Therapy Market Size, Share & Trends Analysis Report by Use-type (Research, Commercialized, Musculoskeletal Disorders), by Therapy Type (Autologous, Allogeneic), by Region, and Segment Forecasts, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/cell-therapy-market (accessed on 12 March 2021).
- Major Orthopedic Joint Replacement Implants Market—By Type (Knee Replacement Implants and Hip Replacement Implants), by Geography, and By Region, Opportunities And Strategies—Global Forecast To 2022. Available online: https://www.thebusinessresearchcompany.com/report/major-orthopedic-joint-replacement-implants-market (accessed on 12 March 2021).
- Illgen, R.; Bukowski, B.; Abiola, R.; Anderson, P.; Chughtai, M.; Khlopas, A.; Mont, M. Robotic-assisted total hip arthroplasty: Outcomes at minimum two year follow up. Surg. Technol. Int. 2017, 30, 365–372. [Google Scholar]
- Kayani, B.; Konan, S.; Tahmassebi, J.; Pietrzak, J.R.T.; Haddad, F.S. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: A prospective cohort study. Bone Jt. J. 2018, 100, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Kleeblad, L.J.; Borus, T.; Coon, T.; Dounchis, J.; Nguyen, J.; Pearle, A. Midterm survivorship and patient satisfaction of robotic-arm assisted medial unicompartmental knee arthroplasty: A multicenter study. J. Arthroplast. 2018, 33, 1719–1726. [Google Scholar] [CrossRef]
- Dretakis, K.; Igoumenou, V.G. Outcomes of robotic-arm-assisted medial unicompartmental knee arthroplasty: Minimum 3-year follow-up. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 1305–1311. [Google Scholar] [CrossRef]
- Nawabi, D.; Conditt, M.; Ranawat, A.; Dunbar, N.; Jones, J.; Banks, S.; Padgett, D. Haptically guided robotic technology in total hip arthroplasty: A cadaveric investigation. Proc. Inst. Mech. Eng. H 2013, 227, 302–309. [Google Scholar] [CrossRef]
- Suarez-Ahedo, C.; Gui, C.; Martin, T.; Chandrasekaran, S.; Domb, B. Robotic arm assisted total hip arthoplasty results in smaller acetabular cup size in relation to the femoral head size: A Matched-Pair Controlled Study. Hip. Int. 2017, 27, 147–152. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Pietrzak, J.R.T.; Haddad, F.S. Iatrogenic Bone and Soft Tissue Trauma in Robotic-Arm Assisted Total Knee Arthroplasty Compared with Conventional Jig-Based Total Knee Arthroplasty: A Prospective Cohort Study and Validation of a New Classification System. J. Arthroplast. 2018, 33, 2496–2501. [Google Scholar] [CrossRef]
- Hampp, E.; Chang, T.C.; Pearle, A. Robotic partial knee arthroplasty demonstrated greater bone preservation compared to robotic total knee arthroplasty. In Proceedings of the Annual Orthopaedic Research Society Meeting, Austin, TX, USA, 2–5 February 2019. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Tahmassebi, J.; Rowan, F.E.; Haddad, F.S. An assessment of early functional rehabilitation and hospital discharge in conventional versus robotic-arm assisted unicompartmental knee arthroplasty. Bone Jt. J. 2019, 101-B, 24–33. [Google Scholar] [CrossRef]
- Bell, S.W.; Anthony, I.; Jones, B.; MacLean, A.; Rowe, P.; Blyth, M. Improved Accuracy of Component Positioning with Robotic-Assisted Unicompartmental Knee Arthroplasty: Data from a Prospective, Randomized Controlled Study. J. Bone Jt. Surg. Am. 2016, 98, 627–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herry, Y.; Batailler, C.; Lording, T.; Servien, E.; Neyret, P.; Lustig, S. Improved joint-line restitution in unicompartmental knee arthroplasty using a robotic-assisted surgical technique. Int. Orthop. 2017, 41, 2265–2271. [Google Scholar] [CrossRef] [PubMed]
- Batailler, C.; White, N.; Ranaldi, F.M.; Neyret, P.; Servien, E.; Lustig, S. Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Jaramaz, B.; Nikou, C.; Casper, M.; Grosse, S.; Mitra, R. Accuracy validation of semi-active robotic application for patellofemoral arthroplasty. In Proceedings of the International Society for Computer Assisted Orthopaedic Surgery, Vancover, BC, Canada, 17–20 June 2015. [Google Scholar]
- Jaramaz, B.; Mitra, R.; Nikou, C.; Kung, C. Technique and Accuracy Assessment of a Novel Image-Free Handheld Robot for knee Arthroplasty in Bi-Cruiciate Retaining Total Knee Replacement. In Proceedings of the CAOS 2018. The 18th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, Beijing, China, 6–9 June 2018; Tian, W., Baena, F.R.Y., Eds.; EasyChair: Oxford, UK, 2018; Volume 2, pp. 98–101. [Google Scholar]
- Data on File Smith & Nephew. Sg2 Healthcare Intelligence: Technology Guide; Sg2: Skokie, IL, USA, 2014.
