
processes

Article

Deep-Sequence–Aware Candidate Generation for
e-Learning System

Aziz Ilyosov 1, Alpamis Kutlimuratov 1 and Taeg-Keun Whangbo 2,*

����������
�������

Citation: Ilyosov, A.; Kutlimuratov, A.;

Whangbo, T.-K. Deep-Sequence–Aware

Candidate Generation for e-Learning

System. Processes 2021, 9, 1454.

https://doi.org/10.3390/pr9081454

Academic Editors: Konstantinos

Demertzis, Lazaros Iliadis,

Nikos Tziritas and Panayotis Kikiras

Received: 22 June 2021

Accepted: 16 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of IT Convergence Engineering, Gachon University, Sujeong-Gu,
Seongnam-Si 461-701, Gyeonggi-Do, Korea; ilyosovaziz@gachon.ac.kr (A.I.); alpamis92@gachon.ac.kr (A.K.)

2 Department of Computer Science, Gachon University, Sujeong-Gu, Seongnam-Si 461-701, Gyeonggi-Do, Korea
* Correspondence: tkwhangbo@gachon.ac.kr

Abstract: Recently proposed recommendation systems based on embedding vector technology allow
us to utilize a wide range of information such as user side and item side information to predict user
preferences. Since there is a lack of ability to use the sequential information of user history, most
recommendation system algorithms fail to predict the user’s preferences more accurately. Therefore,
in this study, we developed a novel recommendation system that takes advantage of sequence
and heterogeneous information in the candidate-generation process. The principle underlying the
proposed recommendation model is that the new sequence based embedding layer in the model
catches the sequence pattern of user history. The proposed deep-learning model may improve the
prediction accuracy using user data, item data, and sequential information of the user’s profile.
Experiments were conducted on datasets of the Korean e-learning platform, and the empirical results
confirmed the capability of the proposed approach and its superiority over models that do not use the
sequences of the heterogeneous information of users and items for the candidate-generation process.

Keywords: recommendation system; candidate generation; deep learning; sequence-aware embedding

1. Introduction

Currently, recommendation systems play a crucial role in accelerating searches and
allowing users to access more relevant content. Therefore, web service providers have
been utilizing recommendation systems that analyze and harness user–item interactions
to improve customer satisfaction and personalized recommendations and increase the
income interests of their services. Moreover, with the development of deep-learning and
machine-learning technologies, recommendation systems have become an integral part
of multi-billion business organizations such as Amazon and Alibaba [1]. During the early
development stages of recommendation systems, most recommendation models were
based on the similarity concept. For example, the correlation (cosine similarity (1) or
Pearson correlation (2)) of each item or user was calculated using historical data or content
information, and items with higher correlations shared the same history that was not
observed in the other item.

CS =
AB

||A||||B|| =
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

(1)

PC =
∑n

i=1(Ai − A) ∗ (Bi − B)√
∑n

i=1
(

Ai − A
)2 ∗

√
∑n

i=1
(

Bi − B
)2

(2)

After the similarity-based concept, more accurate and fast latent-factor models were
proposed. Based on the rating patterns, these algorithms explain user feedback by charac-
terizing items and users based on factors, which comprise the features of items or users. For
example, latent factors can represent the genre of music and refer to the values that point
to the amount of action, comedy, and drama for movies. For users, each factor explains

Processes 2021, 9, 1454. https://doi.org/10.3390/pr9081454 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr9081454
https://doi.org/10.3390/pr9081454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9081454
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9081454?type=check_update&version=2

