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Abstract: This paper presents a framework for the use of variable pricing to control electricity
imported/exported to/from both fixed and unfixed residential distributed energy resource (DER)
network designs. The framework shows that networks utilizing much of their own energy, and
importing little from the national grid, are barely affected by dynamic import pricing, but are
encouraged to sell more by dynamic export pricing. An increase in CO2 emissions per kWh of energy
produced is observed for dynamic import and export, against a baseline configuration utilizing
constant pricing. This is due to feed-in tariffs (FITs) that encourage CHP generation over lower-
carbon technologies. Furthermore, batteries are shown to be expensive in systems receiving income
from FITs and grid exports, but for the cases when they sell to/buy from the grid using dynamic
pricing, their use in the networks becomes more economical.

Keywords: distributed energy resource (DER); dynamic pricing; mixed-integer linear programming
(MILP); renewable heat incentive (RHI); feed-in tariff (FIT); electricity storage in batteries

1. Introduction

In 2016, the UK received 24.5% of its electricity generation from renewable technolo-
gies, with further 46.2% coming from low carbon systems [1]. Most electricity in the UK
grid comes from large producers located far from customers, e.g., large offshore wind farms
or isolated nuclear plants. This leads to enormous volumes of electricity wasted through
transmission losses and step-up/step-down transformers [2].

This reality has raised the incentive to research different ways to provide more eco-
nomical and environmentally friendly electricity production. Many authors have generated
various MILP models to demonstrate the potential of distributed energy resource (DER) sys-
tems to provide both domestic and commercial buildings with greater local, self-generated
energy from renewable or low carbon assets. This will be able to mitigate much of these
transmission losses and, consequently, reduce carbon emissions and energy bills [3–7].

Much work into this area exploits the fact that many governments are willing to
pay users to consume self-generated, low-carbon electricity and heat, through Feed-in
tariffs (FITs), and renewable heat incentives (RHIs). They will also pay for these units to
export excess electricity to the wider national grid [8,9], a good case for homeowners and
businesses to invest in DER technologies. However, while such investment would help
meet national CO2 reduction targets, accompanied by money saving for customers, large-
scale investment into domestic DERs without sensible controls could destabilize national
grid structures. The reason for this being that many already deal with various large-scale
renewable assets intermittently feeding into it, not necessarily at times of demand [10].
This forces grid operators to ask large non-renewable plants to start-up and shut-down
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operation without much warning, makes grid balancing difficult and expensive, and leads
to increased costs for the consumers.

Accordingly, to make residential DERs compatible with the national grid, a control
strategy is needed which encourages renewable asset owners to generate, consume, store
and sell energy at times which are mutually beneficial to them and ensure the stability of
the national grids.

The IoT concept is defined as a group of infrastructures interconnecting connected
objects and allowing their management, data mining and the access to the data they
generate [11]. The IoT technologies have the potential to better control and optimize DERs
in conjunction with the needs of the national electricity grids, by providing a sustainable
solution for the dynamic management of the system. This can be done through internet
connected controllers which utilize live data on energy prices, generation, consumption,
and asset failures, in a manner aligned with national grid strategies. They also present the
capability to optimize the design and operation of local renewable resources to cope with
predicted changes in weather or disruptive events.

One strategy which has been proposed to help stabilize national grids is the use of
dynamic pricing, as discussed in Finn and Fitzpatrick [12]. Dynamic pricing is a strategy in
which national grids publish, either in real time, or a few days ahead, variable prices per
kWh of electricity, within a given time period. For example, one might make 06:00–08:00
P.M. on a winter’s day an expensive time in which to consume energy, because this is a
time of high demand, when many homeowners cook dinner and/or watch television. The
effect of this would be that large-scale consumers, for example chemical processing plants,
might cut back operation during this period to save money, and recover the lost production
when electricity demand is much lower and the consumption is encouraged by the grid
through a lower cost per unit of electricity, for example at 02:00 A.M.

Without automated optimization of such variable operation, only a few large industrial
users will likely modify their usage to accommodate such a strategy. It has been suggested
that dynamic pricing could be employed in smart homes [13], where, for example, electric
vehicles would be charged overnight when electricity is cheap and dish washers would
only turn on in the early hours of the morning, when the IoT controller tells them to, in
accordance with user pre-set requirements.

This strategy could also be flipped on its head and used to encourage renewable
resources within an IoT controlled residential DER network (e.g., wind turbines (WTs),
solar cells, battery storage etc.) to sell electricity to the grid during peak national demand,
when the sale price is high, and to store renewable power, in battery units, when the sale
price is low [10]. These two routines would help flatten the demand profile throughout
the day (or perhaps even the year) and simplify the balancing of demand and supply for
the grid operators, and could even reduce the voltage used on national grids since peak
volumes of energy could be reduced.

Dynamic pricing could be used to reflect the needs of the grid, in a process known
as Demand Side Management [12], which can be a function of the time of day, week and
year, as well as weather conditions and public demand. Pricing variations of imports and
exports could also reflect the failure of large assets, e.g., emergency shut-down of a large
coal or nuclear asset, or changes in legislation of FIT and RHI pricing.

This could better enable grid actors to deal with blackouts and possibly minimize the
size of the affected areas during such events. The IoT controllers could also use big data
capabilities to learn more about end-user’s operation, which would better inform the grid
on the generation and demand profiles, and enable the integration of multiple local grids
that support each other, possibly even trading energy between one another [10].

While much has been hypothesized about the potential of IoT to stabilize grid opera-
tions, in a Smart Grid [10] or The Enernet, the inevitable convergence of the smart grid with
the IoT [14], little has been done to quantify the possible effects, either using optimization
models or through real-world implementation.
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Xu et al. [10] have presented a statistical study to evaluate the differences in cost per
kWh and the reliability between three types of national grid structures, namely:

(1) The current typical structure in which the electricity is generated in large industrial
units, far from end users;

(2) A grid with integrated DERs; and
(3) A grid with integrated DERs and battery storage units. With respect to the end-user

energy costs, the findings were that the DER integrated network is cheaper than the
traditional grid.

Furthermore, battery storage introduces greater reliability to the network, albeit at
a greater cost [10]. This reflects the findings of authors who have written solely about
residential DER design optimization. Wouters et al. [7], for example, found that battery
storage was not economically viable for residential DERs in South Australia.

The work presented in the following sections focuses on the use of IoT-type integration
and communication strategies for the control of residential DERs, as opposed to the control
of entire grids, as presented by Xu et al. [10]. With respect to dynamic pricing, the paper is
unique from the work of Finn and Fitzpatrick [12], in that it investigates both demand- and
supply-side control, with focus on residential housing as opposed to industrial buildings.
Furthermore, it also expands on the potential use of batteries and investigates the maximum
cost at which batteries become economical under various scenarios, thus giving greater
insight into their use than previous models which have simply stated that they are not
economical [7].

Finally, the framework presented here builds on the capabilities of those presented
by Mechleri et al. [6] and Wouters et al. [7], by expanding the models in terms of different
types of technologies used and also the different approaches for the case studies, and builds
on the preliminary results presented in [15].

The remainder of the paper is split into the following: Section 2 describes the methodol-
ogy followed in this work, Section 3 reports the results of the various scenarios considered,
while Section 4 focuses on the conclusions. Finally, the Appendix includes a glossary of
technical terms and the appendices which contain detailed data used for the MILP model.

2. Methodology

A baseline scenario, with a pre-designed DER network is used to investigate the effects
of dynamic pricing. An optimization problem is formulated for the design of the network
without dynamic pricing, based on several available renewable technologies. The set of
candidate technologies (Tech) are:

Absorption chillers (Abs);
Air conditioning units (AC);
Biomass boilers (BB);
Gas boilers (GB);
Combined heat and power generators (CHP), which can be fuel cells, internal combustion
engines or Sterling engines;
Gas heaters (GH);
Heating/cooling pipelines (PLs);
Microgrid controllers (MGCC);
Photovoltaic cells (PV);
Thermal storage (TS);
Wind turbines (WTs).

