Guava (Psidium guajava L.) Fruit and Valorization of Industrialization By-Products
Abstract
:1. Introduction
1.1. Taxonomic Hierarchy
Kingdom | Plantae |
Subkingdom | Viridiplantae |
Infrakingdom | Streptophyta |
Superdivision | Embryophyta |
Division | Traqueofita |
Subdivision | Spermatophytina |
Class | Magnoliopsida |
Superorder | Rosanae |
Order | Myrtales |
Family | Myrtaceae |
Genus | Psidium |
Species | P. guajava |
1.2. Botanical Description
2. National and International Production
3. Industrialization and Generation of By-Products
3.1. Fruit
3.2. Leaves
3.3. Seed
4. Anti-Nutritional Aspects
5. Future Trends and Research Opportunities
5.1. In Health and Cosmetic Fields
5.2. In Food Field
5.3. In Bio-Remediation Field
5.4. In Biotechnological Field
5.5. In Other Fields
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pérez, R.M.; Mitchell, S.; Vargas, R. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef]
- Gill, K.S. Guavas. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Academic Press: Oxford, UK; Punjab Agricultural University: Ludhiana, India, 2016; pp. 270–277. [Google Scholar] [CrossRef]
- Parra Coronado, A. Maduración y comportamiento poscosecha de la guayaba (P. guajava L.). Una revisión. Rev. Colomb. Cienc. Hortic. 2015, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.S.; Ferreira, S.R.S.; Vitali, L.; Block, J.M. May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res. Int. 2018, 115, 451–459. [Google Scholar] [CrossRef]
- Todisco, K.; Soares, N.; Barbosa, A.; Sestari, F.; Aparecida, M. Effects of temperature and pectin edible coatings with guava by- products on the drying kinetics and quality of dried red guava. J. Food Sci. Technol. 2018, 55, 4735–4746. [Google Scholar] [CrossRef]
- Narváez-cuenca, C.; Inampues-charfuelan, M. Journal of Food Composition and Analysis The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guava) seeds obtained by supercritical CO2 extraction. J. Food Compos. Anal. 2020, 89, 103467. [Google Scholar] [CrossRef]
- Kapoor, S.; Gandhi, N.; Tyagi, S.K.; Kaur, A.; Mahajan, B.V.C. Extraction and characterization of guava seed oil: A novel industrial byproduct. LWT Food Sci. Technol. 2020, 109882. [Google Scholar] [CrossRef]
- Costa, R.G.; Cavalcanti, M.C.D.A.; Nobre, P.T.; Queiroga, R.D.C.R.D.E.; Medeiros, G.R.D.; Silva, N.V.D.; Batista, A.S.M.; Araújo Filho, J.T.D. Sensory quality of meat from Santa Inês lambs fed with guava (Psidium guajava L.) agroindustrial by-product. Food Sci. Technol. 2020, 40, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Torres-Leon, C.; Ramirez, N.; Londoño, L.; Martinez, G.; Diaz, R.; Navarro, V.; Alvarez-Perez, O.B.; Picazo, B.; Villarreal, M.; Ascacio, J.; et al. Food waste and byproducts: An opportunity to minimize malnutrition and hunger in developing countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Ciudad, M.; Fernández, V.; Matallana, M.C.; Morales, P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Adv. Food Nutr. Res. 2019, 90, 83–134. [Google Scholar] [CrossRef]
- Hidalgo, F.R.; Gómez, U.M.; Escalera, C.D.; Quisbert, D.S. Beneficios de la guayaba para la salud. Rev. Inv. Inf. Salud 2015, 10, 27–32. [Google Scholar]
- ITIS—Integrated Taxonomic Information System. Available online: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=27240#null (accessed on 17 February 2020).
