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Abstract: To realize a multienergy complementary system involving hydropower and other energy
sources, hydraulic turbines frequently run under partial flow conditions in which a unique flow
phenomenon, the channel vortex, occurs in the runner, causing fatigue failure and even cavitation to
the turbine blade. Cavitation severely shortens the service life of the unit and terribly limits the output
of the turbine under partial flow conditions. In this paper, a numerical model of a Francis turbine
was created with tetrahedral grids; the large eddy simulation (LES) method based on the WALE
subgrid scale model and the Schnerr–Sauer cavitation model was adopted to carry out numerical
simulation of the Francis turbine; and a vortex identification method based on the Q criterion was
used to capture and analyze the channel vortex. The calculation results showed that a negative
impact angle at the inlet of the runner occurred when the turbine ran under partial flow conditions,
leading to three different types of channel vortexes in the blade channel. Also, different channel
vortexes caused cavitation on different positions on the runner, and the volume change of cavitation
showed periodic properties.

Keywords: LES; cavitation; cavitation erosion; channel vortex; Francis turbine; partial flow conditions

1. Introduction

Hydropower, as the most widely-used renewable resource, has always been a major
concern for the world. The total global installed hydropower capacity had reached 1308 GW in
2019, and the generating capacity had reached 4306 TWh, according to the 2020 Hydropower
Status Report released by the International Hydropower Association in 2020. Also, statistics
show that the installed capacity of Francis turbines accounts for more than 60% of all installed
capacity of hydropower, making it the most popular hydropower turbine at present [1] and
therefore of high research value. In recent years, the multienergy complementary power
supply system has been advocated to realize the multienergy complementarity of hydropower
and other energy resources [2,3], requiring hydraulic turbines to be frequently operated under
partial flow conditions [4,5]. However, the fluid structure of the hydraulic turbine is so
complicated under partial flow conditions that it often leads to unstable operation problems
such as channel vortexes, flow-induced vibration of the blades, cavitation, and cavitation
erosion inside the turbine [6,7]. These problems not only reduce the efficiency of the turbine
but also damage its flow components [8]. Certain studies have shown that when a turbine
runs under partial flow conditions, outflow and backflow occur in the blade channel, and then
channel vortexes are formed; turbulent backflow causes unstable channel vortexes and even
serious vibration and cavitation in the blade passage [9]. Channel vortexes do not necessarily
lead to cavitation, but a close relationship exists between these two phenomena [10,11].

Many scholars have carried out studies on channel vortexes and cavitation inside
the Francis turbine. Guo Tao et al. [12] studied the evolution of the channel vortex under
part-load conditions using the large eddy simulation (LES) method based on the Vreman
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subgrid-scale stress model, and the results they gained showed that the instability and
rupture of the channel vortex increases the pressure fluctuation of the blades. K. Yamamoto
et al. [13–16] used visualization PIV technology to conduct experimental observations
on a channel vortex, analyze its development mechanism, and estimated its generation
area. Guo Pengcheng et al. [17–19] carried out experiments with numerical models on
Francis turbines to analyze the development mechanism of channel vortices and made a
comparative analysis of the shapes of cavitation vortices inside the channel by using said
models in experiments. Liu [20–23] et al. used a high-speed camera to capture the channel
vortex phenomenon during a test and found that the channel vortex occurs due to the
influence of the attack angle at the blade inlet. Su Wentao et al. [24] carried out numerical
simulations and tests on a Francis turbine, which verified the feasibility and accuracy of
the LES method based on a cavitation model in predicting the performance of Francis
turbines under partial flow conditions, while Trivedi Chirag et al. [25,26] used the LES
method to simulate the load change of a Francis turbine and compared the results with
experimental data. Trivedi Chirag [27] took the extreme operating conditions of the turbine
into consideration, and he found that the cavitation phenomenon in hydraulic turbine
gradually disappeared with the increase of rotation speed; however, when running at high
rotating speed, the intensity of cavitation reached its maximum. Sun Longgan et al. [28]
found that the position of channel vortexes in Francis turbines shows a clearer correlation to
rotating speed than that to guide vane opening. Finally, Shi Guang-tai et al. [29] found that
the cavitation on the blade surface of Francis turbine under BEP conditions is only subtly
affected by the water head, but with the increase of the guide vane opening, cavitation on
the blade surface is more likely to occur.

