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Abstract: To improve our understanding of the interactive effects in combustion of binary multi-
component fuel droplets at sub-atmospheric pressure, combustion experiments were conducted
on two fibre-supported RP-3 kerosene droplets at pressures from 0.2 to 1.0 bar. The burning life of
the interactive droplets was recorded by a high-speed camera and a mirrorless camera. The results
showed that the flame propagation time from burning droplet to unburned droplet was proportional
to the normalised spacing distance between droplets and the ambient pressure. Meanwhile, the
maximum normalised spacing distance from which the left droplet can be ignited has been inves-
tigated under different ambient pressure. The burning rate was evaluated and found to have the
same trend as the single droplet combustion, which decreased with the reduction in the pressure.
For every experiment, the interactive coefficient was less than one owing to the oxygen competition,
except for the experiment at L/D0 = 2.5 and P = 1.0 bar. During the interactive combustion, puffing
and microexplosion were found to have a significant impact on secondary atomization, ignition
and extinction.

Keywords: kerosene droplets; high-speed cinematography; microexplosion; interactive effects; sub-
atmospheric pressure

1. Introduction

A ramjet is a widely used air-breathing jet engine owing to its simple structures
and high performance [1]. The stable performance height of a ramjet is below 20 km in
the air. However, the ambient pressure at the inlet of the combustion chamber can drop
rapidly to 0.1–0.3 bar with the increase in flight altitude, leading to ignition difficulties and
combustion instability [2]. Therefore, exploring the combustion mechanism of the liquid
fuel under low pressure is vital to improve the stability of the combustor.

In its engineering application, multicomponent fuel such as kerosene is commonly
used for ramjets [3]. To better understand the physical and chemical mechanism of the mul-
ticomponent fuel combustion, several experimental and theoretical studies of the isolated
fuel droplet combustion have been conducted [4–9]. A common phenomenon observed in
these studies is disruption to the droplet burning process by puffing and microexplosion.
Puffing is limited to a portion of the parent droplet; this fragmentation is limited and
less intense, while microexplosion is the complete break-up of the droplet. It is now well
understood that puffing is due to inner droplet bubble nucleation, growth and rupture
of the fuel droplet under superheating [10]. This process is capable of enhancing species
mixing inside the droplet, deforming the liquid–gas interface and thus the droplet shape,
and causing secondary breakup of the droplet. Puffing of the boiled vapor improves fuel
vapor/air mixing and thus combustion [11]. Although RP-3 kerosene is the most widely
used aviation fuel in China [12], its combustion characteristics under sub-atmospheric
pressure have not been well studied.

In a practical combustor, the combustion occurs in multiple droplets in the form of
a spray [13]. Thus, the investigation of interactive droplet combustion is essential to the
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spray applications. A wide variety of studies focus on the changes in the burning rate K
of the interacting droplets’ combustion [14–17]. Xiong et al. [18] claimed that interactions
between droplets slowed down the droplet heating time early in the burning life due to
the oxygen competition, leading to a reduction in burning rate. Faik et al. [19] studied the
combustion characteristics of two diesel-based fuel droplets and found that the burning rate
of interactive droplets was higher than that of an isolated droplet, owing to the increased
heat transfer rate from the sooty flame. Yoschida et al. [20] conducted experiments with
droplets placed at SiC fibre intersections under microgravity in order to study the flame
spread limit for interactive burning droplets. Furthermore, the ignition delay time is found
to be reduced by increasing spacing distance [14] while the flame spread increases [21].
Shaw et al. [22] studied combustion characteristics of double droplet arrays injected into
high temperature environments and found that soot generation and droplet disruption
were affected by droplet stream interactions. Nevertheless, the interaction effects caused
by puffing and microexplosion have not been well addressed.

In conclusion, the main objective of the present study is to explore the effects of the
interaction between two RP-3 droplets during combustion at different ambient pressures
and spacing distances. To meet this purpose, a high-speed camera and a mirrorless camera
are used to visualize the physical droplet–droplet interaction.