Processes 2021, 9, 1454 2 of 13

the level of interest the user has in the feature of the item that the user rated with a high
score. Matrix factorization is a popular realization approach of latent-factor models [2]. It
defines item and user characteristics by a vector of factors based on a rating table. When the
correlation between a user and an item is high, the item is recommended to the user. Due
to their scalability and high accuracy, these methods have recently become highly popular.
In addition, the flexibility of matrix factorization helps utilize real-life data. One advantage
of matrix factorization is that it can use the feedback provided by all users as a rating
matrix [3]. For example, when explicit ratings do not exist, the algorithm can derive the
preference of the user using implicit feedback, which is made by observing the user’s
behavior without their direct click history or browsing history. The above recommendation
concepts are classified as collaborative filtering and content-based filtering approaches
for building recommendation models because of the type of information obtained; in
these systems, the diversity of information affects their implementation and structure [4].
Collaborative filtering algorithms use the user’s ratings of items to predict unrated items
when making recommendations and then automate these predictions by gathering user
expectations from a niche audience. In contrast, content-based filtering approaches provide
suggestions by evaluating the availability of user–item interaction data, which entails
handling a large amount of explicit data [5–7].

Deep Learning-Based Recommendations

The recent success achieved by deep-learning algorithms (convolutional neural net-
works, CNNs, and recurrent neural networks, RNNs) and frameworks (TensorFlow and
Keras) has created a new era for recommendation systems. Because of the innovative
prospects of deep-learning models, numerous deep learning-based recommendation sys-
tems have been recently proposed. The most attractive characteristics of neural models are
that neurons are end-to-end differentiable and provide suitable inductive biases catered
to the data type. If a model with a particular shape can be used for a certain data struc-
ture, it can be used for different data with similar structures. For example, CNNs and
RNNs have long exploited structures in computer vision and natural language processing.
Similarly, sequential structures of click-based or session-based logs are compatible with
RNN and CNN. In addition, deep neural networks can be joined in a differentiable model
and trained end-to-end. This helps in dealing with hybrid recommendation systems. For
example, when text data (reviews, tweets) and images (posts, predict image) utilized in
a recommendation deep-learning structure are incomparable choices. Here, traditional
recommendation system models often fail and cannot utilize joint (end-to-end) represen-
tation learning. For instance, to process reviews, costly preprocessing (such as keyword
extraction) is required, whereas text-based information can be directly input into deep
learning-based models [8].

Deep and extensive exploitation of features of neural networks mostly helps utilize the
side information in recommendation systems. In visual Bayesian personalized ranking [9],
the visual appearance of a product is compressed into a one-dimensional feature vector
using the associated CNN network and is concatenated to produce a full feature vector
of positive and negative items in the Bayesian personalized ranking system. This method
not only improves the accuracy of the network but also addresses the cold-start problem
by providing an initial visual embedding feature of the item. When a system has an
excessive number of users and items, the prediction time of preference increases linearly
for both deep-learning and matrix factorization models. To solve this problem, candidate-
generation (top-N recommendation) algorithms have been proposed [10,11]. However,
in most cases, these models cannot utilize sequential and heterogeneous data (content
information) simultaneously.

We have proposed a more accurate deep learning-based recommendation model that
can utilize heterogeneous information and sequence data simultaneously. Specifically,
the main contribution of our study is that the proposed model utilizes the sequence data
of the user history and the item’s heterogeneous information to improve the prediction

Processes 2021, 9, 1454 3 of 13

accuracy of deep-recommendation systems. To apply the sequence algorithm in deep-
recommendation systems, we modified the first layer of the model by concatenating a vector
that contains data regarding the order of items. This is because the average preference
vector and sequential preference vector models can be aware of more information on the
user, which leads to a more accurate recommendation.

In addition, concatenating extra information of the user to the first layer can help us
overcome the cold-start problem. When information regarding the user–item interaction is
insufficient, instead of the history vector, the default embedding vector is input, together
with additional consumer data. This user information improves the recommender by
providing an overview of the newcomers.

The remainder of this paper is organized as follows. In Section 2, the cold-start issues of
recommendation systems, candidate generation, and deep learning-based recommendation
models that involve heterogeneous information and sequence data are reviewed. In
Sections 3 and 4, we detail the proposed model and verify its accuracy through experiments
and comparisons with other similar recommendation models. The findings and scope of
prospective work are presented in Section 5, and the examined materials are referenced,
with many of them being recent publications.

