Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Intersected Y2O3/NiO Hybrid
2.2. Preparation of the Y2O3/NiO Introduced MgH2 Systems
2.3. Structure and Morphology Characterizations
2.4. Hydrogen Storage Property Measurements
3. Results
3.1. Structures and Morphologies of the Y2O3/NiO Hybrid and the MgH2-xwt%Y2O3/NiO Systems
3.2. Hydrogen Storage Performance of the MgH2-xwt%Y2O3/NiO Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.B.; Tang, Z.W.; Sun, D.L.; Ouyang, L.Z.; Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 2017, 88, 1–48. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Ren, Z.H.; Zhang, X.L.; Hu, J.J.; Gao, M.X.; Pan, H.G.; Liu, Y.F. Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Storage. Mater. 2019, 23, 79–87. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, F.; Zhang, C.C.; Wang, Z.Y.; Ju, H.Y.; Gao, X.; Zhang, X.X.; Sun, L.X.; Liu, Z.W. Enhanced hydrogen storage of alanates: Recent progress and future perspectives. Prog. Nat. Sci. Mater. Int. 2021, 31, 151–165. [Google Scholar] [CrossRef]
- Hardian, R.; Pistidda, C.; Chaudhary, A.L.; Capurso, G.; Gizer, G.; Cao, H.; Milanese, C.; Girella, A.; Santoru, A.; Yigit, D.; et al. Waste Mg-Al based alloys for hydrogen storage. Int. J. Hydrogen Energy 2018, 43, 16738–16748. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Ali, N.; Al-Salem, S.M. Solid-state conversion of magnesium waste to advanced hydrogen-storage nanopowder particles. Nanomaterials 2020, 10, 11–21. [Google Scholar] [CrossRef]
- Selvam, P.; Viswanathan, B.; Swamy, C.S.; Srinivasan, V. Magnesium and magnesium alloy hydrides. Int. J. Hydrogen Energy 1986, 11, 169–192. [Google Scholar] [CrossRef]
- Liu, H.Z.; Lu, C.L.; Wang, X.C.; Xu, L.; Huang, X.T.; Wang, X.H.; Ning, H.; Lan, Z.Q.; Guo, J. Combinations of V2C and Ti3C2 MXenes for Boosting the Hydrogen Storage Performances of MgH2. ACS Appl. Mater. Interfaces 2021, 13, 13235–13247. [Google Scholar] [CrossRef]
- Kan, H.M.; Zhang, N.; Wang, X.Y. Al-Mg Alloy powders for hydrogen storage. Adv. Mat. Res. 2012, 550–553, 497–501. [Google Scholar] [CrossRef]
- Wen, J.; de Rango, P.; Allain, N.; Laversenne, L.; Grosdidier, T. Improving hydrogen storage performance of Mg-based alloy through microstructure optimization. J. Power Sources 2020, 480, 228823. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Z.B.; Zhu, Y.F.; Fei, J.F.; Song, Y.T.; Zhang, Y.; Zhang, J.G.; Liu, Y.N.; Chen, Q.X.; Li, L.Q. Electrochemical hydrogen storage performance of Mg3GeNi2 alloy. Intermetallics 2020, 127, 106961. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wei, W.; Zhang, W.; Yuan, Z.M.; Gao, J.L.; Qi, Y.; Ren, H.P. Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. Int. J. Hydrogen Energy 2020, 45, 33832–33845. [Google Scholar] [CrossRef]
- Hou, Z.H.; Zhang, W.; Wei, X.; Yuan, Z.M.; Ge, Q.L. Hydrogen storage behavior of nanocrystalline and amorphous Mg-Ni-Cu-La alloys. RSC Adv. 2020, 10, 33103–33111. [Google Scholar] [CrossRef]
- Yong, H.; Guo, S.H.; Yuan, Z.M.; Qi, Y.; Zhao, D.L.; Zhang, Y.H. Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy. Renew. Energy 2020, 157, 828–839. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, W.; Gao, J.L.; Wei, X.; Zhai, T.T.; Cai, Y. Improved hydrogen storage kinetics of Mg-based alloys by substituting La with Sm. Int. J. Hydrogen Energy 2020, 45, 21588–21599. [Google Scholar] [CrossRef]