2. Materials and Methods

Figure 1 shows a schematic model of the experimental setup. The measurements were
conducted in a pressure-controlled stainless steel chamber (0.091 m3) with four quartz
windows. The ambient gas influence on droplet combustion is neglected because of the
large chamber volume compared to the droplet size. A 1.45 ± 0.14 mm fuel droplet was
produced by approximately 1.6 ± 0.05 µL liquid fuel through a micro-pipette. Due to the
relatively low thermal conductivity, two 150 µm ceramic fibres were used to suspend the
opposite droplets. A coiled hot wire was placed below the droplet on the right for ignition
and withdrawn immediately after ignition by an air cylinder. The ignition time before
retraction was precisely controlled by a time delay relay with an accuracy of 0.01 s, and
the current flowing through the hot wire was maintained at 3.10 A by a DC power supply
during the ignition.
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Figure 1. Schematic model of the experimental setup.

Two camera settings were used to record the burning history of binary fuel droplets.
The variation in droplet diameter and phenomena of puffing and microexplosion were
tracked by a black/white high-speed camera (IDT Y4-S1) at 2000 frames/s with an exposure
time of 200 µs fitted with a Nikon 200 mm macro lens, and a high intensity LED illuminator
was installed behind the droplets to provide enough light. The second setting was used for
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tracking the surrounding flame of the droplets and, for this reason, a mirrorless camera
(Nikon Z5) equipped with a Sigma 105 mm macro lens was used to record the combustion
cycle at 60 frames/s, while the LED light source was switched off.

The images were processed by self-coded Matlab algorithms. As the droplet was not
spherical due to gravity and puffing, the droplet diameter was evaluated by πD2/4 = A,
where A is the droplet area extracted from the images, and D is the droplet diameter.

Chinese RP-3 kerosene was used as the fuel for all the experiments, which consisted
of alkanes, naphthenes and aromatic compounds.

3. Results and Discussion
3.1. Ignition and Flame Shape

As explained previously, two RP-3 droplets were supported by two ceramic fibres.
Due to the shooting range limitation of the optical window, the range of the normalised
spacing distance L/D0 in the experiment varies over a span of 1–6, and the interval is
0.5, while L represents the initial distance between the two droplet centres, and D0 is the
initial droplet diameter. However, due to the slight difference in the size of the suspended
droplets, the uncertainty of the initial normalised spacing distance is 3%.

In the experiment, the droplet on the right side was first ignited by an electric heating
coiled wire, which was kept 1 mm below the droplet during ignition. The temperature of
the droplet on the right was heated to ignition temperature, followed by the ignition of
the fuel vapour/air mixture around the droplet. Successful ignition was marked by the
occurrence of a bright area of more than 50% of maximum brightness around the droplet.
As shown in Figure 2, as soon as the droplet on the right was ignited, the heating wire was
rapidly withdrawn and powered off. The temperature of the unburned droplet on the left
was also rapidly increased by the thermal radiation and thermal convection of the flame
on the right, until reaching the boiling point of the volatile component of the RP-3 droplet.
Following this, the fuel vapour mixed with the air around the droplet. As shown in the
regions circled in red for the images at 10 ms and 15 ms in Figure 2, the flammable mixture
was ignited in the area close to the right-hand flame and the flame rapidly propagates to
the surface of the left-hand droplet. As the temperature of the left-hand droplet increased,
the evaporation rate was enhanced, and the size of the left-hand flame grew and merged
with the right-hand flame into one flame due to the accumulation effect of the fuel vapour.
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The trtl is the time between the ignition of the right droplet and the ignition of the left
droplet. Figure 3 shows the trtl at different ambient pressures and different normalised
spacing distances of 1.5, 2.5 and 3.5. When L/D0 = 1.5, the trtl at different pressures was
less than 6 ms because the droplets were close enough to each other that the left and right
droplets ignited almost simultaneously. When L/D0 = 2.5, the trtl was 34 ms at a pressure
of 1 bar, which was a significant increase compared with the previous distance condition,
while the increase in trtl at other pressures was much smaller. The two droplets were still
ignited at the same time at 0.2 bar, which was due to the increasing flame standoff ratio of
the droplets as the ambient pressure decreased. The flame front of the right-hand droplet
is closer to the left droplet causing stronger radiation and convection effects [23] so that
the left droplets are more likely to be ignited. When L/D0 = 3.5, as the distance between
droplets was increased further, the trtl rose significantly at all pressures, which meant that
the heat transferred to the left-hand droplet through radiation and convection decreased at
an increasing rate. Meanwhile, the left-hand droplet at an ambient pressure of 1 bar cannot
be successfully ignited by the flame of the right-hand droplet, while the left-hand droplet
can still be ignited at L/D0 = 3.0. Therefore, the maximum ignitable normalised spacing
distance of the left droplet at 1 bar is 3.0.
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Figure 3. The flame propagation time from the right burning droplet to the left droplet at different
pressures and normalised spacing distances.