- Fernández, E.; Pelea, L. Revisión bibliográfica. Mejoramiento genético de guayabo (P. guajava L.). Cultiv. Trop. 2016, 36, 96–110. [Google Scholar]
- Shiva, B.; Nagaraja, A.; Srivastav, M.; Kumari, S.; Goswami, A.K.; Singh, R.; Arun, M.B. Characterization of guava (Psidium guajava) germplasm based on leaf and fruit parameters. Indian J. Agric. Sci. 2017, 87, 634–638. [Google Scholar]
- Dos Santos Pereira, E.; Vinholes, J.; Franzon, R.C.; Dalmazo, G.; Vizzotto, M.; Nora, L. Psidium cattleianum fruits: A review on its composition and bioactivity. Food Chem. 2018, 258, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gentil, D.F.O.; do Ferreira, S.A.N.; Rebouças, E.R. Germination of psidium friedrichsthalianum (O. Berg) nied. seeds under different temperature and storage conditions. J. Seed Sci. 2018, 40, 246–252. [Google Scholar] [CrossRef]
- Irshad, Z.; Hanif, M.A.; Ayub, M.A.; Jilani, M.I.; Tavallali, V. Guava. In Medicinal Plants of South Asia, 1st ed.; Muhammad, A.H., Haq, N., Muhammad, M.K., Hugh, J.B., Eds.; Elsevier Ltd.: Cambridge, MA, USA, 2020; pp. 341–354. [Google Scholar] [CrossRef]
- Solarte, M.E. Aspectos Ecofisiológicos y Compuestos Bioactivos de Guayaba (P. guajava L.) en la Provincia de Vélez, Santander-Colombia. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2013. [Google Scholar]
- Yusof, S. Guavas. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Baltimore, MD, USA, 2003; Volume 5, pp. 2985–2992. ISBN 978-0-12-227055-0. [Google Scholar]
- Serrato, C. Efectos en la Germinación de Semillas de Guayaba (Psidium guajava) Consumidas por Monos Aulladores Negros (Alouatta pigra) en Balancán, Tabasco, México. Ph.D. Thesis, Benemérita Universidad Autónoma de Puebla, Puebla City, Mexico, 2012. [Google Scholar]
- SNICS—Servicio Nacional de Inspección y Certificación de Semillas. México. 2017. Available online: https://www.gob.mx/snics/acciones-y-programas/guayaba-psidium-guajava-l (accessed on 31 March 2020).
- SIAP. Atlas Agroalimentario 2017 (Primera Ed). México. 2018. Available online: http://online.pubhtml5.com/clsi/ibhs/#p=220 (accessed on 31 March 2020).
- Silva-Vega, M.; Bañuelos-valenzuela, R.; Muro-Reyes, A.; Esparza-Valenzuela, E.; Delgadillo-Ruiz, L. Evaluación de semilla de guayaba (P. guajava L.) como alternativa en la nutrición ruminal. Abanico Vet. 2017, 7, 26–35. [Google Scholar]
- Uchôa-thomaz, A.M.A.; Sousa, E.C.; Carioca, J.O.B.; De Morais, S.M.; De Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (P. guajava L.). Food Sci. Technol. 2014, 34, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Serna-Cock, L.; García-Gonzales, E.; Torres-León, C. Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Rev. Int. 2016, 32, 364–376. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef]
- Fontanari, G.G.; Souza, G.R.; Batistuti, J.P.; Neves, V.A.; Pastre, I.A.; Fertonani, F.L. DSC studies on protein isolate of guava seeds Psidium guajava. J. Therm. Anal. Calorim. 2008, 93, 397–402. [Google Scholar] [CrossRef]
- Verma, A.K.; Rajkumar, V.; Banerjee, R.; Biswas, S.; Das, A.K. Guava (P. guajava L.) powder as an antioxidant dietary fibre in sheep meat nuggets. Asian Australas. J. Anim. Sci. 2013, 26, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Serna-Cock, L.; Mera-Ayala, J.D.; Angulo-López, J.E.; Lucia, G.-S.A. (P. guajava L.) Seed flour and dry mycelium of aspergillus niger as nitrogen sources. Dyna 2013, 80, 113–121. [Google Scholar]
- Marquina, V.; Araujo, L.; Ruíz, J.; Rodríguez-Malaver, A.; Vit, P. Composición química y capacidad antioxidante en fruta, pulpa y mermelada de guayaba (P. guajava L.). Arch. Latinoam. Nutr. 2008, 58, 98–102. [Google Scholar]