2. Related Work

Several recent studies have applied sequence data and heterogeneous information as
supplementary features to address the open issues related to candidate generation and
cold starts in recommendation systems [12–16]. Lam et al. [13] developed a hybrid model
based on the examination of two probabilistic perspective models utilizing unadulterated
collaborative filtering to combine user data. Yu and Riedl [16] proposed a model that
generates personalized stories using the optimal sequence of events experienced by the user
to overcome the cold-start problem. Regarding user history, Zhao et al. [17] developed a
product recommender system that considers the time interval between purchased products.
Moreover, several studies have integrated different sources of information simultaneously
into the prediction process [1,18,19].

In terms of tasks, most top-N recommendation systems are very similar to candidate-
generation systems. Similar to candidate generation, the top-N recommendation systems
filter items from large item spaces based on the precision of prediction. For example, in [11],
the similarities of items were calculated, and item-based baskets were recommended to
users. Another pioneering top-N recommendation system is AutoRec [20], which is built
on a pure autoencoder algorithm. The model takes all user ratings as input data for the
input layer and then compresses these data in the encoder part.

Starting from the bottleneck in the middle, the decoder part of the model was built. In
this part, the layers of the model are expanded, and the initial dimension (input layer) in
the output layer is restored (Figure 1).

h(r; θ) = f (W · g(Vr + µ) + b)) (3)
Here, h(r; θ) is the reconstruction of input r while f and g are activation functions. µ

and b are biases in each layer.

min
θ

n

∑
i=1

∣∣∣∣∣∣ri − h(ri; θ)
∣∣∣∣∣∣2 + λ

2
(||W||2F + ||V||

2
F) (4)

In AutoRec recommendation, the model is trained by minimizing the sum of the
mean square errors between the output and input ratings and via L2 regularization, which
handles the overfitting problem. In Equation (4), W and V are the weights of the first and
second layers, respectively. ri is the rating history of each user calculated using the
equation. λ is the regularization parameter, which is recommended to be chosen by the
cross validation technique. Despite the high accuracy of prediction and the flexibility
with user history, autoencoder-based recommendation systems face some problems while
handling user content data.

Processes 2021, 9, 1454 4 of 13
Processes 2021, 9, x FOR PEER REVIEW 4 of 14

Figure 1. Structure of an autoencoder.

bVrgWfrh ++⋅=)(();(μθ (3)

Here, h(r; θ) is the reconstruction of input r while f and g are activation functions. μ
and b are biases in each layer.

)||||||(||
2

||);(||min 22
2

1
FF

n

i

ii VWrhr ++−
=

λθ
θ

 (4)

In AutoRec recommendation, the model is trained by minimizing the sum of the
mean square errors between the output and input ratings and via L2 regularization, which
handles the overfitting problem. In Equation (4), W and V are the weights of the first and
second layers, respectively. ir is the rating history of each user calculated using the
equation. λ is the regularization parameter, which is recommended to be chosen by the
cross validation technique. Despite the high accuracy of prediction and the flexibility with
user history, autoencoder-based recommendation systems face some problems while han-
dling user content data.

Heterogeneous Candidate Generation
Subsequently, another pioneering top-N recommendation system, the neural proba-

bilistic language model [21], was proposed, which compresses sparse-valued information
(one-hot vector) into a fixed real-valued embedding vector, ܸ = ሾݒଵ , … , ݒ … , ݒ ሿ ∈ W×
(W: embedding matrix, i: user id, p: size of the embedding vector) (Figure 2). This vector learns
a distributed representation for each word and the probability function of the sequence in
a sentence.

R1

R2

R3

R4

Rn

ܴ
1 ܴ
2 ܴ
3 ܴ
4

ܴ
n

V W

Figure 1. Structure of an autoencoder.

