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Abstract: Advanced biofuels possess superior characteristics to serve for gasoline substitutes. In
this study, a whole cell biocatalysis system was employed for production of short-chain alcohols
from corresponding fatty acids. To do so, Escherichia coli strain was equipped with a biocatalytic
pathway consisting of endogenous atoDA and Clostridium acetobutylicum adhE2. The strain was
further reprogrammed to improve its biocatalytic activity by direction the glycolytic flux to acetyl-
CoA and recycling acetate. The production of 1-propanol and n-pentanol were exemplified with
the engineered strain. By substrate (glucose and propionate) feeding, the strain enabled production
of 5.4 g/L 1-propanol with productivity reaching 0.15 g/L/h. In addition, the strain with a heavy
inoculum was implemented for the n-pentanol production from n-pentanoic acid. The production
titer and productivity finally attained 4.3 g/L and 0.86 g/L/h, respectively. Overall, the result
indicates that this developed system is useful and effective for biocatalytic production of short-
chain alcohols.

Keywords: short-chain fatty alcohols; short-chain fatty acids; biocatalysis

1. Introduction

Our daily life which mainly depends on fossil resources has caused the enormous
emission of greenhouse gases, consequently leading to global climate change. It urges us to
search for sustainable energy alternatives and environment-friendly chemicals [1]. Biofuels
that are produced from renewable feedstock apparently fulfill the need. Ethanol appears to
be a representative biofuel. However, it has unfavorable properties including low energy
density, high vapor pressure, and hygroscopicity [2]. Advanced biofuels involving longer
chain alcohols (C3–C6) are of particular interest because they have superior characteristics
applied for gasoline substitutes. For instance, n-butanol (C4) which is blended with gasoline
at any concentrations readily serves as the transportation fuel. There is no need to modify
the existing pipeline infrastructure for transport of n-butanol [3]. The fuel property of
isobutanol is similar to n-butanol whereas it possesses higher octane number. Isopentanol
(C5) is a branched-chain alcohol and shares similarity in the physiochemical property with
gasoline [4]. In particular, it has a higher volumetric energy density than n-butanol. As a
linear-chain alcohol, n-pentanol (C5) is exploited as an additive in diesel [5]. It results in
diesel fuel with a better performance in terms of fuel combustion and particulate emission.
Likewise, hexanol (C6) in the form of a gasoline blend improves the fuel property [6]. In
addition to a gasoline additive, 1-propanol (C3) serves as a precursor for the synthesis of
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propylene. Propylene is used for the production of plastics, and it is an important platform
chemical in industry as well [7]. Bulk chemicals derived from propylene include propylene
oxide, acrylonitrile, cumene, butyraldehyde, and acrylic acid.

Naturally-occurring microbes harbor inherent metabolic pathways for the synthesis of
advanced alcohols. The best known example is the production of n-butanol in Clostridium
species which undergo the mixed acetone-butanol-ethanol (ABE) fermentation [8]. The
ABE fermentation proceeds with the acidogenesis phase, followed by the solventogenesis
phase [9]. However, the sluggish growth and sporulation of Clostridium usually render
the operation difficult and complicated. Propionibacteria natively produce propionic acid
through the Wood-Werkman pathway [10]. The production of 1-propanol occurs when the
carbon source changes to the more reduced one for fermentation. Nevertheless, propionic
acid still remains the major product. In the absence of oxygen, Clostridium propionicum
enables utilization of ethanol or lactate via the acrylate pathway [11]. The fermentation
product ends up with propionic acid and acetic acid while 1-propanol is marginally pro-
duced. In addition, C. carboxidivorans is an acetogen that relies on the Wood-Ljungdahl
pathway to grow on syngas (CO or CO2 and H2) [12]. By lowering the metabolic activity, the
acetogenic fermentation resulted in the improvement in the production of ethanol, butanol,
and hexanol. However, this production process is afflicted by low titer and productivity.

