Influence of Orchard Cultural Practices during the Productive Process of Cherries through Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. Functional Unit
2.3. System Boundaries
2.4. Inventory Analysis
2.4.1. Production Phase
2.4.2. Harvest and Post-Harvest Phase
2.4.3. Input Flow
2.4.4. Emissions from the Inputs of the Cherries LCA
- Cijk = Fuel consumption j during operation i execution using machine k (L/h);
- Pik = Power of the machine k used in operation i (hp).
- Epollutant = Specific emissions for each pollutant (g);
- FCfuel category = Fuel consumption for each fuel category (kg);
- EFpollutant = Emission factor for each fuel category (g/kg).
- Epollutant = Specific emissions for each pollutant (kg or g);
- Ma,b,c = Travelled distance by the vehicle, according to the category a and technology c of the vehicle and the fuel category b (km);
- Na,b,c = Number of vehicles of the fleet, according to the category a and technology c of the vehicle and the fuel category b;
- EFa,b,c = Emission factor according to the category a and technology c of the vehicle and the fuel category b (g/kg).
- Eenergy power = CO2 emissions to air from the energy power consumed for the storage of the cherry (kg CO2/ton of produced cherry);
- Cenergy power = Energy power consumed for the storage of the cherry (kWh/ton of produced cherry).
- Enitrogen fertilizer = CO2 emissions to the air from nitrogen fertilizer applied into the soil (kg CO2 eq/ha);
- Qnitrogen fertilizer = Quantity of nitrogen fertilizer applied into the soil (kg of nitrogen fertilizer/ha).
- Epotassium fertilizer = CO2 emissions to the air from potassium fertilizer applied into the soil (kg CO2 eq/ha);
- Qpotassium fertilizer = Quantity of potassium fertilizer applied into the soil (kg of potassium fertilizer/ha).
- EdirectN2O = Direct emission from nitrogen fertilizer applied into the soil (kg N2O/ha);
- FAS = Quantity of nitrogen fertilizer applied into the soil (kg N/ha);
- Value of 0.010 = Emission factor for the emissions of N2O from nitrogen fertilizer applied into the soil (kg N2O-N/kg of nitrogen fertilizer applied into the soil);
- Value of 44/28 = Conversion factor from N2O–N emissions to N2O emissions.
- N2O(DAT) = Indirect emissions from nitrogen fertilizer applied into the soil (kg N2O/ha);
- FAS = Quantity of nitrogen fertilizer applied into the soil (kg N/ha);
- 0.083 = Fraction of the nitrogen fertilizer that volatiles as NH3 and NOx (kg of volatilized N/kg of N applied into the soil);
- 0.010 = Emission factor for the emissions of N2O from nitrogen fertilizer applied into the soil (kg N2O–N/kg of nitrogen fertilizer applied into the soil);
- 44/28 = Conversion factor from N2O-N emissions to N2O emissions.
- Efungicides = CO2 emissions to the air from fungicides applied into the soil (kg CO2 eq/ha);
- Qfungicides = Quantity of fungicides applied into the soil (kg of fungicides/ha).
- Einsecticides = CO2 emissions to the air from insecticides applied into the soil (kg CO2 eq/ha);
- Qinsecticides = Quantity of insecticides applied into the soil (kg of insecticides/ha).
- Eherbicides = CO2 emissions to the air from herbicides applied into the soil (kg CO2/ha);
- Qherbicides = Quantity of herbicides applied into the soil (kg of herbicides/ha).
