Effects of Different Mixture Ratios of Methanol-Diesel on the Performance Enhancement and Emission Reduction for a Diesel Engine
Abstract
:1. Introduction
2. Methods and Model Validation
2.1. An Improved Entire Diesel Engine Simulation Model
2.1.1. Intake and Exhaust Pipe Model
2.1.2. Cylinder Model
2.1.3. Combustion Model
2.1.4. Heat Transfer Model
2.1.5. Turbocharging Mathematical Model
2.1.6. Emission Model
2.2. Simulation Model Establishment of an Entire Diesel Engine
2.3. Fuel Properties
2.4. Model Validation
3. Results and Discussion
3.1. The Engine Combustion Characteristic
3.2. The Engine Economic Characteristic
3.2.1. Engine Power and Torque
3.2.2. Brake Specific Fuel Consumption
3.2.3. Brake Thermal Efficiency
3.3. The Engine Emissions Characteristics
3.3.1. Soot Emission
3.3.2. NOx Emission
3.3.3. CO Emission
3.3.4. HC Emission
4. Conclusions
- (1)
- The addition of methanol improves the combustion characteristic of the diesel engine. More specifically, the addition of methanol makes the fuel mass in the premixing period increase. Moreover, the addition of methanol accelerates the combustion rate of the fuel mixture and shortens the combustion time. As a result, the cylinder pressure is increased, and the cylinder temperature is decreased.
- (2)
- The increase in BSFC is because as the methanol content increases, it increases the engine delay period. Moreover, the low calorific value of methanol increases fuel consumption and leads to poor engine economy. Likewise, the high oxygen content of methanol causes the BTE to become larger.
- (3)
- The addition of methanol decreases the emissions of soot, NOx, and CO. The high oxygen content of methanol allows complete combustion of the fuel, which leads to the decrease of soot and CO emissions. In addition, the latent heat of vaporization of methanol is large, and the diffusion rate and combustion rate are more significant than that of diesel, which shortens the combustion time and inhibits the generation of NOx.
- (4)
- The addition of methanol increases the HC emission. The decrease in the in-cylinder combustion temperature increases the quenching effect and increases the HC emission. However, due to the increase of EBP of the improved model, the HC emission is decreased, and the CO, soot, and NOx emissions are decreased.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, T.; Becker Sid, M.; Cao, F.; Wang, B.; Tang, A.; Fu, J.; Han, L.; Sun, Y.; Zhao, D. NOx Emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system. Chem. Eng. J. 2021, 417, 128033. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D.; Wang, B.; Li, J.; Guan, Y. NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor. Fuel 2020, 280, 118554. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, H.; Huang, Z.; Tan, J.; Zuo, Q. Endpoint forecast of different diesel-biodiesel soot filtration process in diesel particulate filters considering ash deposition. Fuel 2020, 272, 117678. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Liu, G.; Zhang, Z.; Han, D.; Chen, J.; Wei, K.; Gong, J.; Yin, Z. Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model. Appl. Energy 2019, 243, 321–335. [Google Scholar]
- Ye, J.; Lv, J.; Tan, D.; Ai, Z.; Feng, Z. Numerical Analysis on Enhancing Spray Performance of SCR Mixer Device and Heat Transfer Performance Based on Field Synergy Principle. Processes 2021, 9, 786. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhao, M.; Zuo, Q.; Zhang, B.; Zhiqing, Z.; Peng, Q.; Han, D.; Zhao, X.; Deng, Y. Effects analysis on diesel soot continuous regeneration performance of a rotary microwave-assisted regeneration diesel particulate filter. Fuel 2020, 260, 116353. [Google Scholar]