- De Rango, P.; Wen, J.; Skryabina, N.; Laversenne, L.; Fruchart, D.; Borges, M. Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging. Energies 2020, 13, 3509. [Google Scholar] [CrossRef]
- Xie, L.S.; Xu, M. Improved Absorption and Desorption Kinetics of Mg-Ni-Ce Alloy Activated under Elevated Hydrogen Pressure. Mater. Trans. 2020, 61, 534–539. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, Y.F.; Zhang, X.; Hu, J.J.; Gao, M.X.; Pan, H.G. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 2020, 9, 100064. [Google Scholar] [CrossRef]
- Ma, Z.W.; Panda, S.; Zhang, Q.Y.; Sun, F.Z.; Khan, D.; Ding, W.J.; Zou, J.X. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem. Eng. J. 2021, 406, 126790. [Google Scholar] [CrossRef]
- Liang, H.; Chen, D.; Chen, M.; Li, W.; Snyders, R. Study of the synthesis of PMMA-Mg nanocomposite for hydrogen storage application. Int. J. Hydrogen Energy 2020, 45, 4743–4753. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Ren, Z.; Zhang, X.; Hu, J.; Huang, Z.; Lu, Y.; Gao, M.; Pan, H. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 2021, 14, 2302–2313. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, J.G.; Zhu, Y.F.; Liu, Y.N.; Hu, X.H.; Zhang, Y.; Su, W.; Li, L.Q. Synergistic Catalytic Mechanism between Ni and Carbon Aerogel for Dehydrogenation of Mg-Based Hydrides. Energy Fuels 2020, 34, 10232–10240. [Google Scholar] [CrossRef]
- Pandey, A.P.; Bhatnagar, A.; Shukla, V.; Soni, P.K.; Singh, S.; Verma, S.K.; Shaneeth, M.; Sekkar, V.; Srivastava, O.N. Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine. Int. J. Hydrog. Energy 2020, 45, 30818–30827. [Google Scholar] [CrossRef]
- Ghaani, M.R.; Alam, M.; Catti, M.; English, N.J. In Situ Formation of Metal Hydrides Inside Carbon Aerogel Frameworks for Hydrogen Storage Applications. Carbon Res. 2020, 6, 38. [Google Scholar] [CrossRef]
- Zhou, C.Q.; Peng, Y.Y.; Zhang, Q.G. Growth kinetics of MgH2 nanocrystallites prepared by ball milling. J. Mater. Sci. Technol. 2020, 50, 178–183. [Google Scholar] [CrossRef]
- Gattia, D.M.; Jangir, M.; Jain, I.P. Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications. J. Alloys Compd. 2019, 801, 188–191. [Google Scholar] [CrossRef]
- Ding, Z.M.; Fu, Y.K.; Zhang, L.; Rodriguez-Perez, I.A.; Zhang, H.M.; Wang, W.F.; Li, Y.; Han, S.M. Improve hydrogen sorption kinetics of MgH2 by doping carbon-encapsulated iron-nickel nanoparticles. J. Alloys Compd. 2020, 843, 156035. [Google Scholar] [CrossRef]
- Zhu, W.; Panda, S.; Lu, C.; Ma, Z.W.; Khan, D.; Dong, J.J.; Sun, F.Z.; Xu, H.; Zhang, Q.Y.; Zou, J.X. Using a Self-Assembled Two-Dimensional MXene-Based Catalyst (2D-Ni@Ti3C2) to Enhance Hydrogen Storage Properties of MgH2. ACS Appl. Mater. Interfaces 2020, 12, 50333–50343. [Google Scholar] [CrossRef]
- Biasetti Andrés, T.; Zélis Luis, M.; Marcos, M. Differences in the heterogeneous nature of hydriding/dehydriding kinetics of MgH2 - TiH2 nanocomposites. Int. J. Hydrogen Energy 2020, 45, 27421–27433. [Google Scholar] [CrossRef]