- Mondragón, C.; Toriz, L.M.; Guzmán, S.H. Characterization of guava selection for the Bajio region of Guanajuato. Agric. Téc. Méx. 2009, 35, 315–322, ISSN 0568-2517.v.. [Google Scholar]
- Lin, P.Y.; Wood, W.; Monterosso, J. Healthy eating habits protect against temptations. Appetite 2015, 103, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Nobre, P.T.; Munekata, P.E.S.; Costa, R.G.; Carvalho, F.R.; Ribeiro, N.L.; Queiroga, R.C.R.E.; Sousa, S.; da Silva, A.C.R.; Lorenzo, J.M. The impact of dietary supplementation with guava (P. guajava L.) agroindustrial waste on growth performance and meat quality of lambs. Meat Sci. 2020, 164, 108105. [Google Scholar] [CrossRef] [PubMed]
- Pelegrini, P.B.; Franco, O.L. Antibacterial glycine-rich peptide from Guava (P. guajava L.) seeds. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2011; pp. 577–584. [Google Scholar] [CrossRef]
- Rodríguez Amado, R.; Lafourcade Prada, A.; Pérez Rondón, L. Hojas de P. guajava L. Rev. Cuba. Farm. 2013, 47, 127–135. [Google Scholar]
- Thu Thi Tran, T.; Nu Minh, N.T.; Thanh Triet, N.; Le Van Viet, M.; Dishnu, S.; Schilling, W.M.; Dinh, T.T.N. Application of natural antioxidant extract from guava leaves (P. guajava L.) in fresh pork sausage. Meat Sci. 2020. [Google Scholar] [CrossRef]
- Dos Santos, W.N.L.; da Silva Sauthier, M.C.; dos Santos, A.M.P.; de Andrade Santana, D.; Almeida Azevedo, R.S.; da Cruz Caldas, J. Simultaneous determination of 13 phenolic bioactive compounds in guava (P. guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchem. J. 2017, 133, 583–592. [Google Scholar] [CrossRef]
- McCook-Russell, K.P.; Nair, M.G.; Facey, P.C.; Bowen-Forbes, C.S. Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and P. guajava (common guava) fruits. Food Chem. 2012, 134, 1069–1073. [Google Scholar] [CrossRef]
- Pérez-Beltrán, Y.E.; Becerra-Verdín, E.M.; Sáyago-Ayerdi, S.G.; Rocha-Guzmán, N.E.; García-López, E.G.; Castañeda-Martínez, A.; Montalvo-González, R.; Rodríguez-Aguayo, C.; Montalvo-González, E. Nutritional characteristics and bioactive compound content of guava purees and their effect on biochemical markers of hyperglycemic and hypercholesterolemic rats. J. Funct. Foods 2017, 35, 447–457. [Google Scholar] [CrossRef]
- Díaz-De-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Determination of polar compounds in guava leaves infusions and ultrasound aqueous extract by HPLC-ESI-MS. J. Chem. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Khaleel, S.; Kumari, S. In vitro antidiabetic activity of P. guajava leaves extracts. Asian Pacific J. Trop. Dis. 2012, 2, s98–s100. [Google Scholar]
- Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.; Fernández-Gutiérrez, A.; Segura-Carretero, A. HPLC-qTOF-MS platform as valuable tool for the exploratory characterization of phenolic compounds in guava leaves at different oxidation states. Mol2Net 2015, 1, 1–8. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yen, G.C. Antioxidant activity and free radical-scavenging capacity of extracts from guava (P. guajava L.) leaves. Food Chem. 2007, 101, 686–694. [Google Scholar] [CrossRef]
- Losada-Barreiro, S.; Bravo-Díaz, C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 2017, 133, 379–402. [Google Scholar] [CrossRef]
- Amaya-Cruz, D.M.; Rodríguez-González, S.; Pérez-Ramírez, I.F.; Loarca-Piña, G.; Amaya-Llano, S.; Gallegos-Corona, M.A.; Reynoso-Camacho, R. Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. J. Funct. Foods 2015, 17, 93–102. [Google Scholar] [CrossRef]
- Liu, C.W.; Wang, Y.C.; Hsieh, C.C.; Lu, H.C.; Chiang, W.D. Guava (P. guajava Linn.) leaf extract promotes glucose uptake and glycogen accumulation by modulating the insulin signaling pathway in high-glucose-induced insulin-resistant mouse FL83B cells. Process Biochem. 2015, 50, 1128–1135. [Google Scholar] [CrossRef]