- Cai, T.; Zhao, D. Effects of fuel composition and wall thermal conductivity on thermal and NOx emission performances of an ammonia/hydrogen-oxygen micro-power system. Fuel Process. Technol. 2020, 209, 106527. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Tan, D.; Feng, Z.; Luo, J.; Tan, Y.; Huang, Y. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhao, X.; Qiu, L.; Zhang, Z.; Han, D.; Deng, Y. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Convers. Manag. 2019, 193, 149–161. [Google Scholar]
- Gong, C.; Lib, Z.; Huang, K.; Liu, F. Research on the performance of a hydrogen/methanol dual-injection assisted spark-ignition engine using late-injection strategy for methanol. Fuel 2020, 260, 116403. [Google Scholar] [CrossRef]
- Gong, C.; Yia, L.; Zhang, Z.; Sund, J.; Liu, F. Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios. Appl. Energy 2020, 261, 114478. [Google Scholar] [CrossRef]
- Yao, C. Reduction of Smoke and NOx from Diesel Engines using Diesel/Methanol Compound Combustion System. Energy Fuels 2007, 21, 686–691. [Google Scholar] [CrossRef]
- Berber, A. The effect of Diesel-Methanol Blends with Volumetric Ratios on the Performance and Emissions of a Diesel Engine. Mechanika 2019, 25, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Zang, R.; Yao, C. Numerical Study of Combustion and Emission Characteristics of a Diesel/Methanol Dual Fuel (DMDF) Engine. Energy Fuels 2015, 29, 3963–3971. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiaqiang, E.; Deng, Y.; Pham, M.; Zuo, W.; Peng, Q.; Yin, Z. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Convers. Manag. 2018, 159, 244–253. [Google Scholar] [CrossRef]
- Cong, S.; Garner, C.; McTaggart-Cowan, G. The Effects of Exhaust Back Pressure on Conventional and Low-Temperature Diesel Combustion, Proceedings of the Institution of Mechanical Engineers. J. Automob. Eng. 2011, 225, 222–235. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D.; Sun, Y.; Ni, S.; Li, W. Evaluation of NOx Emission Characteristics in a CO2-Free Micro-Power System by Implementing a Perforated Plate. Renew. Sustain. Energy Rev. 2021, 145, 111150. [Google Scholar] [CrossRef]
- Herreros, J.M.; Gill, S.S.; Lefort, I.; Tsolakis, A.; Millington, P.; Moss, E. Enhancing the low temperature oxidation performance over a Pt and a Pt-Pd diesel oxidation catalyst. Appl. Catal. B Environ. 2014, 147, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Franken, T.; Vieweger, E.; Klimera, A.; Hug, M.; Heel, A. Sulphur tolerant diesel oxidation catalysts by noble metal alloying. Catal. Commun. 2019, 129, 105732. [Google Scholar] [CrossRef]
- Fayad, M.A.; Tsolakis, A.; Fernández-Rodríguez, D.; Herreros, J.M.; Martos, F.J.; Lapuerta, M. Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts. Appl. Energy 2017, 190, 490–500. [Google Scholar] [CrossRef]
- Serrano, J.R.; Arnau, F.J.; Martín, J.; Auñón, Á. Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emission in a Light Duty Diesel Engine. Energies 2020, 13, 4561. [Google Scholar] [CrossRef]
- Liang, Y.; Ding, X.; Wang, J.; Zhao, M.; Dan, Y.; Jiang, L.; Chen, Y. Catalytic performance promoted on Pt-based diesel oxidation catalyst assisted by polyvinyl alcohol. Environ. Sci. Pollut. Res. 2020, 27, 41824–41838. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ding, X.; Dai, J.; Zhao, M.; Zhong, L.; Wang, J.; Chen, Y. Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce. Catal. Today 2019, 327, 64–72. [Google Scholar] [CrossRef]