The recent advance in the technology of synthetic biology has successfully transformed
various microbes into producers capable of synthesizing advanced biofuels. Recognized as
the biotechnology workhorse, Escherichia coli has been subject to rational reprogramming
of metabolic pathways, mainly including the 2-ketoacid pathway, the fatty acid synthesis
pathway, and the reverse β-oxidation pathway [13,14]. The engineered E. coli generally
shows promise for fermentative production of C3–C6 alcohols. Nevertheless, the technical
bottleneck still exists and remains to be overcome. To address this issue, we have recently
designed a synthetic consortium for production of n-butanol [15]. In this system, an
E. coli strain responsible for conversion of butyrate to n-butanol was equipped with a
biocatalytic route consisting of endogenous atoDA and C. acetobutylicum adhE2. With
supplemented butyrate, this butyrate-conversion strain effectively produced 6.2 g/L n-
butanol. In this study, the biocatalysis biocatalysis system based on this strain was exploited
for the synthesis of other C3–C6 alcohols from corresponding fatty acids. The central
metabolism of the strain was further refined to improve the biocatalytic activity. The
result shows that this platform system is useful and effective for production of short-chain
fatty alcohols.

2. Materials and Methods
2.1. Strain Construction

The strain development started with BuT-3EA strain. This strain was derived from
BuT-3E strain and carried the enhanced level of acs [15]. The strain’s modification was
carried out as follows. Following the pervious study [16], the DNA cassette was ampli-
fied from pPR-aceE plasmid with RC12060/RC12086 primers. The PCR DNA was then
introduced into the strain by electroporation. By the λRed-mediated homologous recombi-
nation, the DNA cassette was integrated into the strain’s genome. The inserted LE*-kan-RE*
cassette was removed by the act of Cre. This construction resulted in the strain carrying
the aceEF operon under the control of the λPL promoter (PλPL). Moreover, pLam-LpdA*
plasmid which contained the NADH-insensitive lpdA mutant (lpdA*) fused to PλPL (PλPL-
lpdA*) was used for the enhanced expression of lpdA. The DNA containing PλPL-lpdA*
was integrated into the λ attachment site of the strain, followed by removal of the inserted
marker. The resulting strain was renamed BuT-3EP.

2.2. Fatty Alcohol Production

E. coli strains were grown on Luria-Bertani medium at 37 ◦C overnight. The bacterial
growth was measured with a spectrometer set at 550 nm (OD550). The overnight culture
was seeded to Erlenmeyer flasks (125 mL) containing M9Y medium (20 mL) supplemented
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with glucose (10 g/L) and fatty acids (4 g/L). The medium was composed of Na2HPO4
(6 g/L), KH2PO4 (3 g/L), NaCl (0.5 g/L), NH4Cl (1 g/L), MgSO4 (1 mM), CaCl2 (0.1 mM),
and yeast extract (5 g/L). The initial cell density was maintained at OD550 of 0.2. The shake-
flask culture was conducted under the oxygen-limited condition according to the previous
study [15]. The biocatalytic production of fatty alcohols was terminated at 48 h. The mode
of substrate feeding was performed by adding extra glucose (10 g/L) and propionic acid
(4 g/L) to the culture medium at 24 h. Incubated with n-pentanoic acid (6 g/L), the strain
with the initial cell density at OD550 of 9 was applied for the n-pentanol production.

2.3. Analytic Methods

The analysis of glucose, alcohols, and organic acids essentially followed the reported
protocol [15]. Glucose was determined using high-performance liquid chromatography
(HPLC) with the ICSep ICE-ION-300 column (Transgenomic, Omaha, NE, USA). HPLC
with the reflective index (RID-10A, Shimadzu, Japan) was used for the measurement
of organic acids. Alcohols were analyzed by gas chromatograph (Trace 1300, Thermo
Scientific, Waltham, MA, USA) which was equipped with flam ionization detector and a
DB-WAX capillary column. The oven temperature was initially held at 50 ◦C for 1 min and
raised to 150 ◦C with a gradient of 15 ◦C/min, and 150 ◦C was maintained for 5 min. The
injector and detector were maintained at 250 ◦C