2.4.5. Test Case Scenarios
3. Results of Life Cycle Assessment
3.1. Energy Consumption
3.2. Global Warming
3.3. Freshwater Ecotoxicity
3.4. Freshwater Eutrophication
3.5. Terrestrial Acidification
3.6. Terrestrial Ecotoxicity
3.7. Comparison with Results in Literature
4. Analysis and Discussion of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrestha, N.K.; Wang, J. Water Quality Management of a Cold Climate Region Watershed in Changing Climate. J. Environ. Inform. 2019, 35, 56–80. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019. In Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; ISBN 9789251317891. [Google Scholar]
- Tassielli, G.; Notarnicola, B.; Renzulli, P.A.; Arcese, G. Environmental Life Cycle Assessment of Fresh and Processed Sweet Cherries in Southern Italy. J. Clean. Prod. 2018, 171, 184–197. [Google Scholar] [CrossRef]
- Kughur, P.G.; Otene, V.A.; Audu, O. Effects of Intensive Agricultural Production on the Environment in Benue State, Nigeria. IOSR J. Agric. Vet. Sci. Vet. I 2015, 8, 2319–2372. [Google Scholar] [CrossRef]
- Reay, D.; Sabine, C.; Smith, P.; Hymus, G. Intergovernmental Panel on Climate Change; Fourth Assessment Report; Inter-Governmental Panel on Climate Change: Geneva, Switzerland; Cambridge University Press: Cambridge, UK, 2007; ISBN 9291691224. [Google Scholar]
- Tubiello, F.N. Greenhouse Gas Emissions Due to Agriculture; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780081005965. [Google Scholar]
- Portuguese Environmental Agency. Roteiro Para a Neutralidade Carbónica (RNC 2050) 2019. Available online: https://www.portugal.gov.pt/pt/gc21/comunicacao/documento?i=roteiro-para-a-neutralidade-carbonica-2050- (accessed on 5 June 2021).
- Statista. Global Fruit Production in 2018, by Selected Variety (in Million Metric Tons). Available online: https://www.statista.com/statistics/262266/global-production-of-fresh-fruit/ (accessed on 5 June 2021).
- Asif, Z.; Chen, Z. A Life Cycle Based Air Quality Modeling and Decision Support System (LCAQMS) for Sustainable Mining Management. J. Environ. Inform. 2019, 35, 103–117. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A Review of Life Cycle Assessment (LCA) on Some Food Products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Livingstone, D.; Smyth, B.M.; Foley, A.M.; Murray, S.T.; Lyons, G.; Johnston, C. Willow Coppice in Intensive Agricultural Applications to Reduce Strain on the Food-Energy-Water Nexus. Biomass Bioenergy 2021, 144, 105903. [Google Scholar] [CrossRef]
- Vatsanidou, A.; Fountas, S.; Liakos, V.; Nanos, G.; Katsoulas, N.; Gemtos, T. Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard. Sustainability 2020, 12, 6893. [Google Scholar] [CrossRef]
- Tsangas, M.; Gavriel, I.; Doula, M.; Xeni, F.; Zorpas, A.A. Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region. Sustainability 2020, 12, 1813. [Google Scholar] [CrossRef] [Green Version]
- Baum, R.; Bieńkowski, J. Eco-Efficiency in Measuring the Sustainable Production of Agricultural Crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K. Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis. Sustainability 2019, 11, 5368. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Hayashi, K.; Kohyama, K.; Leon, A. Reconciling Life Cycle Environmental Impacts with Ecosystem Services: A Management Perspective on Agricultural Land Use. Sustainability 2018, 10, 630. [Google Scholar] [CrossRef] [Green Version]
- Svanes, E.; Johnsen, F.M. Environmental Life Cycle Assessment of Production, Processing, Distribution and Consumption of Apples, Sweet Cherries and Plums from Conventional Agriculture in Norway. J. Clean. Prod. 2019, 238, 117773. [Google Scholar] [CrossRef]
- Ilari, A.; Toscano, G.; Boakye-Yiadom, K.A.; Duca, D.; Foppa Pedretti, E. Life Cycle Assessment of Protected Strawberry Productions in Central Italy. Sustainability 2021, 13, 4879. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Crops. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/faostat/en/#home. (accessed on 5 June 2021).