Heterogeneous Candidate Generation

Subsequently, another pioneering top-N recommendation system, the neural proba-
bilistic language model [21], was proposed, which compresses sparse-valued information
(one-hot vector) into a fixed real-valued embedding vector, Vi =

[
vi

1, . . . , vi
j . . . , vi

p

]
∈Wn×p

(W: embedding matrix, i: user id, p: size of the embedding vector) (Figure 2). This vector learns a
distributed representation for each word and the probability function of the sequence in
a sentence.

Processes 2021, 9, x FOR PEER REVIEW 5 of 14

Figure 2. Embedding method.

The YouTube deep-recommendation system [10] is another example of candidate
generation. It consists of two main parts: candidate generation and item ranking. The can-
didate-generation process reduces a large number of items to several hundreds by filter-
ing out unrelated videos. The first layer of the candidate-generation neural network em-
ulates this factorization algorithm without deep layers and only relies on the history of
the users. This candidate-generation process can be considered a nonlinear version of the
factorization algorithm. The YouTube deep-recommendation model is most relevant to
our proposed model. However, most recommendation systems do not consider the order
of items. For example, in Bayesian personalized [22] ranking, the user’s history is modified
to a rating table that cannot save the order information of the user’s history. The YouTube
deep-recommendation system loses the sequence information by calculating the average
of the embedded user history.

The proposed model utilizes the sequence data of user history to improve the predic-
tion accuracy of deep-recommendation systems. The proposed model differs from other
existing works in terms of the ability to change the users’ preferences over time. However,
to the best of our knowledge, no model that seamlessly combines heterogeneous infor-
mation and sequential data simultaneously is currently available.

3. Proposed Methodology
This section illustrates our proposed deep-sequence–aware recommendation model

that predicts candidates by integrating user history as sequence data and content infor-
mation simultaneously. The following subsections detail the structure and role of each
component of the proposed deep-sequence–aware recommendation model.

3.1. Sequence-Aware Embedding
Embedding involves mapping a discrete  categorical variable to a vector of continuous

numbers. In the context of neural networks, embeddings are low-dimensional learned
continuous vector representations of discrete variables. Neural network embeddings are
useful because they can reduce the dimensionality of categorical variables and meaning-
fully represent categories in the transformed space. As illustrated in Figure 3, embeddings
are the weights of neural networks whose input is a one-hot encoding of categorical data.
Where, h is node in hidden layer, p is size of embedding vector (hidden layer), V is em-
bedding vector for item 3, v is a weight in embedding vector, N-number of items.

To avoid computational costs, these weights are initialized as a table of variables
(Figure 2). During the training process, the corresponding row of the table inputs the cat-
egorical values to the network, and then the variables of this row are trained, along with
all the other weights in the network. Depending on situation, pre trained or random ini-
tialized weights can be used as embedding vector. In case of having lack of time, using
trained weights is recommended. Trained embedding can be generated by using the latent
vector of traditional methods such as the BPR [22] model.

Figure 2. Embedding method.

The YouTube deep-recommendation system [10] is another example of candidate
generation. It consists of two main parts: candidate generation and item ranking. The
candidate-generation process reduces a large number of items to several hundreds by
filtering out unrelated videos. The first layer of the candidate-generation neural network
emulates this factorization algorithm without deep layers and only relies on the history of
the users. This candidate-generation process can be considered a nonlinear version of the

Processes 2021, 9, 1454 5 of 13

factorization algorithm. The YouTube deep-recommendation model is most relevant to our
proposed model. However, most recommendation systems do not consider the order of
items. For example, in Bayesian personalized [22] ranking, the user’s history is modified to
a rating table that cannot save the order information of the user’s history. The YouTube
deep-recommendation system loses the sequence information by calculating the average of
the embedded user history.