A second scenario is investigated where the design of the network is done considering
dynamic pricing control strategies. The two scenarios are then compared to evaluate the
contribution of the dynamic pricing in the design of the network.

A case study [15] is used to illustrate the approach: a residential house arrangement
based on streets in Guildford, Surrey, UK, with five (5) houses (Figure 1), numbered i1–i5
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and spaced 10 m apart. This spacing represents the lengths that would be needed to make
connections via pipelines (PLs) or microgrid (MG) cables.
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Figure 1. The five-house neighborhood.

The homes can generate heating, cooling, domestic hot water (DHW) and/or electrical
power to meet their own demands but also the needs of the other homes in the network,
transmitted via pipelines and MG cables. Excess electricity generated can be sold to the
national grid and electricity and gas imported from the grid, at a price, to the network.

Although the application is demonstrated on a UK case study, the framework can be
applied easily to scenarios for other countries by replacing sizes and costs of technologies,
as well as demands, pricing or policy-related costs, as required by the local situation.

2.1. Seasonal and Hourly Variations in Supply and Demand (Multiperiod Operation
Discretization)

Real seasonal and hourly variations in supply and demand of the various energy
requirements and renewable generating assets are considered for the models, as discussed
in [15]:

(1) UK weather and demand data is split into four seasons: m1—spring; m2—summer;
m3—autumn; and m4—winter, which each lasts for three months, March–May, June–
August, September–November, and December–February, respectively.

(2) Each month within a season has the same number of days, taken as the average of the
three months: m1 = 31; m2 = 31, m3 = 30, m4 = 30.

(3) Furthermore, every day is split into six time periods, p1 to p6, in which demand,
weather operation and thus renewable energy supply are constant.

The length and the start and end times for each of the six time periods are shown in
Table 1.

Table 1. Time periods used in the model.

Time Period (p) p1 p2 p3 p4 p5 p6

Duration [h] 2 3 1 5 4 9
Start time 07:00 09:00 12:00 13:00 18:00 22:00
End time 09:00 12:00 13:00 18:00 22:00 07:00

The information on weather data considered for the model are shown in Tables 2 and 3.

Table 2. UK solar insolation data (adapted from [16]).

Time Period (p) p1 p2 p3 p4 p5 p6

Month Solar Insolation [kW]

m1 0.155 0.375 0.420 0.235 0.002 0.000
m2 0.320 0.485 0.525 0.355 0.033 0.000
m3 0.150 0.380 0.420 0.240 0.003 0.000
m4 0.033 0.170 0.208 0.070 0.000 0.000

The demand profiles considered for all utilities can be seen, as a function of the
time of day and season, in Figure 2, constructed from data in [4,16–19]. A representative
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day for each season (Spring, Summer, Autumn and Winter) is chosen in determining the
demand profiles.

Table 3. UK wind speed data (adapted from [16]).

Time Period (p) p1 p2 p3 p4 p5 p6

Month Wind Speed [m/s]

m1 5.90 6.25 7.70 7.80 6.25 5.90
m2 5.00 5.60 6.00 6.30 5.70 4.80
m3 6.85 6.30 6.70 6.80 6.25 5.90
m4 6.60 6.70 6.90 7.05 6.70 6.15
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Figure 2. Average demand profiles per household for (a) electricity (adapted from [4] and [16]);
(b) heating (adapted from [4,19]); (c) cooling (adapted from [17,18]); and (d) hot water (adapted
from [4,19].

A scalar is considered for each house (Table 4) that is used to define five different
demand profiles for each utility at any one time.

Table 4. Scalars used to obtain demand profiles for each house in the network.

House i1 i2 i3 i4 i5

Scalar 0.8 0.9 1.0 1.1 1.2

It is ensured that using the five scalars, the average demand per household for each
utility is the one defined in Figure 2.

2.2. Mathematical Formulation

A simplified version of the model was previously described in [15]. In the follow-
ing sections, the mathematical formulation, with all equations and assumptions will be
presented in more detail.

2.2.1. Objective Function

The model’s objective function minimizes the annualized cost of the energy network
(CTotal). The total cost is calculated as the sum, for all technologies, of the investment costs
(CTech

Inv ) annualized over the project lifetime (n) and the annual operating and maintenance



Processes 2021, 9, 1306 7 of 28

costs (CTech
O&M), the annual cost of carbon emission taxation (CTech

Tax ), the annual cost of
imported energy and fuel (CTech

Fuel ), minus the annual income (CTech
Income) made from exporting

electricity to the grid, feed in tariffs (FITs) and renewable heat incentives (RHIs), as shown
in Equation (1):

CTotal = ∑
Tech

(
CTech

Inv + CTech
O∧M

)
+ CTech

Tax + CTech
Fuel − CTech

Income (1)

2.2.2. Annualized Investment Costs

The annualized investment costs are calculated based on a capital recovery factor
(CRF) using the interest rate, r (%), and the project lifetime, n (years). For all technologies,
the values of r and n are kept constant and based on the values available from similar
investigations ([6,7,20–23]), allowing for ease of comparison between different technologies,
scenarios and research conditions:

CRF =
r·(1 + r)n

(1 + r)n − 1
(2)

The investment cost of the installed capacity can be calculated as:

CTech
Inv = ∑

i

(
CRF·CTech

capital ·GenUtility,Tech
Max,i

)
(3)

Here, GenUtility,Tech
Max,i is the maximum amount of Utility generated by the technology

Tech in a house i, in a year. The following utilities are considered: electricity (E), space
heating (H) and cooling (C), and domestic hot water (DHW). Hence GenUtility,Tech

Max,i repre-
sents the required installed capacity of the technology Tech and must be at least equal to or
greater than the highest yearly demand:

GenUtility,Tech
Max,i > GenUtility,Tech

i,m,p ∀GenUtility,Tech
i,m,p 6= GenUtility,Tech

Max,i (4)

The installed capacity of the technologies Tech is bounded by upper and lower bounds
of typically available equipment:

GenUtility,Tech
Max,i ≥ LBTech·YTech

i

GenUtility,Tech
Max,i ≤ UBTech·YTech

i

(5)

Here, YTech
i is a binary variable which decides if a technology Tech is placed in a home i.

Equations (4) and (5) apply to all technologies Tech presented at the beginning of
Section 2. In case of the photovoltaic network, the investments are calculated based on the
installed surface area of the panels. Furthermore, the electricity generation from PV cells
is a function of the solar irradiance, SIrm,p, which varies with the time of day and season,
the surface area installed, APV

i , which is an optimisation variable, and the panel efficiency,
ηPV , a set parameter:

GenE,PV
i,m,p ≤ APV

i ·SIrm,p·ηPV (6)

The generation from the PV cells is also a function of the rated panel capacity, RPC:

GenE,PV
i,m,p = RPC·APV

i (7)

In case of the WTs, the investments costs are based on the number of turbines installed
and not on the capacity. The maximum capacity is set to 1.5 kW and is equal with the rated
capacity, as used in [24]. Furthermore, it was decided that it was impractical to have WTs
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in adjacent houses, hence a rule was put in place that there must be at least a one house
gap between WT installations:

YWT
i+1 + YWT

i ≤ 1 (8)

Finally, for the sake of space within homes, only one CHP is permitted in each dwelling:

∑
CHP

YCHP
i ≤ 1 (9)

In case of the network operation, the capital costs, CTech
capital are calculated based on

the length of the cable or pipe installed. Furthermore, for the batteries, besides the cost
expressed by Equation (3) there is a secondary investment cost associated with the storage
unit controller:

Ccontroller,ES
Inv = CRF·Ccontroller,ES

capital ·∑
i

YES
i (10)

The capital cost of the microgrid controller is calculated from:

CMG
Inv = Ccontroller,MG

capital ·Z (11)

With Z being a binary variable which determines the existence of the microgrid.