The maximum ignitable normalised spacing distance for interactive droplets at differ-
ent pressures is shown in Figure 4. As the flame standoff ratio of the droplet increases with
decreasing ambient pressure, the maximum ignitable normalised spacing distance is found
to be extended at sub-atmospheric pressure, increasing from 3.0 at 1 bar to 5.5 at 0.2 bar.
However, this plot only illustrates the maximum ignitable normalised spacing distance of the
droplets during steady combustion, while the ignition of the droplets could be affected by
microexplosions during the combustion of the RP-3 droplets, which will be discussed later.

After the ignition of the left droplet, the evaporation rate of the droplet rapidly
increased. As the evaporation rate of the droplet was greater than the consumption rate of
fuel vapour in the flame, fuel vapour accumulated between the droplet surface and the
flame fronts, resulting in an increased flame size. After a short time, the flame size became
stable, and the left droplet flame merged with the right droplet flame to a single flame.

Figure 5 shows the two-droplet stable flame morphology at different normalised
spacing distances and pressures. The binary droplets were wrapped in an enveloping
flame, with a blue upstream section characterising the chemiluminescent emission from the
excited CH* radicals, and a luminous yellow flame downstream due to natural convection,
which was caused by the broadband thermal radiation of the soot [24]. Similar to the
combustion of an isolated droplet, as the natural convection effect is diminished with the
reduction in ambient pressure, the flame standoff ratio increases and the two-droplet flame
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tends to be in the shape of a sphere. At the same time, the reduction in molecular spacing
at low pressure leads to a decreased probability of collisions between small molecules, thus
reducing the production of macromolecular polymers. In addition, the residence time of
sooty macromolecules in the oxidation zone increases at low pressure owing to the reduced
buoyant convection, thus promoting their oxidation and decomposition. Therefore, the bright
yellow areas of the interactive droplet’s flame become dimmer as the pressure decreases.
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Figure 4. The maximum normalised spacing distance at which the left droplet can be ignited at
different pressures.
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Figure 5. The interactive combustion of two RP-3 droplets at different normalised spacing distances
and pressures.

As the distance between the two droplets increased, the flame around the two droplets
gradually changed from a single flame to two separate flames that enveloped the respective
droplets. When L/D0 = 3.5, only the droplet on the right was ignited at 1 bar pressure and
the left droplet was unable to reach the ignition temperature. At an ambient pressure of
0.8 bar, the upstream flame front of the left-hand flame and the right-hand flame separated,
with only the downstream flame remaining undetached by natural convection. As the
burning process proceeded, however, the droplet diameter continuously decreased and so
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did the size of the flame around the droplet; thus, the flames of the two droplets completely
separated into two independent flames.