3. Results
3.1. Production of Fatty Alcohols

In this study, a whole cell biocatalysis system was proposed to produce short-chain
fatty alcohols. BuT-3E strain enabled production of n-butanol from n-butyric acid and
was implemented for the engineering purpose [15]. As indicated in Figure 1, this strain
was equipped with a synthetic pathway consisting of endogenous atoDA and Clostridium
adhE2. Acetoacetyl-CoA transferase encoded by atoDA has a physiological function for
activation of short-chain fatty acids (C4–C6) to corresponding thioesters associated with
acetic acid [17]. The subsequent conversion of thioesters to respective alcohols proceeds
through the reaction catalyzed by alcohol dehydrogenase (encoded by adhE2). In addition,
the undesired pathways were blocked to conserve NADH and to reduce the production of
waste products.

It was intriguing to learn the performance of BuT-3E strain for production of alter-
native fatty alcohols. Therefore, the shake-flask culture was conducted with the medium
containing short-chain fatty acids (C3–C7) under the oxygen-limited condition. At the end
of the fermentation, the strain produced 1-propanol, isobutanol, n-pentanol, isopentanol,
and n-hexanol with a titer reaching 2.3, 1.8, 1.5, 1.2 and 1.3 g/L, respectively (Figure 2a).
As shown in Figure 2b, propionic acid (3.4 g/L), isobutanoic acid (2.4 g/L), n-pentanoic
acid (2 g/L), isopentanoic acid (1.8 g/L), and n-hexanoic acid (1.7 g/L) were consumed
in the strain to serve as the precursor for the synthesis of alcohols. Consequently, the con-
version yield of 1-propanol, isobutanol, n-pentanol, isopentanol, and n-hexanol based on
corresponding acids accounts for 83.4%, 89.2%, 86.9%, 77.3%, and 87.0% of the theoretical
yield (ca., 0.81, 0.84, 0.86, 0.88 g/g), respectively. The result indicates that BuT-3E strain
shows promise for production of C3–C6 alcohols. In addition, n-heptanol was not detected.
This is attributed to the failure of atoDA in activation of heptanoic acid (Figure 2b).
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Figure 1. The biocatalytic pathway leading to fatty alcohols in E. coli. The biocatalytic pathway leading to fatty alcohols 
from short-chain fatty acids was introduced into E. coli by metabolic engineering. Undesired pathways were blocked by 
deletion of responsible genes as marked by “X”. The genes involved in the metabolic pathway: aceEF-lpdA*: pyruvate 
dehydrogenase complex; acs, acetyl-CoA synthetase; adhE, aldehyde-alcohol dehydrogenase; adhE2, butyralde-
hyde-butanol dehydrogenase; atoDA, acetoacetyl-CoA transferase; ldhA, lactate dehydrogenase; frdA, subunit of fumarate 
reductase; gltA, citrate synthase; poxB, pyruvate oxidase; pta, phosphate acetyltransferase. Abbreviations: ACE, acetate; 
CIT, citrate; EtOH, ethanol; Glc, glucose; LAC, lactate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; 
SUC, succinate; 2-MC, 2-methylcitrate. 
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Figure 1. The biocatalytic pathway leading to fatty alcohols in E. coli. The biocatalytic pathway leading to fatty alcohols
from short-chain fatty acids was introduced into E. coli by metabolic engineering. Undesired pathways were blocked by
deletion of responsible genes as marked by “X”. The genes involved in the metabolic pathway: aceEF-lpdA*: pyruvate
dehydrogenase complex; acs, acetyl-CoA synthetase; adhE, aldehyde-alcohol dehydrogenase; adhE2, butyraldehyde-butanol
dehydrogenase; atoDA, acetoacetyl-CoA transferase; ldhA, lactate dehydrogenase; frdA, subunit of fumarate reductase; gltA,
citrate synthase; poxB, pyruvate oxidase; pta, phosphate acetyltransferase. Abbreviations: ACE, acetate; CIT, citrate; EtOH,
ethanol; Glc, glucose; LAC, lactate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; SUC, succinate; 2-MC,
2-methylcitrate.
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Figure 2. Production of short-chain alcohols in engineered E. coli. The fermentation was conducted 
with BuT-3E strain in the presence of glucose (10 g/L) and short-chain fatty acids (4 g/L) as indi-
cated for 24 h. The experiments were conducted in triplicate. The fermentation products and the 
cell density (OD550) were determined at the end of the fermentation (a). The consumption of glucose 
and fatty acids were measured for further analyses (b). 