The proposed model utilizes the sequence data of user history to improve the pre-
diction accuracy of deep-recommendation systems. The proposed model differs from
other existing works in terms of the ability to change the users’ preferences over time.
However, to the best of our knowledge, no model that seamlessly combines heterogeneous
information and sequential data simultaneously is currently available.

3. Proposed Methodology

This section illustrates our proposed deep-sequence–aware recommendation model
that predicts candidates by integrating user history as sequence data and content infor-
mation simultaneously. The following subsections detail the structure and role of each
component of the proposed deep-sequence–aware recommendation model.

3.1. Sequence-Aware Embedding

Embedding involves mapping a discrete categorical variable to a vector of continuous
numbers. In the context of neural networks, embeddings are low-dimensional learned
continuous vector representations of discrete variables. Neural network embeddings are
useful because they can reduce the dimensionality of categorical variables and meaningfully
represent categories in the transformed space. As illustrated in Figure 3, embeddings are the
weights of neural networks whose input is a one-hot encoding of categorical data. Where,
h is node in hidden layer, p is size of embedding vector (hidden layer), V is embedding
vector for item 3, v is a weight in embedding vector, N-number of items.

Processes 2021, 9, x FOR PEER REVIEW 6 of 14

Figure 3. Example of calculating the embedding for item = 3.

Because all fields of the Ubob.com dataset comprise categorical information and all
fields have various lengths, analyzing data by traditional methods is difficult. In our case,
the embedding layer is the number of courses that are different for each user. To solve this
problem, we created a mask using the sequence length of user history. Then, we filtered
out the useless embedding by multiplying a mask and an embedding vector. In a typical
deep-recommendation system, the average vector of courses is first calculated using
Equation (5): 1݊ ܸ

ୀ (5)

where n is the length of the user’s history, and Vi is the embedding of the item selected by
the user. User preference is considered unchangeable during the time, and based on this
embedding method, the same predictions are made for all combinations of the history of
the members. However, this assumption may not be appropriate for all situations. First,
we formulated a user–item relation table with ܴ ∈ ℝ×, where m and n are the numbers
of users and items, respectively. Every user ݑ ∈ ܷ = {1,2, … m} has ݎ(௨) = (ܴ௨ଵ, … ܴ௨)
history, and the history of each item ݅ ∈ ܫ = {1,2, … m} can be represented by ݎ() =(ܴଵ, … ܴ). Second, we assume that for an e-learning system, the following data are
given: one year ago, uk took a math class, and now is studying a history class, whereas ul
finished the history class one year ago and has recently started the math class.

uk: {math, history}
ul: {history, math}
The preference for uk is significantly different from that of ul, who studied history and

math sequentially. The first user may have already finished math, and his preference
changes for the history class with time, whereas the second user wants to take the math
course. This shows that the sequence is ignored, and recommending the same items may
not be an accurate prediction.

To utilize sequence data (user history), we propose a new embedding vector that
stores sequence information. To develop this model, the categorical history of the user
should be input to the model without changing the order (such as (i1, i2, i3…iN)). Because N
varies for different users and neural networks can use a fixed matrix shape, the length of

Figure 3. Example of calculating the embedding for item = 3.

To avoid computational costs, these weights are initialized as a table of variables
(Figure 2). During the training process, the corresponding row of the table inputs the
categorical values to the network, and then the variables of this row are trained, along
with all the other weights in the network. Depending on situation, pre trained or random
initialized weights can be used as embedding vector. In case of having lack of time, using

Processes 2021, 9, 1454 6 of 13

trained weights is recommended. Trained embedding can be generated by using the latent
vector of traditional methods such as the BPR [22] model.