Because of the complicated internal flow field of the Francis turbine under partial
flow conditions and the flow interference between runner components and stationary
components, it is relatively difficult to analyze the whole flow passage. Additionally, the
mechanism of cavitation along with the flow characteristics of channel vortexes and within
Francis turbines are still unclear. Therefore, to further analyze the relationship between
channel vortexes and cavitation in Francis turbines, a three-dimensional numerical calcu-
lation of the whole flow passage of a Francis turbine under partial flow conditions was
carried out based on a cavitation model and the large eddy simulation (LES) method in
this paper, and the shape and evolution of the channel vortex and the temporal and spatial
evolution of the cavitation in the channel were analyzed by capturing relevant statistics. Fi-
nally, the relationship between channel vortexes, cavitation, and the generation mechanism
of channel vortexes in Francis turbines under partial flow conditions was elaborated.

2. Mathematical Formulations and Numerical Method
2.1. LES Method

The LES method was first proposed by Smagorinsky in 1963. It aims to solve the
large-scale eddy structure directly and to close the small-scale eddy structure. In addition
to the LES method, the direct numerical simulation (DNS) method and Reynolds average
Navier–Stokes (RANS) method are commonly used in this field. The former directly solves
the minimum scale flow, so the information obtained thereby shows better comprehensive-
ness and accuracy. However, while the results obtained by DNS are more accurate, the
computation required to distinguish small-scale flows is infeasible. Meanwhile, the RANS
method only solves large-scale flow, which is equivalent to the wall scale, and flows of
other scales are replaced by models, thus greatly reducing the computational complexity
at the cost of losing many flow field details. Also, this model depends on the boundary
conditions. Therefore, to some degree, LES is a compromise solution between DNS and
RANS. The small-scale vortex was separated from the large-scale vortex by box filter in this
paper, and the flows were divided into low-frequency unsolvable parts and high-frequency
unsolvable parts. Then, the subgrid scale model was established to simulate the high-
frequency unsolvable parts. The LES method was adopted to solve turbulence in this paper,
which use has been widely verified [30–33].
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2.2. WALE Subgrid Scale Model

Commonly used subgrid scale models include the Smagorinsky–Lilly model, Wall-
adapting Local Eddy-viscosity model (WALE), Vreman model, and so on. Among them,
the WALE model, which was put forward by Nicoud et al. [34] in 1999, is based on the
square of the velocity gradient tensor, which takes not only the deformation rate tensor
but also the influence of the rotation tensor into consideration. Additionally, this model
can obtain better vortex viscosity without a dynamic model when certain fluid is close
to the wall. Studies have shown that the WALE subgrid scale model has good accuracy
in describing the overall characteristics and details of the flow field [35,36], and can well
predict the typical laminar–turbulent transition of the boundary layer. Therefore, the eddy
viscosity was defined by the WALE subgrid scale model in this paper:
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In this equation, the filter size ∆s is calculated by ∆s = CwV1/3; Cw, the model parame-
ter, is of fixed value; and, in most cases, Cw = 0.325.

2.3. Schnerr–Sauer Cavitation Model

The generation and collapse processes of cavitation can be described by the Rayleigh–
Plesset equation [37,38]. One of the most commonly used cavitation models at present, the
Schnerr–Sauer cavitation model, was proposed based on the Rayleigh–Plesset equation.
The Schnerr–Sauer cavitation model regards the mixture of water and steam as a mixture
containing a large number of spherical steam bubbles. Therefore, starting from the expres-
sion of net mass source term, the volume fraction was calculated, and the phase transition
rate was obtained is as follows:

Re = 3
ρvρl
ρm

αv(1 − αv)

RB

√
2(pv − p)

3ρl
; p ≤ pv (3)

Rc = 3
ρvρl
ρm

αv(1 − αv)

RB

√
2(p − pv)

3ρl
; p ≥ pv (4)

RB =

(
3αv

4πn0(1 − αv)

) 1
3

(5)

R = Re − Rc (6)

In these equations, Re is the mass transfers during the growth of the cavitation bubble;
Rc is the mass transfers during the collapse of the cavitation bubble; RB is the bubble radius
(m); n0 is the number of bubbles per unit volume of liquid; ρm is the density of mixed
medium (kg/m3); ρv is the vapor density (kg/m3); ρl is the liquid density (kg/m3); p is the
bubble local pressure of the fluid (Pa); pv is the bubble surface pressure of the fluid (Pa);
and αv is the vapor volume fraction.