- Gregori, A.; Picard, F.; Bellemans, J.; Smith, J.; Simone, A. Handheld precision sculpting tool for unicondylar knee arthroplasty. A clinical review. In Proceedings of the 15th EFORT Congress, London, UK, 4–6 June 2014. [Google Scholar]
- Smith, J.R.; Picard, F.; Lonner, J.; Hamlin, B.; Rowe, P.; Riches, P.; Deakin, A. The accuracy of a robotically-controlled freehand sculpting tool for unicondylar knee arthroplasty. In Proceedings of the Congress of the International Society of Biomechanics, Natal, Brazil, 4–9 August 2013. [Google Scholar]
- Gustke, K.; Golladay, G.; Roche, M.W.; Jerry, G.; Elson, L.C.; Anderson, C.R. Increased Patient Satisfaction After Total Knee replacement using sensor-guided technology. Bone Jt. J. 2014, 96, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Gregori, A.; Picard, F.; Lonner, J.; Smith, J.; Jaramaz, B. Accuracy of imageless robotically assisted unicondylar knee arthroplasty. In Proceedings of the International Society for Computer Assisted Orthopaedic Surgery, Vancover, BC, Canada, 17–20 June 2015. [Google Scholar]
- 3D Printing in the Medical Industry: The 3D Printed Knee Replacement. Available online: https://www.sculpteo.com/blog/2018/05/04/3d-printing-in-the-medical-industry-the-3d-printed-knee-replacement/ (accessed on 12 March 2021).
- How 3D Printing and Modeling are Changing Joint Replacement Surgery. Available online: https://www.yalemedicine.org/news/3d-joint-replacement (accessed on 12 March 2021).
- Replacement Knee Surgery: 3D Printing…Science Fiction or Remarkable Reality? Available online: https://www.bennettorthosportsmed.com/replacement-knee-surgery-3d-printingscience-fiction-remarkable-reality/ (accessed on 12 March 2021).
- Knee Replacement Using State-Of-The-Art 3D Printer Technology. Available online: https://www.fairfield.org.uk/knee-replacement-using-state-of-the-art-3d-printer-technology/ (accessed on 12 March 2021).
- Hip Replacement Market Size, Share & Industry Analysis, by Procedure (Total Hip Replacement, Partial Hip Replacement, and Revision & Hip Resurfacing), by End User (Hospitals & Ambulatory Surgery Centers, Orthopedic Clinics, and Others) and Regional Forecast, 2019–2026. Available online: https://www.fortunebusinessinsights.com/industry-reports/hip-replacement-implants-market-100247 (accessed on 12 March 2021).
- Hip Replacement Implants Market Size, Share, & Trends Analysis Report by Product (Total Hip, Partial Femoral Head), By Application, (MOM, MOP, COP), By End Use (Orthopedic Clinics), By Region, And Segment Forecasts, 2019–2026. Available online: https://www.grandviewresearch.com/industry-analysis/hip-replacement-implants-market (accessed on 12 March 2021).
- Global Hip Replacement Implants Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players, Competitive Strategies and Forecasts, 2018 to 2026. Available online: https://www.researchandmarkets.com/reports/4760571/global-hip-replacement-implants-market-size (accessed on 12 March 2021).
- Hip Replacement Implants Market Growth Projection, Sales Statistics, Size Value, Latest Trends, Future Insights and Share Estimation by 2025. Available online: https://www.medgadget.com/2021/02/hip-replacement-implants-market-growth-projection-sales-statistics-size-value-latest-trends-future-insights-and-share-estimation-by-2025.html (accessed on 12 March 2021).
- Conformis Announces the first 3D Total Hip Replacement Surgeries performed at JFK Medical Center in Florida. Available online: https://www.globenewswire.com/news-release/2018/08/01/1545816/0/en/Conformis-Announces-the-first-3D-Total-Hip-Replacement-Surgeries-performed-at-JFK-Medical-Center-in-Florida.html (accessed on 12 March 2021).
- Sasazawa, F. Case Study: The Simple and Accurate Cup Setting with Portable Navigation System in Total Hip Arthroplasty. Available online: http://www.orthalign.com/wp-content/uploads/2018/08/Case-STudy-2017_HipAlign_Sasazawa.pdf (accessed on 12 March 2021).