Figure 2. Production of short-chain alcohols in engineered E. coli. The fermentation was conducted
with BuT-3E strain in the presence of glucose (10 g/L) and short-chain fatty acids (4 g/L) as indicated
for 24 h. The experiments were conducted in triplicate. The fermentation products and the cell
density (OD550) were determined at the end of the fermentation (a). The consumption of glucose and
fatty acids were measured for further analyses (b).
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3.2. Propanol Production by Substrate Feeding

As illustrated above, BuT-3E strain enabled production of C3-C6 fatty alcohols with a
high conversion yield. Nevertheless, the alcohol production decreased with an increase
in the chain length. Taking 1-propanol as an example, our next task was undertaken to
improve the production yield. It is well recognized that short-chain fatty acids with high
solubility are detrimental to microbes because they penetrate into cell membrane at a
high concentration, which in turn damages cell membrane [18]. The bacterial growth was
greatly inhibited by propionic acid at a level higher than 4 g/L (data not shown). Therefore,
the fermentation of 1-propanol was conducted with the substrate feeding. In a similar
way, BuT-3E strain was first cultivated with medium containing 10 g/L glucose and 4 g/L
propionic acid. At 24 h, 10 g/L glucose and 4 g/L propionic acid were additionally fed to
the culture. As a result, the 1-propanol production leveled off at 36 h and reached 4.2 g/L
(Figure 3a). The strain consumed around 13 g/L glucose and 6 g/L propionic acid at the
end (Figure 3b). It leads to the conversion yield based on propionic acid reaching 86.4% of
the theoretical yield. In addition, the cell density was not affected by the extra addition of
glucose (Figure 3b). The result indicates that the cell growth is limited and, however, the
strain remains metabolically active to provide acetyl-CoA for the synthesis of 1-propanol.
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Figure 3. Production of 1-propanol by the approach of substrate feeding. The fermentation of BuT-3E
strain was carried out with glucose (10 g/L) and propionate (4 g/L). At 24 h, the substrate containing
glucose (10 g/L) and propionate (4 g/L) was added to the culture medium and the fermentation
result was analyzed at a predetermined interval. The experiment was conducted in triplicate. The
fermentation products and the cell density (OD550) were determined at the end of the fermentation
(a). The consumption of glucose and fatty acids were measured for further analyses (b).