Because all fields of the Ubob.com dataset comprise categorical information and all
fields have various lengths, analyzing data by traditional methods is difficult. In our case,
the embedding layer is the number of courses that are different for each user. To solve
this problem, we created a mask using the sequence length of user history. Then, we
filtered out the useless embedding by multiplying a mask and an embedding vector. In
a typical deep-recommendation system, the average vector of courses is first calculated
using Equation (5):

1
n

n

∑
i=0

Vi (5)

where n is the length of the user’s history, and Vi is the embedding of the item selected by
the user. User preference is considered unchangeable during the time, and based on this
embedding method, the same predictions are made for all combinations of the history of the
members. However, this assumption may not be appropriate for all situations. First, we for-
mulated a user–item relation table with R ∈ Rm×n, where m and n are the numbers of users
and items, respectively. Every user u ∈ U = {1, 2, . . . m} has r(u) = (Ru1, . . . Rum) history,
and the history of each item i ∈ I = {1, 2, . . . m} can be represented by r(i) = (R1i, . . . Rmi).
Second, we assume that for an e-learning system, the following data are given: one year
ago, uk took a math class, and now is studying a history class, whereas ul finished the
history class one year ago and has recently started the math class.

uk: {math, history}
ul: {history, math}
The preference for uk is significantly different from that of ul, who studied history

and math sequentially. The first user may have already finished math, and his preference
changes for the history class with time, whereas the second user wants to take the math
course. This shows that the sequence is ignored, and recommending the same items may
not be an accurate prediction.

To utilize sequence data (user history), we propose a new embedding vector that
stores sequence information. To develop this model, the categorical history of the user
should be input to the model without changing the order (such as (i1, i2, i3 . . . iN)). Because
N varies for different users and neural networks can use a fixed matrix shape, the length
of the history should be made equal by adding a certain constant number that will be
removed in the next layer. In the next layer, this integer number (users’ history) is input to
the embedding layer, which replaces integers with the corresponding float dense vector.
Commonly, a vector length of 128 is used for big datasets; however, it can be changed. It is
important that the constant number that is added to make the length of the vector constant
be removed by masking methods.

As mentioned earlier, items that were consumed a long time ago lose their importance
with time, and items that have recently been consumed by users may have higher impor-
tance in the prediction of the next item. Thus, each embedding vector of user history is
multiplied by values that explain the order of the item in the user’s history (6).

V′ =
V

N − order + 1
(6)

Here, order is the order of items by time, which starts from 0; V is the embedding
vector of the current item; and N is the number of items in the user’s history. After
calculating the sequential embedding of items, the average of these vectors is calculated
using Equation (7).

Vsequential =
1
N

N

∑
i=1

V′i (7)

Then, as illustrated in Figure 4, Vsequential is concatenated to the input layer, together
with the actual embedding to inform the layer about both the sequential and average
preferences of the user.

Processes 2021, 9, 1454 7 of 13

Processes 2021, 9, x FOR PEER REVIEW 7 of 14

the history should be made equal by adding a certain constant number that will be re-
moved in the next layer. In the next layer, this integer number (users’ history) is input to
the embedding layer, which replaces integers with the corresponding float dense vector.
Commonly, a vector length of 128 is used for big datasets; however, it can be changed. It
is important that the constant number that is added to make the length of the vector con-
stant be removed by masking methods.

As mentioned earlier, items that were consumed a long time ago lose their im-
portance with time, and items that have recently been consumed by users may have
higher importance in the prediction of the next item. Thus, each embedding vector of user
history is multiplied by values that explain the order of the item in the user’s history (6). ܸᇱ = ܸܰ − ݎ݁݀ݎ + 1 (6)

Here, order is the order of items by time, which starts from 0; V is the embedding
vector of the current item; and N is the number of items in the user’s history. After calcu-
lating the sequential embedding of items, the average of these vectors is calculated using
Equation (7).

௦ܸ௨௧ = 1ܰ ܸ′ே
ୀଵ (7)

Then, as illustrated in Figure 4, Vsequential is concatenated to the input layer, together
with the actual embedding to inform the layer about both the sequential and average pref-
erences of the user.

Figure 4. Sequence-based embedding.