- Laily, N.; Kusumaningtyas, R.W.; Sukarti, I.; Rini, M.R.D.K. The Potency of Guava P. guajava (L.) Leaves as a Functional Immunostimulatory Ingredient. Procedia Chem. 2015, 14, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wei, W.; Tian, X.; Shi, K.; Wu, Z. Improving bioactivities of polyphenol extracts from P. guajava L. leaves through co-fermentation of Monascus anka GIM 3.592 and Saccharomyces cerevisiae GIM 2.139. Ind. Crops Prod. 2016, 94, 206–215. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Pasini, F.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Caboni, M.F. P. guajava L. leaves as source of proanthocyanidins: Optimization of the extraction method by RSM and study of the degree of polymerization by NP-HPLC-FLD-ESI-MS. J. Pharm. Biomed. Anal. 2017, 133, 1–7. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Determination of guava (P. guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J. Funct. Foods 2016, 22, 376–388. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Zimmermann, B.F.; Schulze-Kaysers, N.; Schieber, A. Characterization of phenolic and other polar compounds in peel and pulp of pink guava (P. guajava L. cv. ‘Criolla’) by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Res. Int. 2017, 100, 445–453. [Google Scholar] [CrossRef]
- Liu, C.W.; Wang, Y.C.; Lu, H.C.; Chiang, W.D. Optimization of ultrasound-assisted extraction conditions for total phenols with anti-hyperglycemic activity from P. guajava leaves. Process Biochem. 2014, 49, 1601–1605. [Google Scholar] [CrossRef]
- Flores, G.; Wu, S.B.; Negrin, A.; Kennelly, E.J. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 2015, 170, 327–335. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; Gonzalez, M. Reutilization of mango byproducts: Study of the effect of extraction solvent and temperature on their antioxidant properties. J. Food Sci. 2012, 77, 80–88. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Rodríguez, L.; Pérez, A.M.; Mayorga-Gross, A.L.; Vásquez-Chaves, V.; Fuentes, E.; Palomo, I. Anti-platelet activity and chemical characterization by UPLC-DAD-ESI-QTOF-MS of the main polyphenols in extracts from Psidium leaves and fruits. Food Res. Int. 2021, 141. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vargas, H.I.; Rodríguez-Varela, L.I.; Ferreira, S.R.S.; Parada-Alfonso, F. Extraction of phenolic fraction from guava seeds (P. guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids 2010, 51, 319–324. [Google Scholar] [CrossRef]
- Amutha Gnana Arasi, M.A.S.; Gopal Rao, M.; Bagyalakshmi, J. Optimization of microwave-assisted extraction of polysaccharide from P. guajava L. fruits. Int. J. Biol. Macromol. 2016, 91, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Torres-León, C.; Ramírez-Guzmán, N.; Ascacio-Valdés, J.; Serna-Cock, L.; dos Santos Correia, M.T.; Contreras-Esquivel, J.C.; Aguilar, C.N. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants. LWT 2019, 112. [Google Scholar] [CrossRef]
- Wang, L.; Bei, Q.; Wu, Y.; Liao, W.; Wu, Z. Characterization of soluble and insoluble-bound polyphenols from P. guajava L. leaves co-fermented with Monascus anka and Bacillus sp. and their bio-activities. J. Funct. Foods 2017, 32, 149–159. [Google Scholar] [CrossRef]
- Zapata, K.; Cortes, F.B.; Rojano, B.A. Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Inf. Tecnol. 2013, 24, 103–112. [Google Scholar] [CrossRef]
- Vasco-Méndez, N.; Toro-Vázquez, J.; Padilla-Ramirez, S. Composición química de la semilla de guayaba. In Proceedings of the II Encuentro Participación de la Miujer en la Ciecia, Leon, Guanajuato, Mexico, 19–20 May 2005; Available online: http://congresos.cio.mx/2_enc_mujer/Extenso/Posters/S1-QUI07.doc (accessed on 31 March 2020).