3.2. Burning Rate

Since RP-3 kerosene is a multicomponent fuel, more volatile components will reach
the boiling point and evaporate first. As the proportion of high boiling components in the
droplet gradually increases, the droplet temperature also rises gradually. At the same time,
there are still volatile components left inside the droplet. Under continuous superheating,
the inner droplet temperature will exceed the boiling temperatures of lower boiling point
components, resulting in homogeneous nucleation inside the droplet, which leads to
puffing and microexplosion.

Figure 6 shows the typical droplet diameter trends for two-droplet burnings at at-
mospheric and sub-atmospheric pressures. The droplet diameter at atmospheric pressure
evolved relatively smoothly, approximately following D2 law [25]. Similar to the conclu-
sions drawn from the combustion of individual droplets, as the ambient pressure decreased,
the bubble growth rate within the droplet increased, which in turn enhanced the frequency
and intensity of puffing and microexplosion during droplet combustion [26]. Consequently,
RP-3 droplets at low pressures often failed to undergo a complete burning process, as
shown in Figure 6, where the droplet experienced several instances of minor puffing
in the middle of the burning at 0.2 bar, which did not have a noticeable effect on com-
bustion. However, before the end of the droplet burn, the droplet underwent a severe
microexplosion and the droplet diameter plummeted as a result.
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In general, the droplet burning rate K can be evaluated by the slope of the variation in
droplet diameter, as shown in Equation (1):

K = − d
dt

(
D2

)
(1)

However, as microexplosions at low pressures lead to dramatic fluctuations in droplet
diameter, accurate burning rates cannot be obtained if the entire combustion process is
selected for calculation. Thus, for droplets with microexplosions in the combustion, the
steady burning section prior to the microexplosion is chosen as the calculation region for
the burning rate.

In two-droplet combustion, the combustion characteristics of the droplets are deter-
mined by the interaction coefficient η [18], which is the ratio of the burning rate of binary
droplets to that of an isolated droplet, as shown in Equation (2):
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η = KI/KS (2)

where KI is the burning rate of the interacting droplets and KS is the burning rate of the
single droplet.

Figure 7 shows the burning rates and the interaction coefficients of the two-droplet
burning at different pressures for normalised spacing distances of 1.5 to 3.5. The experiment
was repeated three times for each condition, and the standard deviation (STD) was calcu-
lated from the burning rate of six droplets. Thus, the uncertainty is equal to STD/Kaverage.
Uncertainty of the burning rate was less than 6.8% in all tests. In general, the burning rate of
the droplets was found to be reduced as the ambient pressure decreased, which was similar
to the burning of isolated droplets. When L/D0 = 1.5, the oxygen competition between
droplets appeared to be the strongest, resulting in the most drastic decrease in combustion
rate compared to single droplet combustion rates. Furthermore, as the pressure was re-
duced, the effect of oxygen competition on the combustion rate became more significant,
with η decreasing from 0.90 at 1 bar to 0.56 at 0.2 bar. This can be explained by the fact that
as the ambient pressure decreases, the number of O2 molecules per unit volume becomes
lower and, therefore, the probability of collisions between RP-3 kerosene and O2 molecules
can be significantly affected any subtle local fluctuations in oxygen concentration, due
to the oxygen competition effect. In this case, the burning rate of the droplets would be
reduced. As the spacing distance between the two droplets was enlarged, the burning
rate of the droplets showed an observable increase due to the weakening of the oxygen
competition effect, but was generally lower than the burning rate of a single droplet.
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It is worth noting that when L/D0 = 2.5 and P = 1 bar, the droplet interaction coefficient
was larger than 1, indicating that the two-droplet burning rate was more rapid than that of
the isolated droplet. The explanation for this observation is twofold: on the one hand the
oxygen competition effect had less effect on the burning rate of the droplets at atmospheric
pressure, and on the other hand, the area of the downstream sooty flame had increased
in the two-droplet burning compared to the single-droplet case, thus increasing the heat
transfer to the droplet surface due to radiation and convection, which in turn raised the
burning rate of the droplets [19]. As the normalised spacing distance of the droplets was
further increased, the droplets were wrapped in two separate flames at 1 bar, so the burning
of the binary droplets became similar to that of a single droplet, and the droplet interaction
coefficient approached one.