2.2.3. Operating and Maintenance Costs

The operating and maintenance (O&M) costs, CTech
O&M, of the technologies Tech are

calculated using fixed and variable costs, as used in other case studies ([6,7,20–23]):

CTech
O&M = ∑

i

 (
CTech

OM,Fixed·GenUtility,Tech
Max,i

)
+(

CTech
OM,Var·∑m,p GenUtility,Tech

i,m,p ·day(m)·hours(p)·season(m)
)  (12)

Finally, since the microgrid itself uses electricity it has an O&M cost as well:

CMG
O&M,CC = Ccontroller,MG

OM ·Z (13)

2.2.4. Environmental Costs

A tax is put in place by the UK government to penalize electricity generators for CO2
emissions. The cost of carbon emission taxation, CTax, is calculated from the government
tax of CO2 emitted, PCO2 , the carbon intensity of electricity purchased from the grid, CIgrid,
and the carbon intensities of emitting technologies (gas boiler, CHP, gas heater). Given that
all of these units consume natural gas, this can be considered as the carbon intensity of the
grid gas, CIgas, divided by the technology Tech’s efficiency, ηTech:

CTax = PCO2 · ∑
Tech


(

CIgas·∑i,m,p
GenTech

i,m,p

ηTech ·day(m)·hours(p)·season(m)

)
+

CIgrid·∑i,m,p EGrid
i,m,p·day(m)·hours(p)·season(m)

 (14)

where EGrid
i,m,p is the electricity purchased from the grid.

Accordingly, the CO2 cost of the network is calculated by calculating the volume of
CO2 produced by each technology Tech throughout the year.

2.2.5. Costs of Fuel

The cost of fuel, CFuel is equal to the volume of gas and electricity purchased multiplied
by the respective cost of each:

CFuel =

 PElec·∑i,m,p EGrid
i,m,p+

Pgas·∑Tech ∑i,m,p
GenUtility,Tech

i,m,p

ηTech

·day(m)·hours(p)·season(m) (15)
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The cost of gas from the national grid is defined by Pgas (£/ kWh).

2.2.6. Income

The income, CIncome, is calculated from the FITs per kWh of low carbon Utility gener-
ated, PTech

FIT , the electricity sales to the grid, ETech
Sale,i,m,p, and the annual payment for utilisation

of a biomass boiler under the RHI, PRHI . The electricity generated in the network, which
exceeds network demands, can be sold to the national grid:

CIncome =

(
∑Tech PTech

Sale ·∑i,m,p ETech
Sale,i,m,p·day(m)·hours(p)·season(m)+

∑Tech PTech
FIT ·∑i,m,p GenUtility,Tech

i,m,p + ∑i PBB
RHI ·YBB

i

)
(16)

To ensure that homes do not become power plants and are, in fact, only selling excess
and not generating electricity purely for profit, a rule is put in place stating that the total
electricity sold from all technologies Tech cannot exceed that generated by all units, minus
the demand of the home:

∑
Tech

ETech
Sale,i,m,p ≤

 ∑Tech GenE,Tech
i,m,p + StoreOutE,ES

i,m,p−

DemandE
i,m,p +

GenE,AC
i,m,p

CoPAC −∑j

(
βi,j·Trans f erE

j,i,m,p − Trans f erE
i,j,m,p

)
 (17)

The technologies contributing to the terms in Equations (16) and (17) are: PV arrays,
WTs, ICHP, SCHP and FCHP.

At any time, a house is either buying or selling electricity, not both:

∑
Tech

ETech
Sale,i,m,p ≤ UBE,Sale·YE,Sale

i,m,p (18)

With UBE,Sale = upper bound on the volume of electricity sold; YE,Sale
i,m,p = binary stating

whether the house i sells electricity in the time period m, p.
A similar equation is defined for buying electricity from the grid:

EGrid
i,m,p ≤

DemandE
i,m,p +

GenE,AC
i,m,p

CoPAC

·(1−YE,Sale
i,m,p

)
(19)

2.2.7. Demand Equations

The energy demands of the houses relate to the four utilities considered (Utility = E, H,
C, and DHW). Balance equations are written to meet these demands with the appropriate
technologies.

The demand balance equations can be written in the following form:

DemandUtility
i,m,p −∑j

(
βi,j·Trans f erUtility

j,i,m,p − Trans f erUtility
i,j,m,p

)
= UtilityGrid

i,m,p + ∑Tech UseUtility,Tech
i,m,p + StoreOutUtility,Storage

i,m,p

(20)

The Utility transferred via the network from house j to house i is subtracted from the
demand, while the Utility transferred from i to house j is added to the demand. Hence,
the left side of Equation (20) is the net Utility demand and is met by the right-side terms,
namely the Utility imported from the grid, the Utility from the Distributed Generation (DG)
technologies, and the Utility from Storage facilities available within a house i. The term βi,j
is the loss coefficient [6], dependent on the cable or pipe length, li,j, between two homes, i
and j, as shown in Equation (21), where β1 is a scalar of low value:

βi,j = (1− β1)·li,j (21)
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The Utility transfer term must equal the energy obtained from contributing technolo-
gies Tech within house i:

Trans f erUtility
i,j,m,p = ∑

Tech
Trans f erUtility,Tech

i,j,m,p (22)

In case of the electricity balance equation, the AC electricity demand is added to the
total electricity demand, as it is a variable, dependent on the number of AC units installed
and their times of operation. The DG technologies contributing to the self-use term, UseTech

i,m,p
in case of electricity are WTs, CHPs and PV cells.

In case of the heat balance equation, there is no heat imported from the grid. The
transferred hot water term does not refer to the hot water for DHW use but represents only
the water shared between homes. The technologies that are generating self-heating are
CHPs, GBs, BBs and GHs. According to legislation, the BB units are not allowed to provide
heat to more than one home [25]:

∑
j

Trans f erH,BB
i,j,m,p = 0 (23)

There is also a limitation on the annual heat produced from BBs which receive RHI
payments [25]:

UseBB
i,m,p + StoreE,ES,BB

i,m,p + UseDHW,BB
i,m,p + ∑

j
Trans f erH,BB

i,j,m,p ≤ 25, 000 (24)

Heat is a waste product of the CHPs, generated in volumes proportional with the
electricity generation via the heat to electricity ratio (HER). This heat is used directly for
heat and DHW, or indirectly in the Abs units.

For the cooling balance equation, the thermal storage of cold loads is not possible
since it is assumed that only one thermal storage unit is installed per house. Two units
would be required to separate cold and DHW water.

Similarly, to heat, no import of cooling from the grid is considered. The sharing
term is done through pipeline connections between two houses i and j. The technologies
considered for the self-generation terms are the AC and Abs units. The Abs units cannot
be modulated to meet demand because their power is a result of heat produced as a side
product during the CHP electricity generation.

Finally, for the DHW balance, there are no Transfer terms. The DHW is not shared,
since hot water is needed in the summer and would heat the pipelines transferring cold
loads. All thermal DGs except for the GH units can supply DHW, as is thermal storage. No
technologies add to DHW and no import from the grid is considered.

2.2.8. Microgrid and Heat Network Operation

The connection between two homes, i and j is defined by the binary parameters, Yk
i,j,

with k = MG in the case of the microgrid, and k = PL, in the case of the heat network
operation. A Utility (E for the microgrid, and H for the pipelines) cannot move between
unconnected nodes of the network. The binary parameter, YMG

i,j defines the microgrid
connection between two homes, i and j:

Trans f erUtility
i,j,m,p ≤ UBk·Yk

i,j ∀i 6= j (25)

With UBk = the upper bound for Utility transfer.
Moreover, a house cannot transfer itself Utility, hence Yk

i,i = 0 and Trans f erUtility
i,i,m,p = 0.

The Utility flows in one direction through the network are in this case:

Yk
i,j + Yk

j,i ≤ 1 ∀i 6= j (26)
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Looped networks are mitigated by Equation (27), where OUtility
i is a numerical position

of a microgrid or pipeline connected home, respectively. A higher order home cannot
transfer Utility to lower order homes. They can only import it (no looped microgrid or heat
networks can be formed). The term cardi is the value i.