The Schnerr–Sauer model has been validated by many studies [39,40].

2.4. Numerical Examples and Boundary Conditions

The HLA551-LJ-43 Francis turbine was taken as the research object for this paper, and
its calculation domain is shown in Figure 1. The runner diameter of the turbine was 0.43 m,
the number of movable guide vanes was 16, the number of stay vanes was 8, the number
of runner blades was 13, and the working head was 60 m.
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This study used ANSYS FLUENT commercial software for the unsteady-state analy-
ses of the Francis turbine’s incompressible internal flow field, the ANSYS FLUENT is an
Unstructured Solver. Unstructured tetrahedral grids show sound geometric adaptability to
complex geometry, and the geometry of the internal flow passage of the turbine is rather
complicated, so the whole flow passage of the turbine is divided by Unstructured tetrahe-
dral grids. The number of grids exerts a great influence on the calculation accuracy [41].
This paper finally adopts a grid scheme involving about 15.2 million elements through
irrelevance verification, and the number of elements varies slightly with the opening of the
movable guide vanes, the Figure 2 shows the Francis turbine mesh. Prism grids were used
to locally refine the no-slip wall: the first node was placed 0.3 mm away from the nonslip
wall to obtain y+ ≤ 80. Figure 3 shows the combined characteristic curve of the turbine
model HLA551-LJ-35 with a diameter of 0.35 m, 24 movable guide vanes, 24 stay vanes, and
13 runner vanes. Six working conditions were selected according to the similarity theory of
hydraulic turbines. Among them, the three working conditions of A, B, and C deal with
part-load conditions; D shows the rated condition (i.e., the working condition that enables
100% output listed in the HLA551-LJ-43 Francis turbine manual provided by its manu-
facturer); and E and F are high-speed working conditions. The details of each working
condition can be found in Table 1, in which α represents the opening degree of the movable
guide vanes, n11 the unit speed, Q11 the unit flow, and η the efficiency. After the turbine is
integrated into the public power grid, its rotating speed runner is constant. Therefore, four
working conditions, A, B, C, and D, were selected to simulate the performance of Francis
turbines connected with the power grid at different guide vane openings. In addition,
working condition E and F were used to simulate the performance of Francis turbines
under higher rotating speeds with the same guide vane opening. Through comparative
analysis of the six working conditions, the influence of the guide vanes’ opening and the
rotating speed of the runner on the channel vortex and cavitation were studied.
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Table 1. Details of six working conditions.

Condition α/mm α% n11/rpm Q11/(m3/s) η Pn%

A 16.00 33 74.94 0.36 0.72 23
B 26.17 54 74.94 0.65 0.86 50
C 32.05 65 74.94 0.83 0.91 67
D 48.74 100 74.94 1.22 0.91 100
E 32.05 65 94.37 0.79 0.86 60
F 48.74 100 94.37 1.23 0.91 99
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The boundary conditions were set as follows: the total pressure inlet was adopted at
the spiral case-shaped inlet; a pressure outlet was adopted at the outlet of the draft tube.
Therefore, the adjustment of different cavitation coefficients could be realized by changing
the pressure value at the outlet. The grid interface of the runner was set by interface, and
the data transfer between the dynamic and static interfaces was realized by sliding grid
technology. The liquid phase’s volume fractions of the inlet and outlet were set to 1, the
volume fraction of the cavitation phase was set to 0, and the saturated vapor pressure was
set to 3169 Pa (saturated vapor pressure of water at 25 ◦C). Considering the influence of
gravity, the acceleration of gravity was set to 9.81 m/s2, and the operating pressure was set
to 101,325 Pa in this simulation. The SIMPLEC algorithm was used for the calculation, the
Green–Gauss node-based algorithm for the discretization method, the PRESTO method
for the calculation of pressure terms, First Order Upwind for the solution of momentum
and volume fraction, and the first order implicit for the transient formulation. The time
step was set to the time it took for the wheel to rotate 3◦. The convergence criteria in this
simulation required that residual error should be less than 10−4.