- Zhao, D.; Guan, Y.; Reinecke, A. Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor. Commun. Phys. 2019, 2, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Jiaqiang, E.; Yang, W.; Hui, A.; Cai, H. Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters ratio. Appl. Energy 2016, 162, 278–288. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, A.; Rashed, M.M.; Teoh, Y.H.; How, H.G. Higher alcohol-biodiesel-diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine. Energy Convers. Manag. 2016, 111, 174–185. [Google Scholar] [CrossRef]
- Xu, H.; Liu, S.; Wang, Y.; Lin, Q.; Lin, C.; Lan, L.; Wang, Q.; Chen, Y. Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment. Appl. Surf. Sci. 2018, 427, 656–669. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiaqiang, E.; Chen, J.; Zhao, X.; Zhang, B.; Deng, Y.; Peng, Q.; Yin, Z. Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester. Appl. Therm. Eng. 2020, 169, 114984. [Google Scholar] [CrossRef]
- Lan, Q.; Bai, Y.; Fan, L.; Gu, Y.; Wen, L.; Yang, L. Investigation on fuel injection quantity of low-speed diesel engine fuel system based on response surface prediction model. Energy 2020, 211, 118946. [Google Scholar] [CrossRef]
- Nikzadfar, K.; Shamekhi, A. Investigating the relative contribution of operational parameters on performance and emissions of a common-rail diesel engine using neural network. Fuel 2014, 125, 116–128. [Google Scholar] [CrossRef]
- Yang, Y.; Dec, J.; Dronniou, N.; Sjöberg, M. Tailoring HCCI heat-release rates with partial fuel stratification: Comparison of two-stage and single-stage-ignition fuels. Proc. Combust. Inst. 2011, 33, 3047–3055. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, Z.; Liu, B. Investigation on the Performance Enhancement and Emission Reduction of a Biodiesel Fueled Diesel Engine Based on an Improved Entire Diesel Engine Simulation Model. Processes 2021, 9, 568. [Google Scholar] [CrossRef]
- Tan, D.; Chen, Z.; Li, J.; Luo, J.; Yang, D.; Cui, S.; Zhang, Z. Effects of Swirl and Boiling Heat Transfer on the Performance Enhancement and Emission Reduction for a Medium Diesel Engine Fueled with Biodiesel. Processes 2021, 9, 568. [Google Scholar] [CrossRef]
- Souza, G.; Pellegrini, C.; Ferreira, S.; Soto, P.; Armas, O. Study of intake manifolds of an internal combustion enine: A new geometry based on experimental results and numerical simulations. Therm. Sci. Eng. Prog. 2019, 9, 248–258. [Google Scholar] [CrossRef]
- Salek, F.; Babaie, M.; Hosseini, S.V.; Beg, O.A. Multi-objective optimization of the engine performance and emissions for a hydrogen/gasoline dual-fuel engine equipped with the port water injection system. Int. J. Hydrog. Energy 2021, 46, 10535–10547. [Google Scholar] [CrossRef]
- Onorati, A.; Ferrari, G.; D’Errico, G. 1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of SI. Engines: Predictions and Experiments. SAE Trans. 2001, 110, 738–752. [Google Scholar]
- Schubiger, R.A.; Boulouchos, K.; Eberle, M.K. Russbildung und Oxidation bei der dieselmotorischen Verbrennung. Motortechnische Zeitschrift 2002, 63, 342–353. [Google Scholar] [CrossRef]
- D’Errico, G.; Ferrari, G.; Onorati, A.; Cerri, T. Modeling the Pollutant Emissions from a S.I. Engine. SAE Tech. Pap. 2002, 111, 1–11. [Google Scholar]