- Ramos, A.C.; Ferreira, A.; Sousa, B.; Rodrigues, N.; Pereira, J.A. Qualidade Pós-Colheita de Cultivares de Cereja Refrigerada. In Proceedings of the 4o Simpósio Nacional de Fruticultura; Duarte, A., Oliveira, C., Eds.; Associação Portuguesa de Horticultura (APH): Lisboa, Portugal, 2020; pp. 74–80. [Google Scholar]
- INE. Estatísticas Agrícolas 2017; INE: Lisboa, Portugal, 2018. [Google Scholar]
- Cerutti, A.K.; Beccaro, G.L.; Bruun, S.; Bosco, S.; Donno, D.; Notarnicola, B.; Bounous, G. Life Cycle Assessment Application in the Fruit Sector: State of the Art and Recommendations for Environmental Declarations of Fruit Products. J. Clean. Prod. 2014, 73, 125–135. [Google Scholar] [CrossRef]
- Tabatabaie, S.M.H.; Murthy, G.S. Cradle to Farm Gate Life Cycle Assessment of Strawberry Production in the United States. J. Clean. Prod. 2016, 127, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, V.; Bamber, N.; Pelletier, D.N. Cradle-to-Market Life Cycle Assessment of Okanagan (Canada) Cherries: Helicopters, Seasonal Migrant Labour and Flying Fruit. J. Clean. Prod. 2019, 229, 1283–1293. [Google Scholar] [CrossRef]
- Tricase, C.; Rana, R.; Andriano, A.M.; Ingrao, C. An Input Flow Analysis for Improved Environmental Sustainability and Management of Cherry Orchards: A Case Study in the Apulia Region. J. Clean. Prod. 2017, 156, 766–774. [Google Scholar] [CrossRef]
- Ingrao, C.; Matarazzo, A.; Tricase, C.; Clasadonte, M.T.; Huisingh, D. Life Cycle Assessment for Highlighting Environmental Hotspots in Sicilian Peach Production Systems. J. Clean. Prod. 2015, 92, 109–120. [Google Scholar] [CrossRef]
- Gaspar, J.P.; Gaspar, P.D.; da Silva, P.D.; Simões, M.P.; Santo, C.E. Energy Life-Cycle Assessment of Fruit Products-Case Study of Beira Interior’s Peach (Portugal). Sustain. Switz. 2018, 10, 3530. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhang, H.; Liu, Z.; Ke, Q.; Alting, L. A System Boundary Identification Method for Life Cycle Assessment. Int. J. Life Cycle Assess. 2014, 19, 646–660. [Google Scholar] [CrossRef]
- ISO. ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Gonçalves, A.C.; Bento, C.; Silva, B.M.; Silva, L.R. Sweet Cherries from Fundão Possess Antidiabetic Potential and Protect Human Erythrocytes against Oxidative Damage. Food Res. Int. 2017, 95, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, P. Sistemas de Segurança Alimentar Na Cadeia de Transporte e Distribuição de Produtos Alimentares; Forvisão—Consultoria em Formação Integrada: Guimarães, Portugal, 2007; ISBN 9789728942038. [Google Scholar]
- Demircan, V.; Ekinci, K.; Keener, H.M.; Akbolat, D.; Ekinci, C. Energy and Economic Analysis of Sweet Cherry Production in Turkey: A Case Study from Isparta Province. Energy Convers. Manag. 2006, 47, 1761–1769. [Google Scholar] [CrossRef]
- Ozkan, B.; Akcaoz, H.; Karadeniz, F. Energy Requirement and Economic Analysis of Citrus Production in Turkey. Energy Convers. Manag. 2004, 45, 1821–1830. [Google Scholar] [CrossRef]
- IEA. Energy Prices and Taxes for OECD Countries 2019; IEA: Paris, France, 2020; pp. 1–29.
- Grisso, R.D.; Kocher, M.F.; Vaughan, D.H. Predicting Tractor Fuel Consumption. Appl. Eng. Agric. 2004, 20, 553–561. [Google Scholar] [CrossRef]
- Pereira, T.; Seabra, T.; Pina, A.; Freitas, L.; Amaro, A. Portuguese Informative Inventory Report: 1990–2013; Portuguese Environmental Agency: Amadora, Portugal, 2015. [Google Scholar]
- Winther, M.; Dore, C. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Combustion—Non Road Mobile Machinery; EEA: Copenhaga, Denmark, 2019. [Google Scholar]
- Ntziachristos, L.; Samaras, Z. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Combustion—Road Transport; EEA: Copenhaga, Denmark, 2019. [Google Scholar]
- European Investment Bank. EIB Methodologies for the Assessment of Project GHG Emissions and Emission Variations; European Investment Bank: Kirchberg, Luxembourg, 2018. [Google Scholar]
- Hughes, D.J.; West, J.S.; Atkins, S.D.; Gladders, P.; Jeger, M.J.; Fitt, B.D. Effects of Disease Control by Fungicides on Greenhouse Gas Emissions by UK Arable Crop Production. Pest Manag. Sci. 2011, 67, 1082–1092. [Google Scholar] [CrossRef]
- Pereira, T.; Amaro, A.; Borges, M.; Silva, R.; Pina, A.; Canaveira, P. Portuguese National Inventory Report on Greenhouse Gases, 1990–2017; UNFCCC: Amadora, Portugal, 2019. [Google Scholar]
- INE Produção Das Principais Culturas Agrícolas (t) Por Localização Geográfica (Região Agrária) e Espécie, Anual. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0000021&contexto=bd&selTab=tab2 (accessed on 10 February 2020).