- Sangnark, A.; Noomhorm, A. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Res. Int. 2004, 37, 66–74. [Google Scholar] [CrossRef]
- Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Kaur, K.; Asthir, B.; Verma, D.K. Biosynthesis, bioavailability, and metabolism of plant polyphenols: Biological activities and their potential benefits in human health. In Phytochemicals in Food and Health: Perspectives for Research and Technological Development, 1st ed.; Verma, D.K., Thakur, M., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2021. [Google Scholar]
- Verma, D.K.; Thakur, M.; Singh, S.; Sandhu, K.S.; Kaur, M.; Srivastav, P.P. The emphasis of effect of cooking and processing methods on anti-nutritional phytochemical of legumes and their significance in human health. In Phytochemicals in Food and Health: Perspectives for Research and Technological Development, 1st ed.; Verma, D.K., Thakur, M., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2021. [Google Scholar]
- Maetens, E.; Hettiarachchy, N.; Dewettinck, K.; Horax, R.; Moens, K. Reductions of anti-nutritional factors of germinated soybeans by ultraviolet and infrared treatments for snack chips preparation. LWT Food Sci. Technol. 2018, 90, 513–518. [Google Scholar] [CrossRef]
- Sánchez-Zúñiga, K.; Castro-Piedra, S.; Moreira-González, I.; Arnáez-Serrano, E.; Navarro-Hoyos, M.; Vargas-Huertas, F. Evaluación de las propiedades citotóxicas de un extracto de frutos de guayaba (P. guajava Var. Tai-Kuo-Bar). Rev. Tecnol. Marcha 2017, 30, 150. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, S.; Wang, L.; Zhang, N.; Shi, Y.; Zhou, H.; Liu, X.; Shao, L.; Liu, X.; Chen, J.; et al. Reproductive and developmental toxicity study of caffeic acid in mice. Food Chem. Toxicol. 2019, 123, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.; Pacheco de Delahaye, E. Composición química y compuestos bioactivos presentes en pulpas de piña, guayaba y guanábana. Interciencia 2011, 36, 71–75. [Google Scholar]
- Luo, Y.; Peng, B.; Liu, Y.; Wu, Y.; Wu, Z. Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochem. 2018, 73, 228–234. [Google Scholar] [CrossRef]
- Lee, W.C.; Mahmud, R.; Noordin, R.; Piaru, S.P.; Perumal, S.; Ismail, S. Alkaloids content, cytotoxicity and anti-Toxoplasma gondii activity of P. guajava L. and Tinospora crispa. Bangladesh J. Pharmacol. 2012, 7. [Google Scholar] [CrossRef]
- Lee, W.C.; Mahmud, R.; Pillai, S.; Perumal, S.; Ismail, S. Antioxidant Activities of Essential Oil of P. guajava L. Leaves. APCBEE Procedia 2012, 2, 86–91. [Google Scholar] [CrossRef]
- Dantas Mota, M.; Sousa Costa, R.Y.; Silva Guedes, A.A.A.; Cavalcanti Ribeiro Cerqueira e Silva, L.; Alexandre Chinalia, F. Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations. J. Photochem. Photobiol. Biol. 2019, 201, 111639. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Borgonovi, T.F.; Batista, C.L.F.M.; Lúcia, A.; Penna, B. Guava, orange and passion fruit by-products: Characterization and its impacts on kinetics of acidi fi cation and properties of probiotic fermented products. LWT Food Sci. Technol. 2018, 98, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.L.; Hernández, A.M. Agroindustrial coproducts as sources of Novel Functional Ingredients. In Food Processing for Increased Quality and Consumption, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier Ltd.: Cambridge, MA, USA, 2018; pp. 219–250. ISBN 9780128114476. [Google Scholar]
