Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Chemicals and Reagents
2.3. Extraction of Phenolic Compounds
2.4. HPLC-DAD-ESI/MSn Identification and Quantification of Phenolic Compounds
2.5. DPPH, ABTS, and Superoxide Radical (O2) Scavenging Activity, Assays of Antioxidant Capacity
2.5.1. DPPH• Assay
2.5.2. ABTS+ Assay
2.5.3. Superoxide Radical (O2−) Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Phenolic Compounds
3.1.1. ANTHOCYANINS
3.1.2. FLAVAN-3-OLS
3.1.3. CONJUGATED FORMS OF ELLAGIC ACID
3.1.4. HYDROXYCYNNAMIC ACID DERIVATIVES
3.1.5. FLAVONOLS
3.2. The Influence of Salinity, Nitrogen Reduction and Sampling Time on Phenolic Compounds
3.2.1. Effect of Salinity and Nitrogen Reduction
3.2.2. Effect of Sampling Date
3.3. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Mateos, R.; Lecumberri, E.; Ramos, S.; Goya, L.; Bravo, L. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 827, 76–82. [Google Scholar]
- Schreckinger, M.E.; Wang, J.; Yousef, G.; Lila, M.A.; de Mejia, E.G. Antioxidant capacity and in Vitro inhibition of adipogenesis and inflammation by phenolic extracts of Vaccinium floribundum and Aristotelia chilensis. J. Agric. Food Chem. 2010, 58, 8966–8976. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly) phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Dobani, S.; Latimer, C.; McDougall, G.J.; Allwood, J.W.; Pereira-Caro, G.; Moreno-Rojas, J.M.; Ternan, N.G.; Pourshahidi, L.K.; Lawther, R.; Tuohy, K.M.; et al. Ex vivo fecal fermentation of human ileal fluid collected after raspberry consumption modifies (poly)phenolics and modulates genoprotective effects in colonic epithelial cells. Redox Biol. 2021, 40, 101862. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Pereira-Caro, G.; Ludwig, I.; Muñoz-Redondo, J.M.; Ruiz-Moreno, M.J.; Crozier, A.; Moreno-Rojas, J.M. A critical evaluation of the use of gas chromatography-and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice. J. Chromatograph. A 2018, 1575, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.F.; Sjulin, T.M.; Lobos, G.A. Strawberries. In Temperate Fruit Crop Breeding, 1st ed.; Hancock, J.F., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 393–437. [Google Scholar]
- Ordóñez, J.L.; Sainz, F.; Callejón, R.M.; Troncoso, A.M.; Torija, M.J.; García-Parrilla, M.C. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile. Food Chem. 2015, 178, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Capocasa, F.; Diamanti, J.; Tulipani, S.; Battino, M.; Mezzetti, B. Breeding strawberry (Fragaria X ananassa Duch) to increase fruit nutritional quality. BioFactors 2008, 34, 67–72. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- Kajdžanoska, M.; Petreska, J.; Stefova, M. Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. J. Agric. Food Chem. 2011, 59, 5272–5278. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; Ruiz, J.M.; Ferreres, F.; Moreno, D.A. Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem. 2012, 134, 775–782. [Google Scholar] [CrossRef]
- Tulipani, S.; Marzban, G.; Herndl, A.; Laimer, M.; Mezzetti, B.; Battino, M. Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem. 2011, 124, 906–913. [Google Scholar] [CrossRef]