3.3. Effects of Puffing and Microexplosion

For the combustion of interactive multicomponent RP-3 kerosene droplets, the droplet
interaction not only affects the heat transfer between the droplets and the environment and
the burning rate of the droplets, and has other effects due to the occurrence of puffing and
microexplosion.

As shown in Figure 8, the droplet on the right side was triggered by the ejection of
minor droplets from the adjacent droplet, which initiated its own microexplosion. The
0.0–2.0 ms images demonstrate the puffing of the left droplet, which expands to eject the
secondary droplet, while the 2.5 ms and 3.0 ms images show the leap of the secondary
droplet from the left to the surface of the right droplet, which is circled in red in the figure.
As the secondary droplet contacted the right droplet and perturbed it, as shown in the
3.5–5.5 ms images, the right droplet nucleated and bubbled at the contact point of the
secondary droplet, leading to a violent microexplosion. Compared to the burning of a single
droplet, this phenomenon promotes secondary atomization during droplet combustion.
As the spacing distance of droplets was increased, the probability that a secondary droplet,
generated by the puffing or microexplosion of one droplet, could reach an adjacent droplet
was reduced, and this phenomenon only occurred in those experiments under L/D0 < 3.5.

The maximum ignitable normalised spacing distances of droplets at different pressures
have been discussed in the previous section, but the previous conclusions were limited
to stable combustion conditions. As shown in Figure 9, the puffing and microexplosion
during droplet combustion affected the ignition of the neighbouring droplet. In accordance
with previous conclusions, the maximum ignitable normalised spacing distance of the
droplets at 0.8 bar is 3.5, while the initial normalised spacing distance between the two
droplets in the figure is 4.0. It can be observed that, at 0.0 ms, the right droplet was already
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at the end of the combustion and the left droplet had not yet been ignited, which concurs
with previous results. However, the right droplet started to expand and emit fuel vapour at
1.5 ms, which in turn disturbed the flame around the droplets at the subsequent time period.
In the 4.5–8.5 ms images, the flame front of the right droplet was approaching the left
droplet. As a result, the heat absorbed by the left droplet due to radiation and convection
rose abruptly. The temperature of the left-hand droplet was rapidly raised and reached the
boiling point of the volatile component of RP-3 kerosene, then the mixture of fuel vapour
and air was ignited close to the right flame. Hence, the maximum ignitable normalised
spacing distance of the left-hand droplet could be extended by puffing and microexplosion.
However, due to the uncertainty of puffing and microexplosion occurrences, the extended
maximum ignitable normalised spacing distance cannot be evaluated precisely.
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Figure 8. Temporal sequence of the RP-3 droplet microexplosion caused by a neighbouring droplet
(P = 0.4 bar, L/D0 = 1.5).
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In contrast to the ignition process, microexplosion also influences the extinction
of droplets at low pressures. Figure 10 shows the extinction of a two-droplet burn at
P = 0.2 bar and L/D0 = 1.5 due to the microexplosion of the right droplet. The image at
0.0 ms shows that the two droplets were experiencing a steady burning. However, at
1.0 ms there was an intense microexplosion of the right droplet, which produced multiple
secondary droplets. Due to the intensity of the microexplosion, the right-hand main droplet
fell off the support fibre. As can be observed in the images at 12.0 ms and 15.5 ms. The
internal nucleation and puffing of the main droplet on the right was observed in a falling
unsupported environment, which was circled in red. The 8.0–15.5 ms images show the
downstream flame gradually moving away from the left droplet as the ejection of secondary
droplets affected the stability of the combustion. Therefore, the quasi-steady combustion of
the droplet on the left could not be maintained due to insufficient radiative heat transfer,
which in turn resulted in the extinction. This phenomenon only occurred at an ambient
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pressure of 0.2 bar, as the oxygen competition had a significant influence on the burning
rate of the interactive droplets at low pressure, where the stable burning of the droplets
could be easily interrupted by the disturbance of the flame.