- Durbhakula, S. Case Study: OrthAlign® Technology Was Imperative for This Patient with a Prior Spinal Fusion Undergoing Right THA. Available online: http://www.orthalign.com/wp-content/uploads/2018/04/HipAlign_case-study-durbhakula3.pdf (accessed on 12 March 2021).
- Knee Replacement Implants Market Size, Share & Analysis, by Procedure Type (Total Knee Replacement, Partial Knee Replacement, Revision Knee), by Material, by Component, by End Users (Clinic, Hospital, Ambulatory Service Centers), and Segment Forecasts to 2027. Available online: https://www.reportsanddata.com/report-detail/knee-replacement-implants-market (accessed on 12 March 2021).
- Knee Replacement Market Size, Share & COVID-19 Impact Analysis, by Procedure (Total Knee Arthroplasty, Partial Knee Arthroplasty, and Revision Arthroplasty) by Implant Type (Fixed Bearing, Mobile Bearing, and Others) End-user (Hospitals, Orthopedic Clinics, Ambulatory Surgical Centers, and Others) and Regional Forecast, 2020–2027. Available online: https://www.fortunebusinessinsights.com/industry-reports/knee-replacement-implants-market-101244 (accessed on 12 March 2021).
- Knee Implants Market Forecast to 2027 - Covid-19 Impact and Global Analysis - by Procedure (Total Knee Replacement, Partial Knee Replacement and Revision Knee Replacement), Implant Type (Fixed Bearing Implant and Mobile Bearing Implant), Material (Stainless Steel, Cobalt & Chromium Alloys, Titanium & Titanium Alloys, Tantalum, Zirconium and Others) and By End User (Hospitals, Ambulatory Surgical Centers and Others). Available online: https://www.theinsightpartners.com/reports/knee-implants-market (accessed on 12 March 2021).
- Global Knee Replacement Market Research Report: Information by Product Type (Total Knee Reconstructive Implants, Partial Knee Reconstructive Implants, Revision Knee Reconstructive Implants), Material (Metal Alloy, Ceramic Material, Strong Plastic Parts and Others), End User (Hospitals and Clinics, Specialty Centers, and Rehabilitation Centers), and Region (Americas, Europe, Asia-Pacific, and the Middle East & Africa)—Forecast till 2025. Available online: https://www.marketresearchfuture.com/reports/knee-replacement-market-1578 (accessed on 12 March 2021).
- Aesculapius with His Sons Podalairius and Machaon and Three Daughters—With Supplicants. Greek Relief Found at Thyrea. at National Museum Athens. Available online: https://wellcomecollection.org/works/ekhkh79b (accessed on 12 March 2021).
- Filippou, D.; Tsoucalas, G.; Panagouli, E.; Thomaidis, V.; Fiska, A. Machaon, Son of Asclepius, the Father of Surgery. Cureus 2020, 12, e7038. [Google Scholar] [CrossRef] [Green Version]
- Oxilia, G.; Peresani, M.; Romandini, M.; Matteucci, C.; Debono Spiteri, C.; Henry, A.G.; Schulz, D.; Archer, W.; Crezzini, J.; Boschin, F.; et al. Earliest evidence of dental caries manipulation in the Late Upper Palaeolithic. Sci. Rep. 2015, 5, 12150. [Google Scholar] [CrossRef]
- Oxyrhynchus Papyrus 2547. Available online: http://archives.wellcomelibrary.org/DServe/dserve.exe?dsqIni=Dserve.ini&dsqApp=Archive&dsqCmd=Show.tcl&dsqDb=Catalog&dsqPos=47&dsqSearch=%28Sources_guides_used%3D%27Near%20and%20Middle%20East%27%29 (accessed on 12 March 2021).
- Barns, J.W.B. The Oxyrhynchus Papyri; Part 31; Cambridge University Press: London, UK, 1966; pp. 62–65. [Google Scholar]
- Nutton, V. Marie-Helene Marganne, Inventaire analytique des papyrus grecs de médecine, Geneva, Librairie Droz, 1981, 8vo, pp. x, 409. Med. Hist. 1983, 27, 97. [Google Scholar] [CrossRef] [Green Version]
- Miranda, E.A. Mondino de Luzzi. Medical Terminology Dictionary; Clinical Anatomy Associates: Ohio. Available online: https://clinicalanatomy.com/mtd/548 (accessed on 12 March 2021).
- Nierzwicki, K. Warszawski egzemplarz De humani corporis fabrica Andreasa Vesaliusa (Bazylea 1555) ze zbiorów Biblioteki Narodowej. Przyczynek do dziejów recepcji anatomii wesaliańskiej w Polsce. Available online: https://repozytorium.umk.pl/bitstream/handle/item/3030/Warszawski%20egzemplarz%20A.%20Vesaliusa%20%E2%80%94%20ksi%C4%99ga%20jubileuszowa%20%E2%80%94%20z%20ilustracjami.pdf?sequence=1 (accessed on 12 March 2021).