OUtility
j ≥ OUtility

i + 1− cardi·
(

1−Yk
i,j

)
(27)

In case of the microgrid, one controller operates the whole neighborhood and a binary
variable, Z, is defined that decides the microgrid’s existence:

Z =

[
1, ∑i,j YMG

i,j > 0
0, ∑i,j YMG

i,j > 0

]
Z ≥ YMG

i,j ∀i, j (28)

2.2.9. Battery Storage

The balance equation for the electrical storage is written as:

StoreE,ES
i,m,p =

[
(1− θ)·StoreE,ES

i,m,p−1

]
+ hours(p)·

(1− χ)·StoreInE,ES
i,m,p −

StoreOutE,ES
i,m,p

1− ∆χ

 (29)

where θ = the static loss coefficient (%) and χ, ∆χ = the charge and discharge rates
(%), respectively.

The energy which enters the battery plus the volume already present in the battery
cannot exceed its capacity:[

(1− θ)·StoreE,ES
i,m,p−1

]
+
[

hours(p)·(1− χ)·StoreInE,ES
i,m,p

]
≤ StoreE,ES

i,Max (30)

Additionally, what is withdrawn from the battery cannot exceed what it is within it:hours(p)·
StoreOutE,ES

i,m,p

1− ∆χ

 ≤ (1− χ)·StoreInE,ES
i,m,p (31)

The energy entering the battery is equal to the total energy from the contributing
technologies, Tech:

StoreInE,ES
i,m,p = ∑

Tech
StoreE,ES,Tech

i,m,p (32)

The technologies contributing to the battery storage are ICHP, SCHP, FCHP, PV cells
and WTs. The energy entering the battery is also bounded by the maximum charge rate:

hours(p)·(1− χ)·StoreInE,ES
i,m,p ≤ χMax·StoreE,ES

i,Max (33)

The outlet from the battery is similarly bounded by the maximum discharge rate:

hours(p)·
StoreOutE,ES

i,m,p

1− ∆χ
≤ ∆χMax·StoreE,ES

i,Max (34)

The volume of energy in the battery at any time is calculated using the Depth of
discharge (DoC), which is a measure of what percentage of the battery’s capacity must be
left uncharged:

(1− DoC)·StoreE,ES
i,Max ≤ StoreE,ES

i,m,p (35)

Equations (30) and (33) are adapted for the case study in which batteries are able to
sell electricity to the grid. Equation (30) is adapted so that power in the battery could also
be sold to the grid, using the term StoreOutE,ES,grid

i,m,p . The volume of energy in the battery
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units, calculated in Equation (33), is adapted in such way that it could also charge from the
grid with the term StoreOutE,ES,grid

i,m,p :

StoreE,ES
i,m,p =

[
(1− θ)·StoreE,ES

i,m,p−1

]
+

hours(p)·
[
(1− χ)·StoreInE,ES

i,m,p −
StoreOutE,ES

i,m,p
1−∆χ −

StoreOutE,ES,grid
i,m,p

1−∆χ

]
(30a)

StoreInE,ES
i,m,p = ∑

Tech
StoreE,ES,Tech

i,m,p + StoreOutE,ES,grid
i,m,p (33a)

2.2.10. Thermal Storage

The balance of energy in thermal storage is determined using:

StoreTS
i,m,p = (1− ζ)·StoreTS

i,m,p−1 + StoreInTS
i,m,p − StoreOutTS

i,m,p (36)

The energy entering the thermal storage unit is the sum of the energy stored by all
contributing technologies (GBs, BBs, CHPs):

StoreInTS
i,m,p = ∑

Tech
StoreTS,Tech

i,m,p (37)

The installed capacity of the thermal storage unit must be equal to or larger than the
input to the unit plus the energy already in it at any time (m, p). The capacity must also be
within the limits of the available equipment:

StoreTS
Max,i ≥ (1− ζ)·StoreTS

i,m,p−1 + StoreInTS
i,m,p (38)

A balance is needed to calculate how much energy can be withdrawn and is based on
the energy provided in the previous time:

StoreOutTS
i,m,p ≤ (1− ζ)·StoreTS

i,m,p−1 (39)

Additionally, the volume of heat stored in the unit cannot exceed its capacity:

StoreTS
i,m,p ≤ StoreTS

Max,i (40)

2.2.11. Wind Turbines

Generation from the WT units is based on wind data provided to the model as a
function of time and season, Wm,p.

GenWT
i,m,p = YWT

i ·Wm,p (41)

The power generated by the WTs is not a continuous function of the available wind
resources, but is instead a piecewise function dependent on the “rated”, “cut in” and
“cut-out” speeds for the units available:

Wm,p =


0 Vm,p < VCI

Crate·
Vm,p
VR VCI ≤ Vm,p < VR

Crate VR ≤ Vm,p < VCO
0 VCO ≤ Vm,p

(42)

For the model of WT used the following parameter values are considered: VCI = 3 m/s,
VCO = 60 m/s and Crate = 1.5 kW.
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2.3. Variable Import and Export Pricing

Currently, the energy market has various time-differentiated retail pricing schemes,
e.g., time-of-use (TOU), real-time pricing (RTP), critical-peak pricing (CPP) or curtail-
able/interruptible pricing tariffs, which reflect fluctuating wholesale prices and explore
end-user demand flexibility [26–28]. Various approaches are used to determine the dynamic
import and export prices, ranging from game theory to blockchain applications [29–32].
The proposed framework aims at providing support with the design and operation of
residential DER networks, and the design of pricing strategies is out of the scope of this
approach. For this reason, the concept of dynamic import pricing is investigated through
the use of the strategy described further. The scheme assumes that the dynamic import
and export prices are obtained using the state-of-the-art approaches and will be provided
by the retailers.

Equation (43) calculates the price, in British pence (p) per kWh, of electricity purchased
from the grid into the DER network:

PImport
Elec,m,p = PImport

Elec,Avg × NatDemandm,p/NatDemandAvg (43)

where PImport
Elec,m,p = the price of electricity purchased during the time (m,p) [p/kWh]; PImport

Elec,Avg
= the average electricity price [p/kWh]; NatDemandm,p = the national demand at time
(m,p) [kWh]; NatDemandAvg = the yearly average national demand [kWh].

The price is based on data from the UK national grid for consumption throughout the
year in 2017 [16], which is shown in Figure 3.
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Overall, the price of electricity, taken as a time average, is PImport
Elec,Avg = 16.29 p/kWh.

The calculated values of the price of purchased electricity are shown in Table 5.
A similar equation is used to create a variable export price to determine the electricity

sold to the grid from the DER network. The export price, given by the UK government [24],
was also scaled against the national demand at time (m, p) and the average national demand,
as shown in Equation (44):

PExport
Elec,m,p = PExport

Elec,Avg × NatDemandm,p/NatDemandAvg (44)

Overall, the price of exported electricity taken as a time average, is PExport
Elec,Avg = 5.03 p/kWh.

The calculated values of the price of electricity sold to the grid are shown in Table 5.
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Table 5. Cost of imported and exported electricity, per time of day and year.

Time
Period p1 p2 p3 p4 p5 p6

Time of day 07:00–09:00 09:00–12:00 12:00–13:00 13:00–18:00 18:00–22:00 22:00–07:00

Season Price purchased electricity, PImport
Elec,m,p [pence/kWh]

Spring, m1 31.120 33.660 8.290 10.110 24.870 8.787
Summer, m2 25.370 28.350 6.964 8.290 19.900 7.295
Autumn, m3 28.190 31.500 7.793 9.285 21.550 8.124
Winter, m4 36.480 39.790 9.948 11.610 29.840 9.948

Season Price exported electricity, PExport
Elec,m,p [pence/kWh]

Spring, m1 9.625 10.390 2.560 3.123 7.680 2.713
Summer, m2 7.833 8.755 2.150 2.560 6.144 2.253
Autumn, m3 8.703 9.727 2.406 2.867 6.655 2.509
Winter, m4 11.260 12.290 3.072 3.584 9.215 3.072

3. Results and Discussion

In this section, a super-structure mixed integer linear programming (MILP) model is
solved for the optimal design and operation of a DER system at the neighborhood level,
using the CPLEX solver in GAMS® [33].