- Pan, M.; Huang, R.; Liao, J.; Jia, C.; Zhou, X.; Huang, H.; Huang, X. Experimental study of the spray, combustion, and emission performance of a diesel engine with high n-pentanol blending ratios. Energy Convers. Manag. 2019, 194, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiaqiang, E.; Chen, J.; Zhu, H.; Zhao, X.; Han, D.; Zuo, W.; Peng, Q.; Gong, J.; Yin, Z. Effects of low-level water addition on spray, combustion and emission characteristics of a medium speed diesel engine fueled with biodiesel fuel. Fuel 2019, 239, 245–262. [Google Scholar] [CrossRef]
- Chu, W. The Experimental Study About the Influence of Methanol/Diesel Fuel Mixture on Diesel Engine Performance. In Proceedings of the Workshop on Power Electronics & Intelligent Transportation System (IEEE), Guangzhou, China, 2–3 August 2008. [Google Scholar]
- Devarajan, Y.; Munuswamy, D.; Nagappan, B.; Subbiah, G. Experimental assessment of performance and exhaust emission characteristics of a diesel engine fuelled with Punnai biodiesel/butanol fuel blends. Pet. Sci. 2019, 16, 1471–1478. [Google Scholar] [CrossRef] [Green Version]
- Justin Abraham Baby, S.; Suresh Babu, S.; Devarajan, Y. Performance study of neat biodiesel-gas fuelled diesel engine. Int. J. Ambient. Energy 2018, 42, 269–273. [Google Scholar] [CrossRef]
- Hasan, A.; Osman, A.; Al-Muhtaseb, A.; Al-Rawashdeh, H.; Abu Jrai, A.; Ahmad, R.; Behiri, M.; Deka, T.J.; Rooney, D. An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Process. Technol. 2021, 220, 106901. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Li, Y. Effects of Co-Combustion Ratio on Rapid Combustion, Cyclical Variation and Emission of a Heavy-Duty Diesel Engine Fueled with Diesel-Methanol Dual-Fuel. Environ. Prog. Sustain. Energy 2017, 1528–1536. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Cheung, C.s.; Yao, C. Influence of fumigation methanol on the combustion and particulate emissions of a diesel engine. Fuel 2013, 11, 442–448. [Google Scholar] [CrossRef]
- Wei, J.; Yin, Z.; Wang, C.; Lv, G.; Zhuang, Y.; Xiangrong, L.; Wu, H. Impact of aluminium oxide nanoparticles as an additive in diesel-methanol blends on a modern DI diesel engine. Appl. Therm. Eng. 2020, 185, 116372. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Pham, M.; Zhao, D.; Deng, Y.; Le, D.; Zuo, W.; Zhu, H.; Liu, T.; Peng, Q.; Zhang, Z. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renew. Sustain. Energy Rev. 2017, 80, 620–647. [Google Scholar]
- Sayin, C. Engine performance and exhaust gas emissions of methanol and ethanol-diesel blends. Fuel 2010, 89, 3410–3415. [Google Scholar] [CrossRef]
- Yerrennagoudaru, H.; Kondekal, M.; Raza, A.; Kantharaj, B.R.; Mujahed, A.; Irshad, K. Analysis and comparison of performance and emissions of compression ignition engine fuelled with diesel and different bio-fuels blended with methanol. Mater. Today Proc. 2018, 5, 5175–5185. [Google Scholar] [CrossRef]
- Cai, X.; Wang, J.; Jiang, X.; Ling, J.; Xu, Y.; Gao, Z. Effect of heat-treatment on LiZn ferrite hollow microspheres prepared by self-reactive quenching technology. Appl. Phys. Eng. 2018, 19, 409–416. [Google Scholar] [CrossRef]
- Wei, L.; Cheung, C.S.; Ning, Z. Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel. Energy 2018, 155, 957–970. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, Z.; Liu, B. Effect Analysis on the Performance Enhancement and Emission Reduction of Diesel Engine Fueled with Biodiesel Fuel Based on an Improved Model. Int. J. Aerosp. Eng. 2020, 2020, 8831376. [Google Scholar] [CrossRef]