3.3. Improvement of Propanol Production

Acetic acid appears to be an associated product in the synthetic pathway of fatty
alcohols in the strain. However, it disables the growth of E. coli at a low level and imparts
an inhibitory effect on methionine biosynthesis [19]. Acetyl-CoA synthetase (encoded by
acs) activates acetate to acetyl-CoA at the expense of ATP and plays a physiological role in
scavenging acetate under the anaerobic condition [20]. It also involves in the 2-methylcitrate
(2-MC) cycle for oxidation of propionate and produce propionyl-CoA from propionate [21].
In addition, pyruvate oxidase (encoded by poxB) catalyzes oxidative decarboxylation of
pyruvate to acetate. Therefore, the expression of acs and aceEF operon were enhanced to
improve the fermentation performance of the strain. The increased activity of pyruvate
dehydrogenase (encoded by aceEF) directs pyruvate to acetyl-CoA and away from the poxB
pathway. The recruitment of ACS facilitates re-utilization of acetate. The resulting strain
was designated as BuT-3EP. The substrate-feeding mode was then performed with BuT-3EP
strain. As a consequence, the strain consumed propionic acid of 7.4 g/L and produced
1-propanol of 5.4 g/L at 36 h (Figure 4a,b). The conversion yield based on propionic acid
accounts for 90% of the theoretical yield. The production of acetic acid reduced to 2.4 g/L
from 4 g/L (i.e., BuT-3E strain in Figure 3a) at the end. Nevertheless, the bacterial growth
was arrested and not further improved by the supplement of extra glucose. It is likely that
the toxicity of acetic acid in part limits the strain’s growth. Moreover, the combined function
of AtoDA and ACS is expected to raise the propionyl-CoA level, which likely perturbs the
CoA homeostasis and increases the production of 2-MC via the 2-MC pathway. 2-MC is
known to be a potent inhibitor of citrate synthase in the tricarboxylic acid (TCA) cycle [22].
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Figure 4. Production of 1-propanol by the genetically-modified strain. Derived from BuT-3E strain, 
BuT-3EP strain was employed for the fermentation in the presence of glucose (10 g/L) and propi-
onate (4 g/L). At 24 h, the substrate containing glucose (10 g/L) and propionate (4 g/L) was added to 

Figure 4. Production of 1-propanol by the genetically-modified strain. Derived from BuT-3E strain,
BuT-3EP strain was employed for the fermentation in the presence of glucose (10 g/L) and propionate
(4 g/L). At 24 h, the substrate containing glucose (10 g/L) and propionate (4 g/L) was added to
the culture medium and the fermentation result was analyzed at a predetermined interval. The
experiment was conducted in triplicate. The fermentation products and the cell density (OD550) were
determined at the end of the fermentation (a). The consumption of glucose and fatty acids were
measured for further analyses (b).
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3.4. n-Pentanol Production by Heavy Inoculum

Our last task was undertaken to improve productivity. This issue was addressed
by implementation of the fermentation mode based on the heavy inoculum. In this case,
the n-pentanol production was chosen for illustration. The fermentation was carried out
using BuT-3EP strain with the cell density reaching 9 at OD550 while 10 g/L glucose and
6 g/L n-pentanoic acid were supplemented in the medium. As shown in Figure 5, the
strain produced 4.3 g/L n-pentanol at the expense of 5.5 g/L n-pentanoic acid at 5 h.
Consequently, the conversion yield based on n-pentanoic acid accounts for 90.5% of the
theoretical yield.
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retical yield. 
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Figure 5. Improved production of n-pentanol. The fermentation of BuT-3EP strain was carried out 
with glucose (10 g/L) and n-pentanote (6 g/L). The fermentation was then followed along the time 
course. The experiment was conducted in triplicate. 
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recruitment of cimA and leuBCD constituted the heteroglogous citramalate pathway re-
sponsible for the synthesis of 2-KB from pyruvate (PYR). Moreover, the inactivation of 
four engaged genes conserved the intracellular 2-KB pool which was further converted to 
1-propanol through the synthesis pathway consisting of kivd and adhE. As a result, the 
engineered E. coli utilized glucose to produce 1-propanol of 8 g/L with productivity 
reaching 0.12 g/L/h [23]. In another study, the ‘sleeping beauty mutase’ operon was ac-
tivated by overexpression of sbm, ygfD, and ygfG. Equipped with the additional function 
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4. Discussion