3.1. Baseline Scenario

An optimization problem is solved for the design of the network, without the use of
dynamic pricing, based on the technologies presented in the previous Section.

After a CPU time of 0.3 s and for an optimality gap of 0%, the optimal solution gives a
total annualized cost of £-2171.86. The optimal design is presented in Figure 4, with the
installed capacities shown in Table 6.
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Table 6. Integrated DER technologies installations for the Baseline network.

Technology House i1 House i2 House i3 House i4 House i5

Abs, kW 3.000
AC, kW 1.500 1.500 1.500 1.540 1.680

Battery, kW
BB, kW 10 10 10 10 10

SCHP, kW
FCHP, kW
ICHP, kW 1.233 0.712 0.715 0.833 0.833
GB, kW
GH, kW

MG →i2 →i3 →i4 →i5
PL

PV, kW
TS, kW 0.781 0.961 1.000 1.184
WT, kW 1.500 1.500 1.500
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Note that the battery storage is considered too expensive to be installed in the Baseline
network. The input data used for the case study are presented in Appendix A. For the
Baseline scenario, the electricity prices are constant.

3.2. Scenario 1: Set Network

Once the results of the optimization are obtained for the Baseline scenario, a model is
built in which this network was fixed (Set) in terms of technologies installed, capacities and
network connections. Furthermore, this Set network is assumed to have variable operation,
so that the effect of the dynamic pricing could be investigated.

To create this model, the number and capacities of the installed technologies are
considered as set input parameters, while the operational variables, such as the energy
produced, are left to be determined by the optimizer. Moreover, the electricity prices are
considered as parameters dependent on time of day, p, and season, m, as defined in Table 5.

All scenarios for the Set network, are run to full optimality in around 1/10th of a
second. The results of the various scenarios for this case are shown in Table 7 in terms of
economic and environmental impact.

Table 7. Comparison of economic and environmental impacts for the Set network scenario.

Pricing Strategy
CO2 Emissions Network Profitability Investment Cost Sales to Grid Purchases from Grid

kg/kWh % £/year % £ % £/year % £/year %

Constant pricing (Baseline) 0.0856 1535.81 51,178.72 1106.57 9.85
Variable import price 0.0855 −0.11 1525.21 −0.69 51,178.72 0 1100.55 −0.54 14.54 +47.6
Variable export price 0.0866 +1.17 1564.86 +1.89 51,178.72 0 1128.68 +2.00 9.85 0

Variable
import & export price 0.0866 +1.17 1550.80 +0.98 51,178.72 0 1128.68 +2.00 23.91 +143.0

3.2.1. Variable Import Price

The variable import price has little effect on the operation of the Set network, since
this design generates almost all of the electricity required to fulfil its needs. As a result, the
times of grid import, and the volumes imported do not change.

While the use of dynamic import pricing marginally reduces the network profitability
for this scenario, in absolute terms the network is still very profitable, and offers users an
income from energy usage as opposed to a cost (Table 7).

The impact of the dynamic pricing is, of course, limited because of the ability of the
network to provide much of its own electricity. Additionally, the network is not able to
load shift its demands to cheaper times of the day and, therefore, cannot modulate the
imports much.

This result is in agreement with Finn and Fitzpatrick [12] who showed that industrial
importers of electricity could only modulate demands to meet cheap dynamic pricing times
if the nature of their business allowed them to.

This discovery is important since it lets future researchers of dynamic pricing strategies
know that networks largely independent of national grids and which cannot load shift
their demands need more extreme pricing values to encourage consumption of grid energy.

3.2.2. Variable Export Price

The variable export price has a larger impact on both CO2 emissions and sales to the
grid, which increase roughly proportionally. The profitability of the network also increases
with the dynamic export pricing.

The dynamic export pricing has a greater impact on the Set network’s operation
compared to the dynamic import pricing (Table 7). The variable export price encourages
greater exports to the grid, which also increase CO2 emissions per kWh. The carbon
intensity of energy generated in the network is, however, far less than that of the national
grid (0.254 kg CO2 kWh−1 [1]).
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This implies a saving of emissions for both the network houses and for the grid, due to
the low carbon energy exported. The increased CO2 emissions for this scenario compared
to the Baseline, are due to a combination of the increased profits from sales and the high
FITs available for CHPs in the UK. This encourages the production of electricity from CHPs
over other units like PV cells and WTs, which are subsidized less.

Such a finding is significant to the UK government, and other policy makers who
provide similar pricing to the FIT and RHI schemes, since the reduction of power-related
emissions could be improved by reconsidering the FIT payment strategy so as not to favor
CHP generation over technologies that emit less.

3.2.3. Combined Variable Import and Export Price

The combined variable import and export pricing increases the charges from the grid
and reduces the profitability, without an impact on the sales to the grid or carbon emissions.

Despite reducing profits, dynamic import pricing still offers increased profitability
against the Baseline, when combined with the dynamic export price (Table 7).

This could be used as a justification for the simultaneous use of both dynamic import
and export pricing to control DERs in a way which would benefit both DER owners and
grid operators. The quick run-time of all fixed network models is encouraging, since it
demonstrates that MILP models enable full optimization of operations, given a mass of
data over a long time period.

3.3. Scenario 2: Unset Network

A second set of case studies is investigated, in which the design of the network is
completed with dynamic pricing strategies included. This is done for the comparison
between the design and operation of DER networks which have been already designed and
those which have yet to be designed. For this scenario, the electricity imports and export
prices are time-dependent parameters.

3.3.1. Variable Import Price

When a variable import price is introduced to the Unset network, the technologies
installed are the same as in the case of the Baseline network, with the exception of an
ICHP of 1.369 kW installed in house i1. Moreover, the operation changes slightly, such that
the network becomes independent of imports from the grid, and more profitable due to
increased income and reduced payment to the grid. The investment increases more than
the network’s profitability, as detailed in Table 8.

Table 8. Comparison of economic and environmental impacts for the Unset network scenario.

Pricing Strategy
CO2 Emissions Network Profitability Investment Cost Sales to Grid Purchases from Grid

kg/kWh % £/year % £ % £/year % £/year %

Constant pricing (Baseline) 0.0856 1535.81 51,178.72 1106.57 9.85
Variable import price 0.0865 +1.05 1527.80 −0.52 51,460.66 +0.55 1123.49 +1.53 0.00 0
Variable export price 0.1070 +25.00 1620.83 +5.34 57,460.54 +12.3 1630.08 +47.3 0.00 0

Variable
import & export price 0.1070 +25.00 1620.83 +5.34 57,460.54 +12.3 1630.08 +47.3 0.00 0

Similar to Scenario 1, the dynamic import pricing alone causes a slight reduction in the
network’s profitability, with the advantage of making it independent of the grid (Table 8). This
is due to the network having to generate more energy to meet its own demands, although the
electricity billing from the grid is lower.

However, unlike the Set network design scenario dynamic pricing study, the CO2 emis-
sions increase because of the increased CHP operation. Results also demonstrate that such
MILP models, where many technology installations and modes of operation are possible,
can make slight adjustments which mitigate the effects of disruptive pricing factors.
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3.3.2. Variable Export Price

The technologies installed in the case of the variable export prices scenario for the
Unset network are shown in Table 9. The CHPs in this scenario increase in size across
all homes, likely due to the increased profit available from the electricity generation. An
interesting outcome of the simulation is the reduced reliance upon TS, to such an extent
that all houses, bar i5, did not require a TS unit. The unit installed in i5 is used to meet
DHW demands.

Table 9. Integrated DER technologies installations for the Unset network scenario with dynamic
export pricing.