- De Pineli, L.L.; Moretti, C.L.; Rodrigues, J.S.; Ferreira, D.B.; Chiarello, M.D. Variations in antioxidant properties of strawberries grown in Brazilian savannah and harvested in different seasons. J. Sci. Food Agric. 2012, 92, 831–838. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Crecente-Campo, J.; Nunes-Damaceno, M.; Romero-Rodríguez, M.A.; Vázquez-Odériz, M.L. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva). J. Food Compos. Anal. 2012, 28, 23–30. [Google Scholar] [CrossRef]
- Crespo, P.; Giné Bordonaba, J.; Terry, L.A.; Carlen, C. Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem. 2010, 122, 16–24. [Google Scholar] [CrossRef]
- De Pascale, S.; Maggio, A.; Fogliano, V.; Ambrosino, P.; Ritieni, A. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hortic. Sci. Biotech. 2001, 76, 447–453. [Google Scholar] [CrossRef]
- Moreno, D.A.; López-Berenguer, C.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C. Basis for the new challenges of growing broccoli for health in hydroponics. J. Sci. Food Agric. 2008, 88, 1472–1481. [Google Scholar] [CrossRef]
- Cardeñosa, V.; Girones-Vilaplana, A.; Muriel, J.L.; Moreno, D.A.; Moreno-Rojas, J.M. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 202, 276–283. [Google Scholar] [CrossRef]
- Ordóñez-Díaz, J.L.; Pereira-Caro, G.; Cardeñosa, V.; Muriel, J.L.; Moreno-Rojas, J.M. Study of the Quality Attributes of Selected Blueberry (Vaccinium corymbosum L.) Varieties Grown under Different Irrigation Regimes and Cultivation Systems. Appl. Sci. 2020, 10, 8459. [Google Scholar] [CrossRef]
- Ordóñez-Díaz, J.L.; Hervalejo, A.; Pereira-Caro, G.; Muñoz-Redondo, J.M.; Romero-Rodríguez, E.; Arenas-Arenas, F.J.; Moreno-Rojas, J.M. Effect of Rootstock and Harvesting Period on the Bioactive Compounds and Antioxidant Activity of Two Orange Cultivars (‘Salustiana’ and ‘Sanguinelli’) Widely Used in Juice Industry. Processes 2020, 8, 1212. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2010; pp. 334–341. [Google Scholar]
- Cardeñosa, V.; Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Cuevas, F.; Pradas, I.; Moreno-Rojas, J.M. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris). J. Sci. Food Agric. 2015, 95, 2924–2930. [Google Scholar] [CrossRef]
- Baâtour, O.; Mahmoudi, H.; Tarchoun, I.; Nasri, N.; Trabelsi, N.; Kaddour, R.; Zaghdoudi, M.; Hamdawi, G.; Ksouri, R.; Lachaâl, M.; et al. Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (Origanum majorana L.) shoots. J. Sci. Food Agric. 2013, 93, 134–141. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; Lucini, L. Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef]
- Bénard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Génard, M. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 2009, 57, 4112–4123. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, F.; Incalcaterra, G.; Moncada, A.; Miceli, A. Effects of different electrical conductivity levels on strawberry grown in soilless culture. Acta Hortic. 2003, 609, 355–360. [Google Scholar] [CrossRef]
- Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D.A. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods 2014, 7, 599–608. [Google Scholar] [CrossRef]