3.2. Content Data
Typically, the content part of user data comprises big categorical data, small categor-

ical data, and continuous data. Continuous data are input to the network as usual. Big
categorical data should be input as an embedding vector. Unless the categorical data are
small, they can be input into a network as a sparse vector (one-hot encoding). For example,
if the user data had a gender field, it could contain three categorical values: male, female,
and missing data. In this case, these data should be converted to the following one-hot
encoding:

Female: [1, 0, 0]
Male: [0, 1, 0]
Missed data: [0, 0, 1]
In our data, the “jobcode” information of the user was included, which explains the

user’s job by keywords. Because the number of job codes is more than 100, and one user

Figure 4. Sequence-based embedding.

3.2. Content Data

Typically, the content part of user data comprises big categorical data, small categorical
data, and continuous data. Continuous data are input to the network as usual. Big categori-
cal data should be input as an embedding vector. Unless the categorical data are small, they
can be input into a network as a sparse vector (one-hot encoding). For example, if the user
data had a gender field, it could contain three categorical values: male, female, and missing
data. In this case, these data should be converted to the following one-hot encoding:

Female: [1, 0, 0]
Male: [0, 1, 0]
Missed data: [0, 0, 1]
In our data, the “jobcode” information of the user was included, which explains

the user’s job by keywords. Because the number of job codes is more than 100, and
one user may have several job codes, we input this information as an embedding vector
and computed the average vector and concatenated deep network.

3.3. Deep Network

The deep part of the network starts by concatenating all feature vectors in one layer
as illustrated in Figure 5. Based on the length of the training data, we can add two or
three fully connected layers (three in all our experiments). The number of units in each
hidden layer was 64, 32, and 16. For the embedding size of items, we used 32 units as
the length of the embedding vector, whereas 16 units were used for the “jobcode” and
“company information” of users. Next, sigmoid, leaky ReLu, and ReLu functions were
tested as activation functions. ReLu (7) was found to be the most suitable for the network.

ReLU =

{
x : i f (x > 0)
o : i f (x < 0)

(8)

Finally, SoftMax (8) was used as the output layer in our network, which had the same
number of active items in the dataset.

SoftMax = σ(z)i =
ezi

∑K
j=1 ezj

(9)

Notably, the number of output units must be the same as the number of items in
our dataset.

Processes 2021, 9, 1454 8 of 13

Processes 2021, 9, x FOR PEER REVIEW 8 of 14

may have several job codes, we input this information as an embedding vector and com-
puted the average vector and concatenated deep network.

3.3. Deep Network
The deep part of the network starts by concatenating all feature vectors in one layer

as illustrated in Figure 5. Based on the length of the training data, we can add two or three
fully connected layers (three in all our experiments). The number of units in each hidden
layer was 64, 32, and 16. For the embedding size of items, we used 32 units as the length
of the embedding vector, whereas 16 units were used for the “jobcode” and “company
information” of users. Next, sigmoid, leaky ReLu, and ReLu functions were tested as ac-
tivation functions. ReLu (7) was found to be the most suitable for the network. ܴܷ݁ܮ = ൜ݔ)݂݅ :ݔ > ݔ) ݂݅ :(0 < 0) (8)

Finally, SoftMax (8) was used as the output layer in our network, which had the same

number of active items in the dataset.

SoftMax = (ݖ)ߪ = ∑ ೕೕ಼సభ (9)

Notably, the number of output units must be the same as the number of items in our
dataset.

Figure 5. Structure of deep-sequence–aware recommendation. Figure 5. Structure of deep-sequence–aware recommendation.

3.4. Network Optimization

As the best solution for the optimization problem of the deep-sequence–aware net-
work, stochastic gradient descent was selected as the optimization algorithm. Stochastic
gradient descent can minimize the differentiable objective function iteratively by taking
steps opposite to the gradient. The main difference between stochastic gradient descent and
traditional gradient descent is that the stochastic gradient descent calculates the gradients
among randomly sampled data. Because the gradient in gradient descent is calculated us-
ing all training data, the stochastic gradient descent is significantly faster than the gradient
descent algorithm. During training, the optimal output was obtained when the learning
rate η was equal to 0.00.