Technology House i1 House i2 House i3 House i4 House i5

Abs, kW 3.000 3.000
AC, kW 1.500 1.500 1.500 1.500

Battery, kW
BB, kW 10 10 10 10 10

SCHP, kW
FCHP, kW
ICHP, kW 1.669 1.238 1.333 1.558 1.400
GB, kW
GH, kW

MG →i2 →i3 →i4 →i5
PL →i5

PV, kW
TS, kW 0.490
WT, kW 1.500 1.500 1.500

The dynamic export pricing has a far greater impact on the network than the dynamic
import pricing. The network has no capability to manage its times of consumption, except
in the case of the AC units, which could either be installed or not, and used or not, as
necessary. This is significant in the results for the network design, as shown by the
installation of Abs chillers.

The Baseline scenario does not utilize chillers (Table 6), but when dynamic export
pricing is used, the network uses less of its own electricity for cooling purposes, since it is
much more profitable to sell it to the grid. Therefore, Abs chillers are installed (Table 9) to
meet cooling demands instead of AC units. This is also reflected in the increased size of
CHPs in this scenario, not only to power the chillers, but also to produce electricity to be
sold to the grid.

It should also be noted that the relative increase in investment cost is not mitigated by
the absolute increase in profitability (Table 8). The lifetime of the network is assumed to be
20 years, and, in this time, the increased investment cost would not be paid back.

However, the model is designed to achieve the greatest profit, regardless of investment
cost, and not the greatest return on investment (ROI). Hence, ROI might be a more suitable
economic measure and objective for future work.

The fact that the increase in investment cost is not mitigated by the increase in prof-
itability is likely the result of the excess heat generated due to greater CHP use. The AC
unit for house i4 reduces in size in this scenario. A value of 1.500 kW was set as the lower
bound of available AC units’ capacity, hence, this value could be reduced further. It can be
predicted that smaller AC units might have been installed had they been available.

A second Abs is required in house i4, as shown in Figure 5. This case study also makes
a PL economical between houses i4 and i5. This is likely determined by the increased
heat from the CHPs, due to increased electricity production. This extra heat can be used
for cooling in the Abs in i4, which means that sharing of cold loads is enough to cool
both homes.
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3.3.3. Combined Variable Import and Export Price

The installations made and the operation of the DER during the dynamic export pricing
scenario (Section 3.3.2) do not change in the combined case, because the network does not
consume any electricity from the grid. No table or diagram is therefore presented, because the
technologies installed are the same as the ones presented in Figure 5 and Table 9.

The fact that dynamic import pricing does not make any adjustment to the operation or
set-up of installations on the network is important from the perspective of grid operators,
as it demonstrates that systems designed with a prior knowledge of the exact pricing
strategy can mitigate the negative impacts on the network users. Unless more stringent
controls are put in place by the national grid or the network is sufficiently incapable of
providing its own demands.

3.4. Scenario 3: Battery Enabled Network

Previous MILP models of DERs that have permitted the use of battery storage con-
strained them to operate only within the bounds of the network in which they are installed
and not to buy or sell electricity from or to the grid [7]. Additionally, dynamic pricing has
not been used in conjunction with batteries.

Therefore, the ability to buy and sell from or to the grid through batteries, as well as
the use of dynamic pricing is investigated under an Unset network scenario. Investigations
are completed to find the maximum price per kWh of installed capacity at which the
batteries became economical, hereafter termed maximum unit capacity price (MUCP).

This is done by running the Unset network design MILP model described in Scenario
2 multiple times, in a dual optimality framework. In this approach, the cost per kWh is
increased with each iteration until a battery is installed in the resulting network, but any
further increase in price would not result in a battery being installed. This gives the MUCP
to the nearest £1.00 per kWh.

3.4.1. Non-Grid Connected Battery Network

For the non-dynamic pricing-controlled network, no MUCP is found. Even at an
installation price of 0.00 £/kWh, battery installation is not favored. The explanation of this
is that the generation units are unable to make money from sales to the grid, in order to
recover the cost of energy which is lost when electricity is stored in the batteries. Thus,
the installations made in this scenario, are not listed in a table or diagram, since they are
identical to those obtained in the Baseline scenario (Table 6).

It is in the nature of such MILP models to only install technologies if they make
additional gains in profit for the network. Since non-grid connected batteries are not able
to make additional sales to the grid and the energy lost within them essentially constitutes
a loss of profits, they are therefore not installed.

This was also concluded by Wouters et al. [7], at a neighbourhood level, and Xu
et al. [10], at a national grid level. While this result is not novel, it is important since it
confirms the reliability of both the investigations done by the previous authors and the
results presented here. It also confirms the importance of dynamic pricing for making
battery usage more economical, to stabilize electrical grids.
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3.4.2. Grid-Connected Battery Network and Constant Electricity Pricing

A constant electricity pricing is considered in the first scenario where batteries are
connected to and could trade with the national grid. The MUCP is found to be 199 £/kWh
in this case, a sizeable reduction in pricing of approximately 45% against the value used
for the base model (360 £/kWh), taken from literature [3]. An interesting result is that the
installation of the battery encourages the installation of a PL from house i5 to i4, as shown
in Figure 6.
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This is because the battery in i5 allows excess electricity from the CHP to be stored,
and the CHP can generate enough heating and cooling power for both i5 and i4. Thus, it
reduces the cost against the scenario in which both homes have Abs units. The installed
technologies for the grid connected battery network with constant import pricing are
summarized in Table 10.

Table 10. Integrated DER technologies installations for the grid connected network with constant
import pricing.

Technology House i1 House i2 House i3 House i4 House i5

Abs, kW 3.000 3.000
AC, kW 1.500 1.500 1.500 1.500

Battery, kW 6.492
BB, kW 10 10 10 10 10

SCHP, kW
FCHP, kW
ICHP, kW 1.233 0.712 0.715 0.833 1.479
GB, kW
GH, kW

MG →i2 →i3 →i4 →i5
PL →i4

PV, kW
TS, kW 0.781 0.961 1.000 1.151
WT, kW 1.500 1.500 1.500

The relatively low MUCP for batteries in this scenario demonstrate the technological
advancements needed to bring down the cost of batteries and their control systems, in
order to encourage more renewable energy storage under current modes of operation.
While the units are capable of charging from the grid, they do not.

This is likely the result of the fact that the grid electricity costs more than the one
self-generated. Battery installation allows excess electricity from CHPs to be stored so that
greater thermal energy can be generated to meet the demands of other dwellings. Thus,
the number of thermal technologies needed in other homes is minimized.

This result is noteworthy since space will be a significant issue when implementing DERs
in real neighborhoods and the use of affordable batteries could reduce spacing requirements.

3.4.3. Grid Connected Battery Network with Dynamic Import Price

The dynamic import price makes little difference to the design of the network, which
generates almost all of its own electricity. Dynamic pricing does not encourage the battery
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to charge from the grid and sell back later at a profit, possibly because the electricity lost in
the batteries makes this uneconomical.

The value for the MUCP is also £199/kWh, and all the technologies and their installed
capacities are identical to the previous case study, with the exception of the ICHP in
house i1, which has a higher capacity (1.370 kW). No diagram or table of installations is
therefore presented.

As for previous scenarios, the dynamic import pricing reduces the profitability of the
network and increases CO2 emissions and investment costs, without making significant
changes to the network design. Dynamic import pricing alone is, therefore, not enough to
encourage uptake of battery units in DER networks.

A pricing strategy could, therefore, be developed in which grid operators pay users
to operate their residential batteries and thus charge and discharge them to help flatten
supply and demand curves.

3.4.4. Grid Connected Battery Network with Dynamic Export Price

With the implementation of the dynamic export price, the MUCP increases to £291/kWh,
which is significantly closer to the original design value and represents only a 20% reduction in
costing against the literature value used for the Baseline scenario. The battery does not charge
from the grid and the size of the unit decreases compared to previous simulations, as shown in
Table 11.

Table 11. Integrated DER technologies installations for the grid connected battery network with
dynamic export pricing.