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse Gas Mitigation in Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Holka, M.; Bieńkowski, J. Assessment of Toxicity Impacts of Chemical Protection of Winter Wheat, Sugar Beet and Winter Rape on Aquatic Ecosystems and Humans. Zemdirbyste 2020, 107, 131–138. [Google Scholar] [CrossRef]
- Pazikowska-Sapota, G.; Galer-Tatarowicz, K.; Dembska, G.; Wojtkiewicz, M.; Duljas, E.; Pietrzak, S.; Dzierzbicka-Glowacka, L.A. The Impact of Pesticides Used at the Agricultural Land of the Puck Commune on the Environment of the Puck Bay. PeerJ 2020, 2020, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Biggs, R.; Peterson, G.; Carpenter, S. Freshwater Eutrophication. Available online: https://www.regimeshifts.org/item/55-freshwater-eutrophication#. (accessed on 22 April 2020).
- Azevedo, L.B.; Roy, P.-O.; Verones, F.; van Zelm, R.; Huijbregts, M.A.J. Chapter 7—Terrestrial Acidification. In LC-impact Version 1.0; LC-IMPACT; 2016; pp. 69–82. Available online: https://lc-impact.eu/doc/LC-IMPACT_Overall_report_20201113.pdf (accessed on 5 June 2021).
- Fairbrother, A.; Hope, B. Terrestrial Ecotoxicology. In Encyclopedia of Toxicology; Wexler, P., Ed.; Elsevier Ireland Limited: Limerick, Ireland, 2005; pp. 138–142. [Google Scholar]
- Clune, S.; Crossin, E.; Verghese, K. Systematic Review of Greenhouse Gas Emissions for Different Fresh Food Categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Vinyes, E.; Asin, L.; Alegre, S.; Muñoz, P.; Boschmonart, J.; Gasol, C.M. Life Cycle Assessment of Apple and Peach Production, Distribution and Consumption in Mediterranean Fruit Sector. J. Clean. Prod. 2017, 149, 313–320. [Google Scholar] [CrossRef]
- Keyes, S.; Tyedmers, P.; Beazley, K. Evaluating the Environmental Impacts of Conventional and Organic Apple Production in Nova Scotia, Canada, through Life Cycle Assessment. J. Clean. Prod. 2015, 104, 40–51. [Google Scholar] [CrossRef] [Green Version]
- European Comission Climate Change & Air Quality. Available online: https://agridata.ec.europa.eu/extensions/DashboardIndicators/Climate.html (accessed on 28 April 2020).
- Eltohamy, K.M.; Liu, C.; Khan, S.; Niyungeko, C.; Jin, Y.; Hosseini, S.H.; Li, F.; Liang, X. An Internet-Based Smart Irrigation Approach for Limiting Phosphorus Release from Organic Fertilizer-Amended Paddy Soil. J. Clean. Prod. 2021, 293, 126254. [Google Scholar] [CrossRef]
- Fertahi, S.; Bertrand, I.; Ilsouk, M.; Oukarroum, A.; Amjoud, M.; Zeroual, Y.; Barakat, A. New Generation of Controlled Release Phosphorus Fertilizers Based on Biological Macromolecules: Effect of Formulation Properties on Phosphorus Release. Int. J. Biol. Macromol. 2020, 143, 153–162. [Google Scholar] [CrossRef] [PubMed]
Inputs | Units | (MJ/Units) | References |
---|---|---|---|
1. Electricity | kWh | 3.6 | [25] |
2. Diesel fuel | l | 56.31 | [32] |
3. Water for irrigation | m3 | 0.63 | [32] |
4. Chemicals | |||
(a) Fungicides | kg | 216 | [25] |
(b) Insecticides | kg | 101.2 | [25] |
(c) Herbicides | kg | 238 | [33] |
5. Fertilizers | |||
(a) Nitrogen | kg | 66.14 | [25] |
(b) Phosphorus | kg | 12.44 | [25] |
(c) Potassium | kg | 11.15 | [25] |
Inputs | Units | Input Quantity/ha |