- Kleczek, K. De humani corporis fabrica libri septem. Najsłynniejsze XVI-wieczne dzieło o anatomii człowieka. Available online: https://kc-cieszyn.pl/de-humani-corporis-fabrica-libri-septem-najslynniejsze-xvi-wieczne-dzielo-o-anatomii-czlowieka/ (accessed on 12 March 2021).
- Szkice Anatomiczne. Leonardo da Vinci. SERIA I. Available online: https://manuscriptum.pl/store/product/szkice-anatomiczne-leonardo-da-vinci-seria-i (accessed on 12 March 2021).
- Landrus, M. The Treasures of Leonardo da Vinci: The Story of His Life & Work; Andre Deutsch: London, UK, 2014. [Google Scholar]
- Lugli, E. In cerca della perfezione: Nuovi elementi per l’Uomo vitruviano di Leonardo Da Vinci. In Leonardo e Vitruvio: Oltre Il Cerchio E Il Quadrato; Borgostr, F., Ed.; Marsilio Books: Venice, Italy, 2019; pp. 69–91. [Google Scholar]
- Press Release: The Nobel Prize in Physiology or Medicine 2020. Available online: https://www.nobelprize.org/prizes/medicine/2020/press-release/ (accessed on 12 March 2021).
Mechanical Properties | Technological Properties | Biotolerance |
---|---|---|
|
|
|
The Main Criterion for Classification | Medical Device Groups | Medical Devices Subgroups | Comment |
---|---|---|---|
period of use of medical devices | transient (<60 min) | ||
short-term (<30 days) | |||
long-term (>30 days) | |||
degree of invasiveness | invasive devices (penetrating deep into the body through an opening in the body or its surface) | surgical | as a result of a surgical procedure, they are introduced inside the body or under its surface |
implanted | intended to be completely introduced into the body or to replace the epithelial surface or the surface of the eye as a result of a surgical intervention | ||
surgical instruments | |||
active devices | medical | their operation depends on the conversion of feed energy other than directly generated by the body or gravity | |
therapeutic | |||
diagnostic | |||
Implants | surgical | placed in the intended place in the body by surgical methods | |
other | for example, needles, drains, filters | ||
implanted prostheses | internal prostheses or endoprostheses that physically replace an organ or tissue | ||
artificial organs | replacing wholly or partially the function of one of the main organs, often in a non-anatomical way | ||
a field of medical use or a specific location in the body | Implants | orthopedic | used to support, replace or supplement temporarily or permanently bone, cartilage, ligaments, tendons or associated tissues |
oral | used to improve, enlarge, or replace any hard or soft tissue in the mouth involving the maxilla, mandible, or temporomandibular joint | ||
craniofacial | used to correct or replace hard or soft tissues in the craniofacial area except for the brain, eyes and inner ear | ||
dental | used to replace missing teeth |
Attribute | Details | |||||
---|---|---|---|---|---|---|
Type of Global Market | Biomaterials | Dental Biomaterials | Orthopedic Biomaterials | Tissue Engineering | Regenerative Medicine | Cell Therapy |
Unit | USD billion | USD million | USD billion | USD billion | USD million | USD billion |
Base year for estimation | 2020 | 2020 | 2018 | 2019 | 2016 | 2020 |
Market size value in based year | 121.1 | 7.983 | 11.96 | 9.9 | 5444 | 6.09 |
Forecast period | 2020–2027 | 2019–2025 | 2019–2025 | 2020–2027 | 2017–2023 | 2020–2027 |
Growth Rate CAGR, % | 15.97 | 7.41 | 10.3 | 14.2 | 32.2 | 5.4 |
Literature | [394] | [395] | [396] | [397] | [398] | [399] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrzański, L.A.; Dobrzańska-Danikiewicz, A.D.; Dobrzański, L.B. Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes 2021, 9, 865. https://doi.org/10.3390/pr9050865
Dobrzański LA, Dobrzańska-Danikiewicz AD, Dobrzański LB. Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes. 2021; 9(5):865. https://doi.org/10.3390/pr9050865
Chicago/Turabian StyleDobrzański, Leszek A., Anna D. Dobrzańska-Danikiewicz, and Lech B. Dobrzański. 2021. "Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy" Processes 9, no. 5: 865. https://doi.org/10.3390/pr9050865
APA StyleDobrzański, L. A., Dobrzańska-Danikiewicz, A. D., & Dobrzański, L. B. (2021). Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes, 9(5), 865. https://doi.org/10.3390/pr9050865