3. Results
3.1. Flow Regime of Distributor and Runner

The pressure distribution and the velocity distribution on the meridional section of
the distributor and runner featured high symmetry, as shown in Figure 4. When running
under part-load conditions, the velocity gradient of the fluid was greater than that under
the rated conditions, and the fluid velocity reached its maximum at the leading edge of
the suction surface of the vanes. At that time, the flow in the blade passage was relatively
turbulent, and a negative pressure zone could be found at the trailing edge of the pressure
surface of the vanes. Also, it can be seen from the streamline of the fluid that the flow
became longer after the fluid entered the runner; the fluid then formed vortexes at the
trailing edges of the vanes, as shown in Figure 4(a3). When running under rated conditions,
the pressure and velocity in the passage changed relatively smoothly along the vanes. It
can be seen from the streamline of the fluid that the fluid flow was stable under those
conditions and then formed vortexes in the center of the runner after leaving the trailing
edges of the vanes. When running under high-speed conditions, the fluid velocity reached
its maximum at the leading edge of the pressure surface of the vane, and the pressure
in the blade passage gradually decreased from the leading edge to the trailing edges of
the vanes. In addition, a severe negative pressure was observed in the runner cone zone.
It can be seen from the streamline that the fluid formed stronger vortexes in the center
of the runner than the fluid under the rated condition. In summary: (1) when running
under rated conditions, channel vortexes could rarely be found in the blade passage of
the Francis turbine, and the flow state in the blade passage was rather stable; (2) the
tangential velocity of the fluid entering the runner became increasingly dominant under
the part-load conditions, which led to a longer fluid flow and easily caused a blocking
effect—furthermore, the fluid flowed out at the trailing edge of the suction surface of the
vane and produced backflow, which formed channel vortexes at the trailing edge of the
pressure surface of the vane; (3) under high-speed conditions, affected by the tangential
velocities of the runner, longer flow was achieved after the fluid left the trailing edges of
the vanes, and stronger vortexes were generated in the center of the runner compared with
those generated under rated conditions.
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3.2. Analysis of Cavitation around the Runner

Cavitation is a special phenomenon that occurs in the energy conversion process of water
flow. A large amount of heat is released because of cavitation with strong physical impact
during the process from generation to collapse, which may cause a turbine to vibrate or even
damage the flow wall of the turbine. There are various classifications of cavitation. In 2002,
the 23rd International Towing Tank Conference (ITTC) proposed dividing cavitation into sheet
cavitation, cloud cavitation, vortex cavitation, striated cavitation, etc. [42]. In view of the
cavitation in Francis turbines [27], generally, there are leading edge cavitation, travelling bubble
cavitation, draft tube vortex cavitation, channel vortex cavitation, Karman vortex cavitation [43],
etc. Partial flow conditions aggravate the complexity of the flow field in the blade passage and
the intensity of the vortexes in the Francis turbine, which may exacerbate the cavitation in the
flow field when the latter is unstable. Through comparative analysis of the cavitation volume
fraction on the walls of the vane, it was found that obvious cavitation could be observed on
the wall of the runner vane under only four operating conditions, namely A, B, E, and F, and
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that said cavitation mainly resulted from the pressure surface of the vane, as shown in Figure 5.
Under part-load conditions, the cavitation on the blade wall mainly occurred near the junction
between the trailing edge of the pressure surface of the vane and the crown. Additionally,
the smaller the opening of the guide vane was, the more obvious the wall surface cavitation
became, and the greater the cavitation volume fraction was. As shown in Figure 5(a1,b1),when
the opening α = 33% and the power was 23% Pn, the maximum cavitation volume fraction of
the pressure surface of the vane was 0.99, while when the opening α = 54% and the power was
50% Pn, the maximum cavitation volume fraction of the pressure surface of the vane was 0.65.
Under high-speed conditions, the cavitation on the blade wall surface mainly occurred near the
connection between the front edge of the pressure surface of the vane and its band, as shown in
Figure 5(c1,d1). When the opening α = 65% and the power was 60% Pn, the maximum cavitation
volume fraction of the pressure surface of the vane was 0.76, while when the opening α = 100%
and the power was 99% Pn, the maximum cavitation volume fraction of the pressure surface
of the vane was 0.45. The same unit speed and incremental opening of movable guide vanes
was set when the turbine ran under four of the working conditions, namely A, B, C, and D, and
the relevant peak volumes of the cavitation in the runner were analyzed (Figure 6). It can be
seen that as the opening of the movable guide vane decreased, the cavity volume in the runner
showed an increasing trend. In summary: (1) the cavitation phenomenon mainly occurred near
the junction between the trailing edge of the pressure surface of the vane and its upper crown
under part-load conditions; (2) the cavitation phenomenon mainly occurred near the junction of
the front edge and its band of the pressure surface of the vane under high-speed conditions; (3)
as the opening of the movable guide vane decreased, the severity of the cavitation in the runner
showed an increasing trend.
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Figure 5. Isosurface of vapor volume fraction of the blade passage and the vapor volume fraction of the pressure surface
of the vane. Note: (a1–d1) describe the vapor volume fraction of the pressure surface of the vane; (a2–d2) describe the
isosurface of the 1% of the vapor volume fraction in the blade passage.
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Figure 6. The vapor volume in the runner changes with the opening of the movable guide vane.