- Omitoyin, B.O.; Ajani, E.K.; Orisasona, O.; Bassey, H.E.; Kareem, K.O.; Osho, F.E. Effect of guava P. guajava (L.) aqueous extract diet on growth performance, intestinal morphology, immune response and survival of Oreochromis niloticus challenged with Aeromonas hydrophila. Aquac. Res. 2019, 50, 1851–1861. [Google Scholar] [CrossRef]
- Noufal Komby, A.; Sharf Ilahi, S.; Nusrat, T.; AtharAdil, H.; Chaudhry, S.A. P. guajava leave-based magnetic nanocomposite γ-Fe2O3@GL: A green technology for methylene blue removal from water. J. Enviromental Chem. Eng. 2019, 7, 103423. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Wu, Y.; Wu, Z. Impact of fermentation degree on phenolic compositions and bioactivities during the fermentation of guava leaves with Monascus anka and Bacillus sp. J. Funct. Foods 2018, 41, 183–190. [Google Scholar] [CrossRef]
- Ramos Vargas, S.; Alfaro Cuevas, R.; Huirache Acuña, R.; Cortés Martínez, R. Removal of fluoride and arsenate from aqueous solutions by aluminum-modified guava seeds. Appl. Sci. 2018, 8, 1807. [Google Scholar] [CrossRef] [Green Version]
- Arshad, R.; Mohyuddin, A.; Saeed, S.; Hassan, A.U. Optimized production of tannase and gallic acid from fruit seeds by solid state fermentation. Trop. J. Pharm. Res. 2019, 18, 911–918. [Google Scholar] [CrossRef]
- Araújo, C.M.; Sampaio, K.B.; Menezes, F.N.D.D.; da Almeida, E.T.C.; Lima, M.D.S.; Viera, V.B.; Garcia, E.F.; Gómez-Zavaglia, A.; de Souza, E.L.; de Oliveira, M.E.G. Protective effects of tropical fruit processing coproducts on probiotic Lactobacillus strains during freeze-drying and storage. Microorganisms 2020, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitri, R.A.; Wirakusuma, A.; Fahrina, A.; Roil Bilad, M.; Arahman, N. Adsorption performance of low-cost Java plum leaves and guava fruits as natural adsorbents for removal of free fatty acids from coconut oil. Int. J. Eng. Trans. A Basics 2019, 32, 1372–1378. [Google Scholar] [CrossRef]
- Iha, O.K.; Martins, G.B.C.; Ehlert, E.; Montenegro, M.A.; Sucupira, R.R.; Suarez, P.A.Z. Extraction and characterization of passion fruit and guava oils from industrial residual seeds and their application as biofuels. J. Braz. Chem. Soc. 2018, 29, 2089–2095. [Google Scholar] [CrossRef]
Proximate Analysis. | Pulp | Seeds | Reference |
---|---|---|---|
Moisture (%) | b 85; f 6.41 ± 0.11; g 84.9 | a 6.68 ± 0.00; c 8.3 ± 0.03; d 9.3 ± 0.03 | a [24], b [19], c [27], d [6], f [7], g [8] |
Protein (g/100 g) | b 0.3 f 5.13 ± 0.26 g 0.88 | a 11.19 d 4.8 ± 0.10 h 7.71 | a [2], b [4], d [26], f [28], g [8], h [29] |
Fiber | |||
Total dietary fiber (g/100 g) | b 2.4 f 43.21 ± 0.09 | a 63.94 d 69.1 ± 0.17 h 69.63 | a [24], d [26], f [28], h [29] |