- Zhao, L.; Su, X.; Wang, X. Comparative study of exhaust gas recirculation (EGR) and hydrogen-enriched EGR employed in a SI engine fueled by biobutanol-gasoline. Fuel 2020, 268, 117194. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D. Mitigating NOx emission from an ammonia-fueled micro-power system with a perforated plate implemented. J. Hazard. Mater. 2021, 401, 123848. [Google Scholar] [CrossRef]
- Zhao, D.; Gutmark, E.; Goey, P. A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors. Prog. Energy Combust. Sci. 2017, 66, 42–82. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Sun, Y.; Zhao, D. Enhancing heat transfer performance analyses of a hydrogen-fueled meso-combustor with staggered bluff-bodies. Fuel Process. Technol. 2021, 218, 106867. [Google Scholar] [CrossRef]
- Sawatmongkhon, B.; Theinnoi, K.; Wongchang, T.; Haoharn, C.; Wongkhorsub, C.; Sukjit, E.; Tsolakis, A. Catalytic oxidation of diesel particulate matter by using silver and ceria supported on alumina as the oxidation catalyst. Appl. Catal. A Gen. 2019, 574, 33–40. [Google Scholar] [CrossRef]
- Zuo, H.; Tan, J.; Wei, K.; Huang, Z.; Zhong, D.; Xie, F. Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system. Renew. Energy 2021, 168, 1308–1326. [Google Scholar] [CrossRef]
- Zuo, H.; Liu, G.; Jiaqiang, E.; Zuo, W.; Wei, K.; Hu, W.; Tan, J.; Zhong, D. Catastrophic analysis on the stability of a large dish solar thermal power generation system with wind-induced vibration. Sol. Energy 2019, 183, 40–49. [Google Scholar] [CrossRef]
- Hu, L.; Hu, X.; Che, Y.; Feng, F.; Lin, X.; Zhang, Z. Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering. Appl. Energy 2020, 262, 114569. [Google Scholar] [CrossRef]
- Zhang, F.; Liao, G.; Jiaqiang, E.; Chen, J.; Leng, E. Comparative study on the thermodynamic and economic performance of novel absorption power cycles driven by the waste heat from a supercritical CO2 cycle. Energy Convers. Manag. 2021, 228, 113671. [Google Scholar] [CrossRef]
- Peng, Q.; Yang, W.; Jiaqiang, E.; Li, Z.; Xu, H.; Fu, G.; Li, S. Investigation on H2/air combustion with C3H8 addition in the combustor with part/full porous medium. Energy Convers. Manag. 2020, 228, 113652. [Google Scholar] [CrossRef]
- Wu, G.; Wu, D.; Li, Y.; Meng, L. Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine. J. Chem. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jiaqiang, E.; Zhang, Z.; Chen, J.; Pham, M.; Zhao, X.; Peng, Q.; Zhang, B.; Yin, Z. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Convers. Manag. 2018, 169, 194–205. [Google Scholar]
- Peng, Q.; Yang, W.; Jiaqiang, E.; Li, S.; Li, Z.; Xu, H.; Fu, G. Effects of propane addition and burner scale on the combustion characteristics and working performance. Appl. Energy 2021, 285, 116484. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Abubakar, S.; Li, Y.; Liu, Z. A realistic skeletal mechanism for the oxidation of biodiesel surrogate composed of long carbon chain and polyunsaturated compounds. Fuel 2021, 289, 119934. [Google Scholar] [CrossRef]
- Xie, Y.; Zuo, Q.; Wang, M.; Wei, K.; Zhang, B.; Chen, W.; Tang, Y.; Wang, Z.; Zhu, G. Effects analysis on soot combustion performance enhancement of an improved catalytic gasoline particulate filter regeneration system with electric heating. Fuel 2021, 290, 119975. [Google Scholar] [CrossRef]