---|---|---|
Production Phase | ||
1. Pruning | ||
Energy Power | kWh | 7.992 |
2. Soil Maintenance (Sown Cover Crop) | ||
Diesel Fuel | l | 79.9479 |
3. Spraying of plant protection products | ||
Diesel fuel | l | 69.9544 |
Fungicides | kg | 18.72 |
Insecticides | kg | 2.549 |
4. Irrigation | ||
Water | m3 | 2 028 |
5. Herbicides Application | ||
Diesel fuel | l | 39.9739 |
Herbicides | kg | 13.6 |
6. Fertilizers Application | ||
Diesel fuel | l | 9.9935 |
Fertilizers | ||
Nitrogen | kg | 55 |
Phosphorus | kg | 25 |
Potassium | kg | 70 |
Harvest and Post-Harvest Phase | ||
1. Transportation from the orchard to the warehouse | ||
Diesel fuel | l | 4.3382 |
2. Transportation from the warehouse to the retailer | ||
Diesel fuel | l | 49.2047 |
3. Warehouse | ||
Energy | kWh | 586.7 |
Parameter | LCV < 3.5 tons | HDV ≤ 7.5 tons |
---|---|---|
Fuel consumption [g/km] | 80 | 101 |
Energy consumption [MJ/km] | 3.42 | 4.31 |
Travelled distance [km] | 5 | 450 |
Environmental Impact Indicator | Units | Result |
---|---|---|
Global Warming | kg CO2 eq | 0.153601482 |
Freshwater Ecotoxicity | kg 1.4-DCBeq | 0.007554048 |
Freshwater Eutrophication | kg Peq | 0.002500000 |
Terrestrial Acidification | kg SO2 eq | 0.000094227 |
Terrestrial Ecotoxicity | kg 1.4-DCB eq | 0.038942569 |
Environmental Aspects with an Impact on Freshwater Ecotoxicity | Freshwater Ecotoxicity Indicator for Scenario 1 (kg 1.4-DCBeq/kg of Produced Cherry) | Percentage of Total Impact |
---|---|---|
Fungicides | 458.53 × 10−5 | 60.70% |
Fertilizers | 281.09 × 10−5 | 37.21% |
Insecticides | 14.59 × 10−5 | 1.93% |
Herbicide | 1.20 × 10−5 | 0.16% |
Total | 755.41 × 10−5 | 100% |
Environmental Aspects with an Impact on Terrestrial Ecotoxicity | Terrestrial Ecotoxicity Indicator for Scenario 1 (kg 1.4-DCBeq/kg of Produced Cherry) | Percentage of Total Impact | Terrestrial Ecotoxicity Indicator for Scenario 2 (kg 1.4-DCB eq/kg of Produced Cherry) | Percentage of Total Impact |
---|---|---|---|---|
Fungicides | 7591.09 × 10−5 | 94.44% | 1671.23 × 10−5 | 94.63% |
Fertilizers | 227.60 × 10−5 | 2.83% | 75.87 × 10−5 | 4.30% |
Insecticides | 216.13 × 10−5 | 2.69% | 18.01 × 10−5 | 1.02% |
Herbicide | 2.90 × 10−5 | 0.04% | 0.97 × 10−5 | 0.05% |
Total | 8037.72 × 10−5 | 100% | 1766.08 × 10−5 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, P.D.; Godina, R.; Barrau, R. Influence of Orchard Cultural Practices during the Productive Process of Cherries through Life Cycle Assessment. Processes 2021, 9, 1065. https://doi.org/10.3390/pr9061065
Gaspar PD, Godina R, Barrau R. Influence of Orchard Cultural Practices during the Productive Process of Cherries through Life Cycle Assessment. Processes. 2021; 9(6):1065. https://doi.org/10.3390/pr9061065
Chicago/Turabian StyleGaspar, Pedro Dinis, Radu Godina, and Rui Barrau. 2021. "Influence of Orchard Cultural Practices during the Productive Process of Cherries through Life Cycle Assessment" Processes 9, no. 6: 1065. https://doi.org/10.3390/pr9061065
APA StyleGaspar, P. D., Godina, R., & Barrau, R. (2021). Influence of Orchard Cultural Practices during the Productive Process of Cherries through Life Cycle Assessment. Processes, 9(6), 1065. https://doi.org/10.3390/pr9061065