Insoluble dietary fiber (g/100 g) | f 42.56 ± 0.06 | a 63.55 d 57.7 ± 0.15 | a [24] d [26], f [28] |
Soluble dietary fiber (g/100 g) | f 0.65 ± 0.04 | d 11.1 ± 0.09 | d [26], f [28] |
Ether Extract (g/100 g) | b 0.1 f 4.32 ± 0.24 g 0.53 | d 1.4 ± 0.10 h 10.12 | b [19], d [26], f [28], g [8], h [29] |
Carbohydrates (g/100 g) | b 15 g 13.2 | d 22.2 ± 0.14 h 11.51 | b [19]; d [26], g [8], h [29] |
Ashes (g/100 g) | b 0.5 e 0.52 ± 0.05 f 5.04 ± 0.39 g 0.43–0.7 | a 1.18 ± 0.02 d 2.4 ± 0.10 e 0.66 ± 0.04 h 1.01 | a [24], b [19], d [26], e [30], f [28], g [8], h [29] |
Vitamins and minerals | |||
Vitamin A (IU/100 g) | b 109 g 200–400 | h 50.13 | a [24], g [8], h [29] |
Thiamine (B1) (mg/100 g) | b 0.06 g 0.046 | b [19], g [8] | |
Riboflavin (B2) (mg/100 g) | b 0.06g 0.03–0.04 | b [19], g [8] | |
Niacin (B3) (mg/100 g) | b 1.3 g 0.6–1.068 | h 0.16 | b [19], g [8], h [29] |
Ascorbic acid (C) (mg/100 g) | b 190 g 100 | a 87.44 h 0.20 | a [24] b [19], g [8], h [29] |
Zinc (mg/100 g) | a 3.31 | a [2] | |
Calcium (mg/100 g) | b 15 g 9.1–17 | c 0.05 ± 0.14 h 60.07 | b [19], c [27], g [8], h [29] |
Phosphorus(mg/100 g) | b 16 g 17.8–30 | h 160.55 | b [19], g [8], h [29] |
Iron (mg/100 g) | b 0.3 g 0.30–0.70 | a 13.8 h 3.32 | a [24], h [29] b [19], g [8] |
Potassium (mg/100 g) | b 292 | h 300 | b [19], h [29] |
Sodium (mg/100 g) | b 6 | b [19] | |
Calories kcal /100 g | b 54.97 g 36–50 | a 182 | a [24], b [19], g [8], |
Unsaturated fatty acids (%) | a 87.06 | a [24] | |
Bioactive Compounds | |||
Ascorbic acid (mg/100 g) | a 87.44 | a [24] | |
Total carotenoids (mg/100 g) | a 1.25 | a [24] | |
Total phenols (mg GAE/g) | f 44.04 ± 0.56 | f [28] |
Country | Total Polyphenols (mg/g d.w) a | References |
---|---|---|
México | 7.5 ± 0.3 | [45] |
Taiwan | 414–483 | [43] |
Taiwan | 261.2 | [46] |
Spain | 157 ± 6 | [40] |
Indonesia | 101.2–101.9 | [47] |
China | 50.57 | [48] |
Peel and Pulp a | ||
---|---|---|
Compound | Rt (min) | m/z |
Phenolic acid derivatives | ||
Galloyl-hexoside | 1.8 | 331 |
Galloyl-hexoside | 2.1 | 331 |
Gallic acid | 3.01 | 169 |
Galloyl-pentoside | 5.7 | 301 |
Hydroxybenzoyl-galloylglucoside | 7.4 | 453 |
Dimethoxycinnamoyl-hexoside | 11.25 | 415 |
Dimethoxycinnamoyl-hexoside | 11.3 | 415 |
Flavones | ||
Chrysin-C-hexoside | 11.95 | 415 |
Ellagitannins | ||
Valoneic acid bilactone | 13.75 | 469 |
Flavonols | ||
Quercetin-galloyl-hexoside | 12.16 | 615 |
Quercetin-hexoside | 12.3 | 463 |
Quercetin-hexoside | 12.5 | 463 |
Quercetin-glucuronide | 12.9 | 477 |
Quercetin-pentoside | 13.39 | 433 |
Quercetin-pentoside | 13.6 | 433 |
Quercetin-pentoside | 13.92 | 433 |
Quercetin-galloyl-pentoside (guavinoside C) | 16.67 | 585 |
Quercetin-deoxyhexoside-hexoside | 17.95 | 609 |
Quercetin | 18.63 | 301 |
Monomeric flavanols | ||
Epigallocatechin | 6.01 | 305 |
Catechin | 6.55 | 289 |
Epicatechin | 7.81 | 289 |
Gallocatechin gallate | 9.5 | 457 |
Epigallocatechin gallate | 10.53 | 457 |
Catechin gallate | 11.63 | 441 |
Epicatechin gallate | 13.47 | 441 |
Proanthocyanidins | ||
PAC B-Type (E)GCg-(E)GC | 2.71 | 913 |
PAC B-Type (E)GC-(E)GC | 3.81 | 609 |