- Burin, V.M.; Arcari, S.G.; Costa, L.L.F.; Bordignon-Luiz, M.T. Determination of some phenolic compounds in red wine by RP-HPLC: Method development and validation. J. Chromatogr. Sci. 2011, 49, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Biswas, N.; Balac, P.; Narlakanti, S.K.; Haque, E.; Hassan, M.M. Identification of Phenolic Compounds in Processed Cranberries by HPLC Method. J. Nutr. Food Sci. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J.; García-Viguera, C. Anthocyanin-based natural colorants: A new source of antiradical activity for foodstuff. J. Agric. Food Chem. 2000, 48, 1588–1592. [Google Scholar] [CrossRef]
- Gironés-Vilaplana, A.; Mena, P.; Moreno, D.A.; García-Viguera, C. Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. J. Sci. Food Agric. 2014, 94, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Fernandes, F.; Oliveira, J.M.A.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala). Food Chem. Toxicol. 2009, 47, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.L.; Escribano-Bailón, M.T.; Pérez Alonso, J.J.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin pigments in strawberry. LWT 2007, 40, 374–382. [Google Scholar] [CrossRef]
- Fossen, T.; Rayyan, S.; Andersen, Ø.M. Dimeric anthocyanins from strawberry (Fragaria ananassa) consisting of pelargonidin 3-glucoside covalently linked to four flavan-3-ols. Phytochemistry 2004, 65, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LC-MS/MS and Thiolytic Degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [Google Scholar] [CrossRef]
- Hellström, J.; Sinkkonen, J.; Karonen, M.; Mattila, P. Isolation and structure elucidation of procyanidin oligomers from Saskatoon berries (Amelanchier alnifolia). J. Agric. Food Chem. 2007, 55, 157–164. [Google Scholar] [CrossRef]
- Kajdžanoska, M.; Gjamovski, V.; Stefova, M. HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced. J. Chem. Chem. Eng. 2010, 29, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Törrönen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Seeram, N.P.; Lee, R.; Scheuller, H.S.; Heber, D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 2006, 97, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem. 2008, 107, 1413–1420. [Google Scholar] [CrossRef]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Buendía, B.; Gil, M.I.; Tudela, J.A.; Gady, A.L.; Medina, J.J.; Soria, C.; López, J.M.; Tomás-Barberán, F.A. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J. Agric. Food Chem. 2010, 58, 3916–3926. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
Agronomic Factors | Abbreviation | Concentration of N (mmol/L) | Concentration of NaCl (mmol/L) |
---|---|---|---|
Control | N9 | 9 | 2 |
Reduced N supply | N5 | 5 | 2 |
Salinity Stress | N9S | 9 | 7 |
Reduced N and Salinity stress | N5S | 5 | 7 |
Compounds b | Rt (min) | Vis-UV (nm) | [M + H]+, m/z | MS2[M + H]+, m/z (%) c | |
Anthocyanins | |||||
1 | (e)afz–Plg 3–glc | 34.3 | ---- | 705 | 543(100), 407(6), 313(4) |
2 | Cy 3–glc | 35.4 | 280, 320sh, 408sh, 516 | 449 | 287(100) |
3 | Plg 3–glc | 39.5 | 278, 330, 428, 502 | 433 | 271(100) |
4 | Plg 3–rut | 41.4 | 276, 332, 430, 504 | 579 | 433(90), 271(100) |
5 | Plg | 62.0 | 384, 360, 426sh, 506 | 271 | |