- Xie, Y.; Zuo, Q.; Zhu, G.; Guan, Q.; Wei, K.; Zhang, B.; Tang, Y.; Shen, Z. Investigations on the soot combustion performance enhancement of an improved catalytic gasoline particulate filter regeneration system under different electric heating powers. Fuel 2021, 283, 119301. [Google Scholar] [CrossRef]
- Li, W.; Ji, J.; Huang, L.; Guo, Z. Global dynamics of a controlled discontinuous diffusive SIR epidemic system. Appl. Math. Lett. 2021, 121, 107420. [Google Scholar] [CrossRef]
- Zhang, B.; Jiaqiang, E.; Gong, J.; Yuan, W.; Zuo, W.; Li, Y.; Fu, J. Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process. Appl. Energy 2016, 181, 14–28. [Google Scholar] [CrossRef]
- Zuo, Q.; Xie, Y.; Jiaqiang, E.; Zhu, X.; Zhang, B.; Tang, Y.; Zhu, G.; Wang, Z.; Zhang, J. Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine. Energy 2020, 191, 116521. [Google Scholar] [CrossRef]
- Hu, L.; Bao, X.; Lin, M.; Yu, C.; Wang, F. Research on risky driving behavior evaluation model based on CIDAS real data. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2176–2187. [Google Scholar] [CrossRef]
- Hu, L.; Hu, X.; Kuang, A.; Lin, M.; Wang, J. Casualty risk of e-bike rider struck by passenger vehicle using China In- depth accident data. Traffic Inj. Prev. 2020, 21, 283–287. [Google Scholar] [CrossRef] [PubMed]
Performance Index | Unit | Value |
---|---|---|
Cylinder diameter | mm | 190 |
Number of cylinders | - | 4 |
Rate speed | r/min | 4000 |
Peak pressure | MPa | 12 |
Rated power | kW | 220 |
Mean effective pressure | MPa | 2.05 |
Compression ratio | - | 14 |
Performance Index | Diesel | Methanol |
---|---|---|
Latent heat of gasification (KJ/kg) | 260 | 1162.2 |
Auto-ignition temperature (°C) | 250 | 463 |
Low calorific value (MJ/kg) | 42.5 | 20.1 |
Cetane number | 51 | 3.8 |
Stoichiometric air fuel ratio | 14.3 | 6.5 |
Kinematic viscosity (40°C) (mm2/s) | 2.72 | 0.58 |
Measurements | Measuring Range | Accuracy | Uncertainty (%) |
---|---|---|---|
Cylinder pressure | 1–25 MPa | ±10 kPa | ±0.5 |
Exhaust gas temperature | 0–1000 °C | ±1 °C | ±0.25 |
Brake power | - | 0.03 kW | ±0.03 |
HC emission | 0–20,000 ppm | ±10 ppm | ±0.11 |
NOx emission | 0–5000 ppm | ±10 ppm | ±0.53 |
Soot emission | 0–9 FSN | ±0.1FSN | ±2.8 |
BSFC | - | ±5 g/kW h | ±1.5 |
CO emission | 0–10%vol | ±0.03% | ±0.32 |
Air flow mass | 0–33.3 kg/min | ±1% | ±0.5 |
Fuel flow measurement | 0.5–100 L/h | ±0.04 L/h | ±0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Tian, J.; Li, J.; Ji, H.; Tan, D.; Luo, J.; Jiang, Y.; Yang, D.; Cui, S. Effects of Different Mixture Ratios of Methanol-Diesel on the Performance Enhancement and Emission Reduction for a Diesel Engine. Processes 2021, 9, 1366. https://doi.org/10.3390/pr9081366
Zhang Z, Tian J, Li J, Ji H, Tan D, Luo J, Jiang Y, Yang D, Cui S. Effects of Different Mixture Ratios of Methanol-Diesel on the Performance Enhancement and Emission Reduction for a Diesel Engine. Processes. 2021; 9(8):1366. https://doi.org/10.3390/pr9081366
Chicago/Turabian StyleZhang, Zhiqing, Jie Tian, Jiangtao Li, Hongchen Ji, Dongli Tan, Jianbin Luo, Yuxiu Jiang, Dayong Yang, and Shuwan Cui. 2021. "Effects of Different Mixture Ratios of Methanol-Diesel on the Performance Enhancement and Emission Reduction for a Diesel Engine" Processes 9, no. 8: 1366. https://doi.org/10.3390/pr9081366
APA StyleZhang, Z., Tian, J., Li, J., Ji, H., Tan, D., Luo, J., Jiang, Y., Yang, D., & Cui, S. (2021). Effects of Different Mixture Ratios of Methanol-Diesel on the Performance Enhancement and Emission Reduction for a Diesel Engine. Processes, 9(8), 1366. https://doi.org/10.3390/pr9081366