PAC B-Type (E)GC-(E)GC | 4.64 | 609 |
PAC B-Type (E)GC-(E)C | 4.93 | 593 |
PAC B-Type (E)GC-(E)C | 5.03 | 593 |
PAC B-Type (E)C-(E)GC | 5.48 | 593 |
PAC B-Type (E)GC-(E)C | 5.97 | 593 |
PAC B-Type (E)GC-(E)GC | 6.79 | 609 |
PAC B-Type (E)C-(E)C | 6.8 | 577 |
PAC B-Type (E)C-(E)GC-(E)GC | 7.07 | 897 |
PAC B-Type (E)Cg-(E)C | 7.26 | 881 |
PAC B-Type (E)C-(E)GC | 8.32 | 593 |
PAC B-Type (E)GC-(E)C | 8.44 | 593 |
PAC B-Type (E)C-(E)C-(E)C | 8.67 | 865 |
PAC B-Type (E)C-(E)C | 10.28 | 577 |
PAC B-Type (E)Cg-(E)GC | 13.1 | 745 |
PAC B-Type (E)Cg-(E)GC | 14.35 | 897 |
PAC B-Type (E)C-(E)GC | 20.07 | 593 |
Dihydrochalcones | ||
Phloretin-C-glucoside (nothofagin) | 12 | 435 |
Phloretin-O-glucoside (phlorizin) | 13.23 | 435 |
Stilbenes | ||
Piceatannol-O-Glucoside (astringin) | 14.04 | 405 |
Acetophenones | ||
Myrciaphenone B | 12.68 | 481 |
Benzophenones | ||
Guavinoside A | 12.29 | 543 |
Guavin B-isomer | 14.23 | 693 |
Guavinoside B-isomer | 14.64 | 571 |
Guavinoside B-isomer | 15.39 | 571 |
Guavin B-isomer | 15.5 | 693 |
Guavin B-isomer | 15.62 | 693 |
Guavinoside B isomer | 15.82 | 571 |
Glucopyranosyl-benzophenone | 18.12 | 557 |
Other polar compounds | ||
Cinnamoyl-hexoside | 9.9 | 355 |
Abscisic acid-hexoside | 10.24 | 425 |
Abscisic acid | 14.1 | 263 |
Anthocyanidins | ||
Cyanidin-3-O-glucoside | 6.51 | 449 |
Leaves and fruit b | ||
Compound | Rt (min) | m/z |
Benzophenone | ||
Guavinoside b isomer | 16.88 | 571.1431 |
Ellagic acid derivates | ||
Pedunculagin isomer | 6.63 | 783.0704 |
Ellagic acid-O-pent oside | 11.39 | 433.0402 |
Flavan-3-ols | ||
(epi) catechin | 9.42 | 289.071 |
Flavonols | ||
Quercetin glucuronide | 12.38 | 477.0662 |
Quercetin hexoside | 12.49 | 463.058 |
Quercetin pentoside | 13.39 | 433.0779 |
Proanthocyanidins (PAC) | ||
PAC B-Type C30H26O12 (E)C-(E)C | 6.98 | 577.1352 |
PAC B-Type C45H38O18 (E)C-(E)C-(E)C | 8.62 | 865.1977 |
PAC B-Type C45H38O18 (E)C-(E)C-(E)C | 10.06 | 865.1974 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angulo-López, J.E.; Flores-Gallegos, A.C.; Torres-León, C.; Ramírez-Guzmán, K.N.; Martínez, G.A.; Aguilar, C.N. Guava (Psidium guajava L.) Fruit and Valorization of Industrialization By-Products. Processes 2021, 9, 1075. https://doi.org/10.3390/pr9061075
Angulo-López JE, Flores-Gallegos AC, Torres-León C, Ramírez-Guzmán KN, Martínez GA, Aguilar CN. Guava (Psidium guajava L.) Fruit and Valorization of Industrialization By-Products. Processes. 2021; 9(6):1075. https://doi.org/10.3390/pr9061075
Chicago/Turabian StyleAngulo-López, Jorge E., Adriana C. Flores-Gallegos, Cristian Torres-León, Karen N. Ramírez-Guzmán, Gloria A. Martínez, and Cristóbal N. Aguilar. 2021. "Guava (Psidium guajava L.) Fruit and Valorization of Industrialization By-Products" Processes 9, no. 6: 1075. https://doi.org/10.3390/pr9061075
APA StyleAngulo-López, J. E., Flores-Gallegos, A. C., Torres-León, C., Ramírez-Guzmán, K. N., Martínez, G. A., & Aguilar, C. N. (2021). Guava (Psidium guajava L.) Fruit and Valorization of Industrialization By-Products. Processes, 9(6), 1075. https://doi.org/10.3390/pr9061075