Rt (min) | Vis-UV (nm) | [M − H]−, m/z | MS2[M − H]−, m/z (%) | ||
Flavan-3-ols | |||||
7 | (e)Cat–(e)Cat isom | 27.3 | 285 | 577 | 559(55), 451(65), 425(100), 289(15) |
8 | (e)Cat–(e)Cat isom | 29.5 | 280 | 577 | 559(100), 451(28), 425(55), 289(27) |
9 | (e)Cat–(e)Cat isom | 32.0 | 280 | 577 | 559(70), 451(30), 425(100), 289(30) |
10 | (e)Cat–(e)Cat–(e)Cat isom | 32.9 | 280 | 865 | 847(90), 739(100), 713(50), 695(85), 577(60) |
11 | (e)Cat–(e)Cat–(e)Cat isom | 33.9 | ---- | 865 | 847(98), 739(75), 713(80), 695(70), 577(100) |
13 | (e)afz–(e)Cat | 36.7 | 316 | 561 | 543(100), 435(25), 425(24), 407(10), 289(40), 271(15) |
Conjugated forms of ellagic acid | |||||
6 | bis–HHDP–glc | 21.1 | 274 | 783 | 481(100), 301(85) |
12 | HHDP–gall–glc | 35.3 | --- | 633 | 463 (35), 301(100) |
15 | gall–bis–HHDP–glc isom | 51.7 | 260sh, 288sh | 935 | 633(100), 301(8) |
16 | gall–bis–HHDP–glc isom | 53.7 | 268sh | 935 | 633(100), 301(10) |
18 | gall–bis–HHDP–glc isom | 60.8 | 258, 292 | 935 | 633(100), 301(15) |
19 | Ellg-rhmn | 62.0 | ---- | 447 | 301(100) |
Hydroxycynnamic acid derivatives | |||||
14 | Fer–hex der. | 49.4 | 310sh, 330 | 449 | 355(42), 329(75), 269(100) |
Flavonols | |||||
17 | Querct–3–rhmn | 59.4 | 256, 265sh, 370 | 447 | 301(100) |
Samples | TPC | Anthocyanins | Flavan–3–ols | Ellagitanins | Hydroxycynnamic Acid Derivates | Flavonols | |||||
Total | PgTot | Total | Dimers | Trimers | Afz–(e)Cat | Total | GHHDP–glcTot | ||||
N9 | 1192 | 309.57 | 296.54 | 195.05 | 88.63 | 4.66 | 101.76 | 485.58 | 438.01 | 22.84 | 14.91 |
N5 | 1170 | 346.97 | 332.92 | 193.21 | 79.36 | 7.34 | 106.52 | 407.50 | 372.27 | 20.71 | 22.40 |
N9S | 1139 | 353.94 | 336.64 | 220.29 | 86.55 | 7.15 | 126.60 | 397.83 | 353.88 | 19.73 | 15.90 |
N5S | 1219 | 339.82 | 324.97 | 214.00 | 89.26 | 7.06 | 117.68 | 435.31 | 421.56 | 18.93 | 20.81 |
Nitrogen | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Salinity | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | ns |
N*S | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Samples | TPC | Anthocyanins | Flavan–3–ols | Ellagitanins | Hydroxycynnamic Acid Derivates | Flavonols | |||||
Total | PgTot | Total | Dimers | Trimers | Afz–(e)Cat | Total | GHHDP–glcTot | ||||
N9 | 993c | 359.49 | 344.34 | 163.73c | 85.02 | 10.57 | 68.14 c | 514.09 | 346.70 | 21.73 | 25.21 |
N5 | 1247 b | 461.30 | 441.33 | 199.00b | 102.71 | 13.61 | 82.68 bc | 524.30 | 350.35 | 27.25 | 32.40 |
N9S | 1521 a | 489.96 | 471.60 | 235.28a | 112.66 | 12.61 | 110.01 a | 737.53 | 412.06 | 27.45 | 30.65 |
N5S | 1283 b | 479.60 | 460.78 | 218.18ab | 109.81 | 9.23 | 99.13 ab | 403.48 | 223.05 | 24.51 | 27.90 |
Nitrogen | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Salinity | ** | * | * | ** | * | ns | *** | ns | ns | ns | ns |
N*S | ** | ns | ns | * | ns | ns | * | ns | ns | ns | ns |
Samples | TPC | Anthocyanins | Flavan–3–ols | Ellagitanins | Hydroxycynnamic Acid Derivates | Flavonols | |||||
Total | PgTot | Total | Dimers | Trimers | Afz–(e)Cat | Total | GHHDP–glcTot | ||||
N9 | 744 | 203.24 b | 191.34 b | 131.94 | 76.72 | 12.31 | 42.90 | 392.38 | 269.71 | 8.59 | 9.98 b |
N5 | 830 | 271.96 a | 257.62 a | 123.64 | 68.85 | 6.83 | 47.96 | 407.20 | 279.67 | 11.54 | 15,69 a |