- Zhang, L.C.; Wang, K.; Liu, Y.F.; Zhang, X.; Hu, J.J.; Gao, M.X.; Pan, H.G. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res. 2021, 14, 148–156. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, Z.; Zhang, L.; Zhang, H.; Wang, W.; Li, Y.; Han, S. Catalytic effect of a novel MgC0.5Co3 compound on the dehydrogenation of MgH2. Prog. Nat. Sci. Mater. Int. 2021, 31, 264–269. [Google Scholar] [CrossRef]
- Ismail, M.; Yahya, M.S.; Sazelee, N.A.; Ali, N.A.; Yap, F.A.H.; Mustafa, N.S. The effect of K2SiF6 on the MgH2 hydrogen storage properties. J. Magnes. Alloys 2020, 8, 832–840. [Google Scholar] [CrossRef]
- Gao, S.C.; Wang, H.; Wang, X.H.; Liu, H.Z.; He, T.; Wang, Y.Y.; Wu, C.; Li, S.Q.; Yan, M. MoSe2 hollow nanospheres decorated with FeNi3 nanoparticles for enhancing the hydrogen storage properties of MgH2. J. Alloys Compd. 2020, 830, 154631. [Google Scholar] [CrossRef]
- Ouyang, L.Z.; Cao, Z.J.; Wang, H.; Liu, J.W.; Sun, D.L.; Zhang, Q.A.; Zhu, M. Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation. Int. J. Hydrogen Energy 2013, 38, 8881–8887. [Google Scholar] [CrossRef]
- Sazelee, N.A.; Idris, N.H.; Din, M.F.M.; Yahya, M.S.; Ali, N.A.; Ismail, M. LaFeO3 synthesized by solid-state method for enhanced sorption properties of MgH2. Results Phys. 2020, 16, 102844. [Google Scholar] [CrossRef]
- Wagemans, R.W.P.; Van Lenthe, J.H.; De Jongh, P.E.; Van Dillen, A.J.; De Jong, K.P. Hydrogen storage in magnesium clusters: Quantum chemical study. J. Am. Chem. Soc. 2005, 127, 16675–16680. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.L.; Pei, L.C.; Zhao, Z.Y.; Liu, B.Z.; Han, S.M.; Wang, R.B. The catalysis mechanism of La hydrides on hydrogen storage properties of MgH2 in MgH2 + x wt.% LaH3 (x=0, 10, 20, and 30) composites. J. Alloys Compd. 2013, 557, 64–69. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 1999, 292, 247–252. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 2004, 364, 242–246. [Google Scholar] [CrossRef]
- Oelerich, W.; Klassen, T.; Bormann, R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 2001, 315, 237–242. [Google Scholar] [CrossRef]
- Cui, J.; Liu, J.W.; Wang, H.; Ouyang, L.Z.; Sun, D.L.; Zhu, M.; Yao, X.D. Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) core–shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645. [Google Scholar] [CrossRef]
- Chen, J.; Xia, G.L.; Guo, Z.P.; Huang, Z.G.; Liu, H.K.; Yu, X.B. Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2. J. Mater. Chem. A 2015, 3, 15843. [Google Scholar] [CrossRef]
- Long, S.; Zou, J.X.; Chen, X.; Zeng, X.Q.; Ding, W.J. A comparison study of Mg–Y2O3 and Mg–Y hydrogen storage composite powders prepared through arc plasma method. J. Alloys Compd. 2014, 615, S684–S688. [Google Scholar] [CrossRef]
- Lei, Z.L.; Liu, Z.Y.; Chen, Y.B. Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and NiO. J. Alloys Compd. 2009, 470, 470–472. [Google Scholar]
- Rajabpour, F.; Raygan, S.; Abdizadeh, H. The synergistic effect of catalysts on hydrogen desorption properties of MgH2–TiO2–NiO nanocomposite. Mater. Renew. Sustain. Energy 2016, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Sadhasivam, T.; Hudson, M.S.L.; Pandey, S.K.; Bhatnagar, A.; Singh, M.K.; Gurunathan, K.; Srivastava, O.N. Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2. Int. J. Hydrogen Energy 2013, 38, 7353–7362. [Google Scholar] [CrossRef]