Processes 2021, 9, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 10. Temporal sequence of the flame extinction caused by the microexplosion (P = 0.2 bar, 
L/D0 = 1.5). 

4. Conclusions 
In the present work, the interactive effects in two- RP-3 kerosene droplets combustion 

were investigated and compared at different normalised spacing distances and sub-at-
mospheric pressures. Back-lighted high-speed cinematography has been implemented in 
this work. The following main conclusion can be drawn from the above discussion: 
1. In a stabilised two-droplets system, the flame propagation time from the right burn-

ing droplet to the left droplet elongated exponentially with the increase of the ambi-
ent pressure and normalised spacing distance. The maximum normalised spacing 
distance at which the left droplet could be ignited was extended from 3.0 to 5.5 for 
an ambient pressure decrease from 1 bar to 0.2 bar, respectively. 

2. Much like the burning of the single droplet, the reduction in ambient pressure en-
hanced the possibility and intensity of puffing and microexplosion during the burn-
ing. In general, compared to the corresponding isolated RP-3 kerosene droplet, the 
burning rate of the interacting droplets was reduced, owing to the oxygen competi-
tion between the droplets. However, the interactive coefficient η exceeded one when 
L/D0 = 2.5 and P = 1 bar. This is attributed to the increase in heat transferred from the 
sooty flame. 

3. During the burning of binary droplets, the secondary atomization could be affected 
by puffing and microexplosion from its neighbouring droplet. Puffing and microex-
plosion of the right droplet can also extend the limit of the maximum normalised 
spacing distance at which the left droplet can be ignited. Meanwhile, the extinction 
of the two-droplets’ burning was caused by the severe microexplosion that occurred 
when P = 0.2 bar. 

Author Contributions: Conceptualization, H.Z. and J.H.; methodology, H.Z.; software, H.Z.; inves-
tigation, H.Z.; data curation, H.Z.; writing—original draft preparation, H.Z.; writing—review and 
editing, Y.H. and Z.W.; supervision, Z.W.; project administration, K.C.; funding acquisition, Z.W. 
All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Zhejiang Provincial Natural Science Foundation 
(LGC19E06001) and the Fundamental Research Funds for the Central Universities (2021FZZX001-
11). 

Figure 10. Temporal sequence of the flame extinction caused by the microexplosion (P = 0.2 bar,
L/D0 = 1.5).

4. Conclusions

In the present work, the interactive effects in two- RP-3 kerosene droplets combus-
tion were investigated and compared at different normalised spacing distances and sub-
atmospheric pressures. Back-lighted high-speed cinematography has been implemented in
this work. The following main conclusion can be drawn from the above discussion:

1. In a stabilised two-droplets system, the flame propagation time from the right burning
droplet to the left droplet elongated exponentially with the increase of the ambient
pressure and normalised spacing distance. The maximum normalised spacing dis-
tance at which the left droplet could be ignited was extended from 3.0 to 5.5 for an
ambient pressure decrease from 1 bar to 0.2 bar, respectively.

2. Much like the burning of the single droplet, the reduction in ambient pressure en-
hanced the possibility and intensity of puffing and microexplosion during the burning.
In general, compared to the corresponding isolated RP-3 kerosene droplet, the burn-
ing rate of the interacting droplets was reduced, owing to the oxygen competition
between the droplets. However, the interactive coefficient η exceeded one when
L/D0 = 2.5 and P = 1 bar. This is attributed to the increase in heat transferred from
the sooty flame.

3. During the burning of binary droplets, the secondary atomization could be affected
by puffing and microexplosion from its neighbouring droplet. Puffing and microex-
plosion of the right droplet can also extend the limit of the maximum normalised
spacing distance at which the left droplet can be ignited. Meanwhile, the extinction
of the two-droplets’ burning was caused by the severe microexplosion that occurred
when P = 0.2 bar.
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