Metabolic engineering is an enabling technology that efficiently reprograms living
cells for the desired trait. This technology has been applied for the microbial fermentation
production of short-chain alcohols. E. coli still remains the top choice for engineering
to develop a production scheme of industrial usefulness. As exemplified by 1-propanol
production, two metabolic pathways leading to the formation of 2-ketobutyrate (2-KB) were
constructed in E. coli. The synthesis pathway of L-threonine involving thrABC and ilvA was
manipulated to direct the glycolytic flux from oxaloacetate (OAA) to 2-KB. The recruitment
of cimA and leuBCD constituted the heteroglogous citramalate pathway responsible for the
synthesis of 2-KB from pyruvate (PYR). Moreover, the inactivation of four engaged genes
conserved the intracellular 2-KB pool which was further converted to 1-propanol through
the synthesis pathway consisting of kivd and adhE. As a result, the engineered E. coli utilized
glucose to produce 1-propanol of 8 g/L with productivity reaching 0.12 g/L/h [23]. In
another study, the ‘sleeping beauty mutase’ operon was activated by overexpression of sbm,
ygfD, and ygfG. Equipped with the additional function of sucCD and adh2, E. coli strain was
subject to fed-batch fermentation and enabled production of 7 g/L 1-propanol based on
glycerol with productivity of 0.04 g/L/h [24]. To synthesize 1-propanol, the methylglyoxal
bypass pathway was modified by expression of heterologous budC and ppdABC. This
modified pathway leads to the formation of 1,2-propanediol (1,2-PDO) as an intermediate
metabolite. The resulting strain produced 0.25 g/L 1-propanol from glucose and the
productivity was 0.005 g/L/h [25]. The 1-propanol production was further optimized
by using the co-cultivation strategy of two E. coli strains responsible for production of
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and conversion of 1,2-PDO, respectively. Finally, the result gave 1-propanol of 3 g/L
and productivity of 0.014 g/L/h [26]. In contrast to these studies, this work proposed
a whole cell biocatalysis system. The core of this system relies on the native atoDAEB
operon which is engaged in the degradation of C4-C6 fatty acids [27]. The physiological
function of AtoDA activates acetoacetate to acetoacetyl-CoA. Fed with propionic acid,
BuT-3E strain bearing functional AtoDA enabled production of 1-propanol (Figure 2a,b).
The result indicates that AtoDA functions to activate propionate to propionly-CoA which
is subsequently oxidized to 1-propanol by AdhE2. The producer strain was improved
by the approach of metabolic engineering, which aims to recycle acetic acid and refine
the glycolysis pathway for availability of acetyl-CoA (Figure 1). By the substrate-feeding
strategy, the engineered strain (i.e., BuT-3EP) produced 5.4 g/L 1-propanol and attained
productivity of 0.15 g/L/h (Figure 4a,b). It is apparent that our proposed system shows
high efficiency in production of 1-propanol.

The application of this biocatalysis system was further illustrated with the production
of n-pentanol. Initiated with a heavy inoculum, the batch culturing of BuT-3EP strain
produced 4.3 g/L n-pentanol with productivity reaching 0.86 g/L/h (Figure 5). Intensive
efforts have been devoted to the fermentative production of n-pentanol. In combination
with the 2-ketoacid pathway, the reversed β-oxidation pathway in the strain was em-
ployed for the synthesis of n-pentanol with a titer and productivity reaching 0.4 g/L and
0.004 g/L/h, respectively [28]. However, the production of n-pentanol was associated
with many alcohol byproducts of various chain length. Another study reported the im-
plementation of the iterative elongation cycle involved in the 2-ketoacid pathway. To
improve the n-pentanol synthesis, Lactococcus lactis ketoisovalerate decarboxylase (Kivd)
was subject to mutation. As a result, the Kivd mutant strain enabled production of pentanol
accounting for 90% of the total alcohol content. The application of in situ extraction with
oleyl alcohol led to the production titer of 4.3 g/L and productivity of 0.029 g/L/h [29].
Nevertheless, this previous work generally has the disadvantage of low productivity and
product promiscuity.

In summary, this study proposed a promising system for biocatalytic production of
short-chain fatty alcohols. The developed strain is, however, susceptible to toxicity at a
high concentration of fatty acids and fatty alcohols. The method of metabolic evolution is
useful for selection of mutant strains that tolerate high levels of fatty acids and alcohols [30].
Meanwhile, the approach by in situ extraction of alcohols facilitates the bacterial survival.
The usefulness of this bioconversion platform would be greatly acknowledged by the
successful implementation of these combined strategies to reshape the producer strain with
the desired trait.
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