Technology House i1 House i2 House i3 House i4 House i5

Abs, kW 3.000 3.000
AC, kW 1.500 1.500 1.500 1.500

Battery, kW 4.793
BB, kW 10 10 10 10 10

SCHP, kW
FCHP, kW
ICHP, kW 1.669 1.238 1.333 1.467 1.700
GB, kW
GH, kW

MG →i2 →i3 →i4 →i5
PL →i4

PV, kW
TS, kW 0.781 0.961 1.000 1.151
WT, kW 1.500 1.500 1.500

Additionally, the FIT payments increase significantly from £14,872.43 to £15,941.80
per year. Similarly, to the scenario of the Unset network, the dynamic export price causes a
reduction in TS installation (in this case, a total reduction).

CHP units always run and there is sufficient heat to not need TS units. This excess
heat also leads to the supply of thermal power from house i5 to i4 via the PL (Figure 7).
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Dynamic export pricing for batteries encourages increased sales to the grid and, in
turn, permits a higher MUCP, representing a significantly reduced need for technology
prices to fall.

A novel discovery shown in this case study is that a significant reduction in the
number of units is observed in many of the houses when a combination of batteries and
dynamic export pricing is considered. This happens despite the fact that only one of them is
installing a battery (albeit at the cost of the space becoming more crowded with equipment).

The combination of batteries and dynamic export pricing can justify the development
of “semi-centralized” DER networks, in which many technologies are placed in a central
location as opposed to into a single house. This can simplify the maintenance of real-world
DER networks, since repairs could be completed without access to homeowners’ properties.

3.4.5. Grid Connected Battery Network with Combined Dynamic Import and
Export Pricing

The addition of dynamic import to the dynamic export pricing does not affect the
MUCP of the battery units, nor the technologies installed since no electricity purchases are
made from the grid. Hence, no table or diagram of the installed units is presented for this
scenario. Table 12 presents a summary of the economics and environmental effects for all
the case studies of the grid connected battery network scenarios investigated.

Table 12. Comparison of economic and environmental impacts for the grid connected battery network scenarios.

Pricing Strategy CO2 Emissions Network
Profitability Investment Cost Sales to Grid Purchases from

Grid

kg/kWh % £/year % £ % £/year % £/year %

Constant pricing & No
battery (Baseline) 0.0856 1535.81 51,178.72 1106.57 9.85

No grid connected battery 0.0856 0 1535.81 0 51,178.72 0 1106.57 0 9.85 0
Grid connected battery 0.0935 +9.23 1535.90 +0.01 54,388.44 +6.27 1400.41 +26.6 0.00 −100

Grid connected battery &
Variable import pricing 0.0945 +10.40 1527.81 −0.52 54,673.30 +6.83 1417.56 +28.1 0.00 −100

Grid connected batter &
Variable export pricing 0.1086 +26.9 1621.03 +5.55 59,475.55 +16.2 1853.80 +67.5 0.00 −100

Grid connected battery &
Variable import and

export pricing
0.1086 +26.9 1621.03 +5.55 59,475.55 +16.2 1853.80 +67.5 0.00 −100

Similar to the previous scenarios, the combined effects of dynamic pricing are not sig-
nificant enough to impact the network beyond that of the dynamic export case study alone.

As for all MILP models, the accuracy of the solutions is highly dependent on the
accuracy of the data used and the assumptions on the operation of the network. For
example, if it had been assumed that batteries could transfer to and from the MG, then the
results of the MUCP investigations may have been different.

Therefore, other strategies are needed to encourage the uptake of batteries into DERs
since the dynamic import pricing strategy presented in this paper seems to be insufficient.

The ability of batteries to sell to the grid is critical in making them economically
viable. This has been a key issue for authors investigating the stabilization of renewable
power. While the MUCP values found may be low, they still represent a target for which
researchers and battery manufacturers should aim for.

Such prices would encourage investment in grid connected storage units and help
stabilize the supply. Reduction in pricing of other related battery components was not
investigated here. In this case the cost savings could come from: the reduction in the cost
of battery controller units, fixed and variable operating and maintenance costs, or through
alternative arrangements in which one controller can moderate multiple batteries or one
battery can link to multiple houses via the MG. In all scenarios, the battery is not used to
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meet the demands of the homes, nor do batteries charge from the grid. Instead, batteries
are solely used for profiting from sales.

The discovery that batteries cannot be installed in a purely profit driven optimization
model indicates that an optimization of the grid stability or emissions reduction should
also be explored, so that they are utilized more readily.

4. Conclusions

The short optimization times of the fixed network models is encouraging, since it
demonstrates that optimization using dynamic pricing control is achievable and technolo-
gies should be able to rapidly and reliably respond to incoming demand and pricing data,
even for time periods in the distant future.

Of course, in a real-world scenario the optimization might be completed for many
more houses and other buildings across considerably greater distances, with many more
variables to be considered, including real-time weather data and network failure updates.

However, in these circumstances the optimization would be run on specially designed
software, on more powerful, purpose-built computers, possibly super-computers, and may
also be completed for only a few days or even hours ahead of time, due to the inaccurate
nature of weather or other data beyond this period.

The models used in this investigation have extremely low usage of grid imports and,
consequently, the results into the use of dynamic import pricing are limited in revealing
greater understanding of residential DERs, for all scenarios. However, this could not have
been known until all simulations were run, i.e., the use of batteries or dynamic charging
may have encouraged trading of energy.

The work is also limited by the small number of time slots used per day, the number
of houses and demands and the use of average weather data, instead of, for example, a
statistical model in which wind and solar data are derived from a Weibull distribution [7].
A statistical distribution could also have been used for the demand data.

It would be useful to model a scenario in which the network has less access to self-
generation and thus relies more on the grid, since the effect of dynamic import pricing is
small due to the network’s ability to almost always meet its own demands. Dynamic FIT
values could also be investigated to encourage stability from reliable electricity sources.

Scale-up effects of the scenarios investigated should be explored for increased number
of homes, businesses and demand profiles across multiple regions or nations.

Critically, if dynamic pricing is to be used as a control strategy by national grids, more
work is needed to develop the theory of how dynamic prices might be generated to meet
the needs of the grid and how often they should be updated.

An alternative to using dynamic pricing could be the use of dynamic limitations on
imports or exports. For example, during times of high demand, the grid might impose that
a DER network cannot withdraw more than a set limit. This would force the DER network
to supply its own energy. On the other hand, in times of high supply, for example on a
windy, sunny summer’s day, the grid might impose that a DER cannot export more than a
certain amount of electricity to the grid. More work is clearly needed to investigate if it
is better to force generation and consumption or offer economic incentives, which make
generation and consumption more likely.
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Nomenclature

Name Meaning Unit

Variables

CTotal Annualised cost of the energy network £/year

Positive variables

CInv Investment cost £/year
CO&M Operating and maintenance costs £/year
CTax Annual cost of carbon emission taxation £/year
CFuel Annual cost of imported energy and fuel £/year
CInc Annual income £/year
CRF Capital recovery factor
Gen Generated power kW
EGrid Electricity purchased from the grid kW
ESale Electricity sale kWh
Demand Energy demand kW
B Loss coefficient
Transfer Electricity sent to MG kW
Use Energy for self-use kW
StoreOut Energy sent from storage kW
StoreIn Energy sent to storage kW
Store Energy stored kW
L Length of cable M
card Value of i
Ccapital Capital cost £
O Order of a house in a MG or PL network
A Surface area m2

W Power generated by wind kW
NatDemand National demand

Binary variables

Y Binary variable that determines whether a technology is installed in a home
Z Binary variable that determines the existence of the MG