- Zhong, H.C.; Huang, Y.S.; Du, Z.Y.; Lin, H.J.; Lu, X.J.; Cao, C.Y.; Chen, J.H.; Dai, L.Y. Enhanced Hydrogen Ab/De-sorption of Mg(Zn) solid solution alloy catalyzed by YH2/Y2O3 nanocomposite. Int. J. Hydrogen Energy 2020, 45, 27404–27412. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Lu, C.; Ma, Y.; Li, F.; Zhu, H.; Zeng, X.; Ding, W.; Deng, T.; Wu, J.; Zou, J. Visualization of fast “hydrogen pump” in core-shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt. J. Mater. Chem. A 2019, 7, 14629–14637. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, L.; Yan, N.; Zheng, J.; Bian, T.; Yang, Z.; Su, S. Realizing hydrogen de/absorption under low temperature for MgH2 by doping Mn-based catalysts. Nanomaterials 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Singh, S.; Bhatnagar, A.; Shukla, V.; Vishwakarma, A.K.; Soni, P.K.; Verma, S.K.; Shaz, M.A.; Sinha, A.S.K.; Srivastava, O.N. Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2. Int. J. Hydrogen Energy 2020, 45, 774–786. [Google Scholar] [CrossRef]
- Ismail, M. Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2021, 46, 8621–8628. [Google Scholar] [CrossRef]
- Hu, M.; Xie, X.; Chen, M.; Zhu, C.; Liu, T. TiCX-decorated Mg nanoparticles confined in carbon shell: Preparation and catalytic mechanism for hydrogen storage. J. Alloys Compd. 2020, 817, 152813. [Google Scholar] [CrossRef]
- Gao, S.; Wang, X.; Liu, H.; He, T.; Wang, Y.; Li, S.; Yan, M. Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2. J. Power Sources 2019, 438, 227006. [Google Scholar] [CrossRef]
- Zhang, Q.; Zang, L.; Huang, Y.; Gao, P.; Jiao, L.; Yuan, H.; Wang, Y. Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int. J. Hydrogen Energy 2017, 42, 24247–24255. [Google Scholar] [CrossRef]
- Han, Z.Y.; Yeboah, M.L.; Jiang, R.Q.; Li, X.Y.; Zhou, S.X. Hybrid activation mechanism of thermal annealing for hydrogen storage of magnesium based on experimental evidence and theoretical validation. Appl. Surf. Sci. 2020, 504, 144491. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, X.; Zhao, S.; Saremi-Yarahmadi, S.; Chen, M.; Zheng, J.; Li, S.; Chen, L. ZIF-67 derived Co@CNTs nanoparticles: Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism. Int. J. Hydrogen Energy 2019, 44, 1059–1069. [Google Scholar] [CrossRef]
- Xia, G.; Tan, Y.; Chen, X.; Sun, D.; Guo, Z.; Liu, H.; Ouyang, L.; Zhu, M.; Yu, X. Monodisperse Magnesium Hydride Nanoparticles Uniformly Self-Assembled on Graphene. Adv. Mater. 2015, 27, 5981–5988. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, S.; Li, Z.; Gao, M.; Liu, Y.; Sun, W.; Pan, H. Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid. Processes 2021, 9, 892. https://doi.org/10.3390/pr9050892
Liu Y, Wang S, Li Z, Gao M, Liu Y, Sun W, Pan H. Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid. Processes. 2021; 9(5):892. https://doi.org/10.3390/pr9050892
Chicago/Turabian StyleLiu, Yushan, Shun Wang, Zhenglong Li, Mingxia Gao, Yongfeng Liu, Wenping Sun, and Hongge Pan. 2021. "Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid" Processes 9, no. 5: 892. https://doi.org/10.3390/pr9050892
APA StyleLiu, Y., Wang, S., Li, Z., Gao, M., Liu, Y., Sun, W., & Pan, H. (2021). Enhanced Hydrogen Storage Performance of MgH2 by the Catalysis of a Novel Intersected Y2O3/NiO Hybrid. Processes, 9(5), 892. https://doi.org/10.3390/pr9050892