N9S | 854 | 256.31 a | 240.61 a | 153.12 | 91.34 | 11.86 | 49.92 | 352.70 | 236.11 | 12.50 | 12.93 ab |
N5S | 731 | 214.04 b | 199.97 b | 142.45 | 81.34 | 11.71 | 49.40 | 350.75 | 243.33 | 12.57 | 11.08 b |
Nitrogen | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Salinity | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
N*S | ns | ** | * | ns | ns | ns | ns | ns | ns | ns | * |
Compounds | Samples | SD | |||
---|---|---|---|---|---|
16 January | 22 March | 29 April | |||
Anthocyanins | Total | 337.58 b | 447.59 a | 236.39 c | *** |
PgTot | 322.77 b | 429.51 a | 222.39 c | *** | |
Flavan–3–ols | Total | 205.64 a | 204.05 a | 137.79 b | *** |
Dimers | 85.95 b | 102.55 a | 79.56 b | ** | |
Trimers | 6.55 b | 11.51 a | 10.68 a | ** | |
Afz–(e)Cat | 113.14 a | 89.99 b | 47.55 c | *** | |
Ellagitanins | Total | 431.56 a | 356.73 ab | 282.38 b | ** |
GHHDP–glcTot | 396.43 a | 312.73 ab | 257.21 b | * | |
Hydroxycynnamic acid derivates | 20.55 a | 25.24 a | 11.30 b | ** | |
Flavonols | 18.35 b | 29.04 a | 12.42 b | *** | |
TPC | 1180 a | 1261 a | 789b | *** |
16 January | |||
---|---|---|---|
ABTS (µmol trolox/g DW) a | DPPH (µmol trolox/g DW) a | O2− (% Inhibition) a | |
N9 | 149.26 | 87.57 | 93.66 |
N5 | 150.10 | 92.92 | 92.83 |
N9S | 173.70 | 88.69 | 93.11 |
N5S | 147.92 | 94.48 | 93.03 |
Nitrogen | ns | ns | ns |
Salinity | ns | ns | ns |
N*S | ns | ns | ns |
22 March | |||
N9 | 175.37 | 106.49 b | 93.71 |
N5 | 201.84 | 125.12 a | 94.57 |
N9S | 201.01 | 118.68 a | 94.03 |
N5S | 194.8 | 112.77 b | 92.51 |
Nitrogen | ns | * | ns |
Salinity | ns | ns | ns |
N*S | ns | *** | ns |
29 April | |||
N9 | 160.67 | 88.60 | 92.98 |
N5 | 172.44 | 100.83 | 93.51 |
N9S | 165.56 | 97.53 | 94.00 |
N5S | 160.12 | 89.60 | 93.45 |
Nitrogen | ns | ns | ns |
Salinity | ns | ns | ns |
N*S | ns | ns | ns |
Sampling Date | ABTS (µmol trolox/g DW) | DPPH (µmol trolox/g DW) | O2− (% Inhibition) |
---|---|---|---|
16th January | 155.25 b | 90.92 b | 93.16 |
22th March | 193.26 a | 115.76 a | 93.71 |
29th April | 164.70 b | 94.14 b | 93.48 |
SD | *** | *** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordóñez-Díaz, J.L.; Cardeñosa, V.; Muñoz-Redondo, J.M.; Ferreres, F.; Pereira-Caro, G.; Medrano, E.; Moreno-Rojas, J.M.; Moreno, D.A. Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries. Processes 2021, 9, 1044. https://doi.org/10.3390/pr9061044
Ordóñez-Díaz JL, Cardeñosa V, Muñoz-Redondo JM, Ferreres F, Pereira-Caro G, Medrano E, Moreno-Rojas JM, Moreno DA. Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries. Processes. 2021; 9(6):1044. https://doi.org/10.3390/pr9061044
Chicago/Turabian StyleOrdóñez-Díaz, José L., Vanessa Cardeñosa, José M. Muñoz-Redondo, Federico Ferreres, Gema Pereira-Caro, Evangelina Medrano, José M. Moreno-Rojas, and Diego A. Moreno. 2021. "Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries" Processes 9, no. 6: 1044. https://doi.org/10.3390/pr9061044
APA StyleOrdóñez-Díaz, J. L., Cardeñosa, V., Muñoz-Redondo, J. M., Ferreres, F., Pereira-Caro, G., Medrano, E., Moreno-Rojas, J. M., & Moreno, D. A. (2021). Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries. Processes, 9(6), 1044. https://doi.org/10.3390/pr9061044