A dynamic cycle from generation, to development, to partial collapse, to disappear-
ance, to reformation can be observed in the cavitation inside the runner. Therefore, the
changes of vapor volume in the runner followed certain rules. Figure 7 shows the seven
cavitation transformation cycle times in the runner under part-load conditions and the
spectral characteristics obtained through FFT (fast Fourier transform). Under these condi-
tions, the rotating frequency of the runner was 22.5 Hz, and the domain frequency obtained
by FFT accounted for 30% of the rotation frequency; that is, the conversion frequency of
the cavitation in the runner can be considered as 30% of the rotation frequency.
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3.3. Analysis of Channel Vortexes around the Runner

Figure 8 shows the channel vortex structure captured by the Q criterion identification
method, in which Q represents the Q criterion magnitude. The Q criterion method avoids
the interference of shear stress, leaving only the rotating part to mark the vortex, which
better captures the motion of vortexes. It is generally believed that when the Q criterion
is greater than 0, the fluid rotation is greater than the fluid deformation, and the vortex
captured at that time is more authentic. It can be seen from the figure that there are
mainly three types of channel vortex structures, namely types I, II, and III. Also, Figure
8a shows that when the turbine ran under part-load conditions, two obvious channel
vortexes in the blade passage could be observed at the same time, namely type I and type
II channel vortexes, both of which were generated below the upper crown running through
the blade passage. These channel vortexes were consistent with those vortex observed
in the experiment, as shown in Figure 9a. The type II channel vortex was originally
generated below the upper crown of the vane. Going downstream, it gradually ruptured
and disappeared as its evolution intensity continued to decrease. When the turbine ran
under rated condition, no complete channel vortex was formed in the blade passage, which
indicates that the flow pattern in the blade passage is relatively uniform and stable under
those conditions. Meanwhile, when the rotating speed of the runner was increased, type I
and type III vortexes occurred at the same time, as shown in Figure 8c. The type III channel
vortex was generated at the junction between the leading edge of the pressure surface of
the vane and its band, and it gradually expanded along the intersection line between the
band and the pressure surface of the vane before finally disappearing at the draft tube
inlet, as shown in Figure 9b. In summary: type I channel vortexes were commonly found
in the blade passage under partial flow operating conditions; type I and type II channel
vertexes occurred in the blade passage under part-load conditions, and the latter caused
cavitation around the junction of the tailing edge of the pressure surface and the crown of
the runner vane; there were type I and type III channel vertexes in the blade passage under
high-speed conditions, and the latter caused cavitation at the leading edge of the pressure
surface of runner vane.
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As shown in Figure 10, the cause of the formation of the channel vortexes was analyzed
from the aspect of the velocity triangle of the Francis turbine. When running under part-
load conditions, compared with running under rated condition, the flow rate decreased.
The corresponding change shown in the velocity triangle is that as the relative velocity
decreases, the relative liquid flow angle of the inlet decreases, and negative attack angles can
be found at the runner inlet; however, when running at high speed, due to the increase of the
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runner speed, the corresponding change in the speed triangle is that as the circumferential
speed increases, the inlet relative liquid flow angle decreases and a negative attack angle
also can be found in the runner inlet, which leads the fluid to the vane and produces
outflow and backflow in the blade passage, forming channel vortexes.
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and V1, V2 and V3 are absolute velocities (m/s).