Parameters

CIgas Carbon intensity of natural gas kgCO2/kWhgas
CIgrid Carbon intensity of electricity kgCO2/kWhelec
COM,Fix Fixed O&M costs £
COM,Var Variable O&M costs £
Ccable Cost of cable
Ccontroller

capital Capital cost of the MG controller
COM Operational and maintenance cost £
CoP Coefficient of power
CPL Cost of pipe £/m
Crate Rated capacity kW
LB Lower bound of capacity
UB Upper bound of capacity
HER Heat to electricity ratio of CHPs
N Project lifetime year
H Efficiency %
PCO2 Government tax of CO2 emitted p/kgCOs
PElec Price of electricity p/kWh
Pgas Regulated price of gas p/kWh
PFIT FIT for generating electricity p/kWh
PRHI RHI payment £/year
PSale Price of electricity sold to the grid p/kWh
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Name Meaning Unit

day Number of days
hours Number of hours
season Number of seasons
θ Static loss %
χ Charge rate %
∆χ Discharge rate %
DoC Depth of discharge
Pbiomass Price of biomass p/kWh
SIr Solar irradiance
RPC Rated panel capacity kW/m2

ζ Loss coefficient of TS
R Interest rate %
V Wind speed m/s
VCI Cut-in wind speed m/s
VR Rated wind speed m/s
VCO Cut-out wind speed m/s

Appendix A. List of Parameters Used

Parameter Meaning Unit Value Reference

R Interest rate % 7.5 [6,7]
N Project lifetime year 20 [6,7,20–23]
PCO2 Carbon tax of CO2 p/kgCO2 1.8 [34]
PImport

Elec,Avg Average cost for electricity purchase p/kWh 0.1629 [35]

Pgas Regulated tariff for gas purchase p/kWh 0.0421 [35]
CIgrid Carbon intensity of electricity kgCO2/kWhelec 0.2540 [1]
CIgas Carbon intensity of natural gas kgCO2/kWhgas 0.20423 [36]
ηGB Thermal efficiency of the GB % 94 [20,37]
CGB

capital Capital cost of GB $/kW 40 [23]
CGB

OM,Var Variable O&M cost of GB p/kWh 2.7 [38]
PPV

FIT FIT for generating electricity from PV p/kWh 3.93 [25]
PPV

Sale Price of selling excess electricity from PV p/kWh 5.03 [23]
CPV

capital Capital cost of PV £/kWh 1000 [7]
ηPV Electrical efficiency of PV % 18 [39]
PRC Rated capacity kW/m2 0.178 [39]
UBPV Upper limit of installed PV capacity kW 10 [25]
CPV

OM,Fix Fixed O&M costs of PV £/kW/year 12.5 [39]
CPV

OM,Var Variable O&M costs of PV p/kWh 0.5 [40]
PWT

FIT FIT for generating electricity from WT p/kWh 8.19 [25]
PWT

Sale Price of selling excess electricity from WT p/kWh 5.03 [25]
VCI Cut-in wind speed m/s 3 [24]
VR Rated wind speed m/s 9 [24]
VCO Cut-out wind speed m/s 60 [24]
CWT

OM,Fix Fixed O&M costs of WT £/kW/year 100 [22]
CWT

OM,Var Variable O&M costs of WT p/kWh 2.82 [22]
kWT Rated capacity of WT kW 1.5 [24]
PCHP

FIT FIT for generating electricity from CHP p/kWh 13.95 [25]
PCHP

Sale Price of selling excess electricity from CHP 5.03 5.03 [25]
CICHP

capital Capital cost of the ICHP unit £/kWh 1900 [3]
LBICHP Lower capacity of the ICHP unit kW 0.5 [41]
UBICHP Upper capacity of the ICHP unit kW 20 [38]
CICHP

OM O&M cost of the ICHP unit p/kWh 2.7 [38]
η ICHP Electrical efficiency of the ICHP unit % 40 [38]
HERICHP Heat to electricity ratio of ICHP 1.2 [38]
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Parameter Meaning Unit Value Reference

CSCHP
capital Capital cost of the SCHP unit £/kWh 5000 [42]

LBSCHP Lower capacity of the SCHP unit kW 0.3 [5]
UBSCHP Upper capacity of the SCHP unit kW 9.5 [7]
CSCHP

OM O&M cost of the SCHP unit p/kWh 2.7 [38]
ηSCHP Electrical efficiency of the SCHP unit % 28 [20]
HERSCHP Heat to electricity ratio of SCHP 4.85 [6]
CFCHP

capital Capital cost of the FCHP unit £/kWh 12,000 [43]
LBFCHP Lower capacity of the FCHP unit kW 1 [43]
UBFCHP Upper capacity of the FCHP unit kW 10 [44]
CFCHP

OM O&M cost of the FCHP unit p/kWh 3.24 [43]
ηFCHP Electrical efficiency of the FCHP unit % 50 [45]
HERFCHP Heat to electricity ratio of FCHP 1 [44]
CAbs

capital Capital cost of the Abs unit £/kW 106.76 [46]
LBAbs Lower capacity of the Abs chillers kW 3 [47]
UBAbs Upper capacity of the Abs chillers kW 20 [47]
CAbs

OM O&M cost of the Abs chillers p/kWh 0.181 [46]
CoPAbs Abs chillers coefficient of power 0.7 [3]
CAC

capital Capital cost of the AC unit £/kW 200 [46]
LBAC Lower capacity of the AC unit kW 1.5 [47]
UBAC Upper capacity of the AC unit kW 30 [47]
CAC

OM O&M cost of the AC units p/kWh 0.64 [46]
CoPAC AC unit’s coefficient of power 3 [3]
CGH

capital Capital cost of GH £/kW 56.31 [7]
LBAC Lower capacity of the GH kW 5 [7]
UBAC Upper capacity of the GH kW 35 [7]
ηGH Thermal efficiency of the GH % 75 [7]
CTS

capital Capital cost of TS £/kW 21.3 [23]
LBTS Lower capacity of the TS kW 0.15 [7]
UBTS Upper capacity of the TS kW 20 [38]
ζ Loss coefficient for TS 0.02 [38]
CTS

OM O&M cost of TS p/kWh 0.1 [38]
CES

capital Capital cost of electrical storage £/kWh 360 [3]
LBES Lower capacity of the electrical storage kW 1 [48]
UBES Upper capacity of the TS kW 100 [48]
CES

OM O&M cost of electrical storage p/kWh 0.5 [37]
Ccontroller

captal Capital cost of charge controller per battery £ 196.79 [7]
θ Static loss % 5 [38]
χ Charge rate % 10 [7]
∆χ Discharge rate % 15 [7]
χMax Maximum charge % 100 [7]
∆χMax Maximum discharge % 100 [23]
DoC Depth of discharge % 100 [48]
Ccontroller,MG

capital Capital cost of the MG central controller £ 1184.47 [7]

Ccontroller,MG
OM O&M cost of the MG central controller £/year 20.9094 [49]

Ccable Capital cost of the MG cable £/m 35.31 [7]
CBB

C Capital cost of the BB £/kW 510 [20]
ηBB Thermal efficiency of the BB % 87 [20]
PBB

FIT FIT for generating electricity from BB p/kWh 6.54 [25]
PBB

RHI Yearly RHI payment for BB £/year 135 [50]
Pbiomass Biomass price p/kWh 3 [20]
LBBB Lower capacity of BB kW 10 [20]
UBBB Upper capacity of BB kW 50 [20]
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Appendix B. Acronyms

Acronym Meaning

Abs Absorption chiller
AC Air conditioning
BB Biomass boiler
CHP Combined heat and power
CoP Coefficient of performance
DG Distributed generation unit
DER Distributed energy resource
DHW Domestic hot water
E Electricity
ES Electrical storage
FCHP Fuel cell CHP
FIT Feed-in tariff
GB Gas boiler
GH Gas heater
HER Heat to electricity ratio of CHP units
ICHP Internal combustion engine CHP
MG Microgrid
MUCP Maximum unit capacity price
O&M Operating and maintenance
PL Pipeline
PV Photovoltaic cells
RHI Renewable heat incentive
SCHP Sterling engine CHP
Tech Technology
TS Thermal storage
WT Wind turbine
Subscript Meaning
Avg Average
I House number
J House number, i 6= j
M Month
Max Maximum
P Time period
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