To further elaborate the mechanism and influence of the channel vortex, the contours
of the pressure surface and suction surface of the vane were analyzed (Figure 11). The
high-pressure zone of the runner vane mainly occurred on the leading edge of the vane,
and the low-pressure zone and the negative pressure zone mainly occurred on the trailing
edge of the vane. Type I channel vortexes occurred inside the blade passage, closer to
the suction surface of the vane. Running through the whole blade passage, this type of
channel vortex finally disappeared at the draft tube inlet, which led to the blade pressure
distribution gradually decreasing from the bottom side of the leading edge to the top side
of the trailing edge of the vane; it then broke off at the tailing edge of the blade passage
and entered the draft tube, resulting in a low-pressure zone and negative pressure zone on
the bottom side of the trailing edge on the suction surface of the vane. The fluid produced
outflow and backflow at the trailing edge of the suction surface of the vane and finally
formed type II channel vortexes at the trailing edge of the pressure surface of the vane.
The type II channel vortex accounted for the negative pressure zone on the junction of
the trailing edge of the vane and its crown when running under part-load conditions, as
shown in Figure 11(a1,a3,b1,b3). However, while a high-pressure zone can be observed at
the leading edge of pressure surface of the vane, under high-speed conditions, the pressure
zone occurred at the junction of the same place and the band showed a sudden drop, which
led to the negative pressure zone, as shown in Figure 11(e1,f1). That explained why the
type III channel vortexes formed when the fluid hit the pressure surface of the vane, which
resulted from the negative attack angle at the inlet of the runner.

We took the nondimensional pressure coefficient of vanes with the elevations of 40%
and 75% for analysis, and the expression of the pressure coefficient Cp was:

Cp =
pt − pa
0.5ρv2 (7)

in which pt is the instantaneous static pressure of the vane (Pa); pa is the average static
pressure of the vane (Pa); ρ is the water density (kg/m3); and v is the inlet flow rate of the
turbine (m/s).
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It can be seen from Figure 12a,b that the pressure coefficient distribution showed
severe fluctuations of the suction surface of the vane at 40% elevation and 75% elevation.
As the opening of the movable guide vane decreased, the peak value of the pressure
coefficient at the leading edge on the pressure surface of the vane increased while the valley
value of the pressure coefficient of the trailing edge of the pressure surface of the vane
decreased, indicating that the pressure coefficient distribution fluctuated more severely.
Under high-speed conditions, the pressure coefficient of the leading edge of the suction
surface of the vane with 40% elevation dropped sharply; under part-load conditions, the
pressure coefficient of the trailing edge of the suction surface of the vane dropped to its
valley value. From Figure 12c,d, it can be seen that the pressure coefficient distribution
changed more uniformly, and the pressure coefficient gradually decreased from the leading
edge of to the trailing edge of the vane’s pressure surface. As the opening of the guide vane
decreased, the gradient of the pressure coefficient increased. Under high-speed conditions,
a sudden increase in the pressure coefficient could be observed at the leading edge of
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the vane’s pressure surface; under part-load conditions, the valley value of the pressure
coefficient could be found at the trailing edge of the pressure surface. In summary: (1) the
high-pressure zone of the runner blade mainly occurred at the leading edge of the vane,
which may cause physical damage—the low-pressure and negative pressure zones of the
runner vane mainly occurred in the trailing edge, which may bring cavitation; (2) as the
opening of the movable vane decreased, the pressure gradient on the blade wall increased;
(3) the blade was affected by the channel vortexes, which may have caused the partial
sudden change in the pressure distribution on the blade wall.
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4. Conclusions

In this paper, the LES method based on the WALE subgrid scale stress model was
used with the Schnerr–Sauer cavitation model to study the flow characteristics in the flow
passage of a Francis turbine under partial flow conditions. The results showed that when
running under partial flow conditions, channel vortexes with different structures could
be observed in the flow passage, causing cavitation in the runner. The vapor volume
changes inside the runner showed periodic features. As the opening of the movable guide
vane decreased, the severity of the cavitation in the runner showed an increasing trend.
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Under partial flow conditions, negative attack angles at the runner inlet resulted in channel
vortexes. The channel vortexes disturbed the pressure distribution of the vane, resulting in
partial high-pressure zones or negative pressure zones on.

5. Further Work

Further research will focus on the detailed patterns of time–space evolution of channel
vertex and cavitation, further explore the relationship between these phenomena, and try
find an improved method through data obtained in this paper to destroy channel vortex
and avoid cavitation in Francis turbines.
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