θ = θ− η·∇θJ
(
θ; x(i); y(i)

)
(10)

The pseudo code of the stochastic gradient descent algorithm is as follows:

• Select an initial array of θ and learning rate η
• Repeat until an approximate minimum is calculated:
• Randomly shuffle examples in the training set:

For i = 1,2, . . . , n, do:

� θ = θ − η·∇θ Ji(θ)

Processes 2021, 9, 1454 9 of 13

4. Experimental Results
4.1. Experimental Setup
4.1.1. Datasets
Ubob.com Dataset

To build our recommendation system model and evaluate its performance, we mainly
used the Korean Ubob.com e-learning dataset. As shown in the diagram below (Figure 6),
the database has four tables that we used as heterogeneous and sequence data to utilize
our recommendation system. All fields of the Ubob.com dataset consist of categorical
information, and the lengths of fields vary. Thus, traditional methods cannot easily analyze
these data. The most important fields are explained here:

Processes 2021, 9, x FOR PEER REVIEW 9 of 14

3.4. Network Optimization
As the best solution for the optimization problem of the deep-sequence–aware net-

work, stochastic gradient descent was selected as the optimization algorithm. Stochastic
gradient descent can minimize the differentiable objective function iteratively by taking
steps opposite to the gradient. The main difference between stochastic gradient descent
and traditional gradient descent is that the stochastic gradient descent calculates the gra-
dients among randomly sampled data. Because the gradient in gradient descent is calcu-
lated using all training data, the stochastic gradient descent is significantly faster than the
gradient descent algorithm. During training, the optimal output was obtained when the
learning rate η was equal to 0.00. θ = θ − η · ∇J(θ; ;(୧)ݔ (10) ((୧)ݕ

The pseudo code of the stochastic gradient descent algorithm is as follows:
• Select an initial array of ߠ and learning rate ߟ
• Repeat until an approximate minimum is calculated:
• Randomly shuffle examples in the training set:

o For i = 1,2,.., n, do:
 ߠ = ߠ − · ߟ (ߠ)ܬఏߘ

4. Experimental Results
4.1. Experimental Setup
4.1.1. Datasets
Ubob.com Dataset

To build our recommendation system model and evaluate its performance, we
mainly used the Korean Ubob.com e-learning dataset. As shown in the diagram below
(Figure 6), the database has four tables that we used as heterogeneous and sequence data
to utilize our recommendation system. All fields of the Ubob.com dataset consist of cate-
gorical information, and the lengths of fields vary. Thus, traditional methods cannot easily
analyze these data. The most important fields are explained here:

Figure 6. Structure of the Ubob.com dataset.

A student table was built to store user information. In most fields such as age and
gender, the information was not sufficient to be used in recommender systems. Thus,
these values were removed from the table. After removing all unusable values, we saved

Figure 6. Structure of the Ubob.com dataset.

A student table was built to store user information. In most fields such as age and
gender, the information was not sufficient to be used in recommender systems. Thus,
these values were removed from the table. After removing all unusable values, we saved
only the “jobcodes,” course history, and item–user interaction tables. The number of all
members in the database was approximately 222,000; however, only 82,000 users had item–
user interaction data that can be used in our model. Every user has their own company
information. In addition, students have job code information that details the profession of
the student in one word. The database has a different number of job codes for each user.
The overall number of valid job codes was 528. We had 82,000 users. If all data are trained
using only the existing data, the last layer of the network (SoftMax) cannot learn all the
classes. To tackle this issue, the amount of data was increased by a data-augmentation
method, called the sliding window, which is explained next. If the history of one user is
I1, I2, I3, and I4, this means that they selected I4 when they had history I1, I2, and I3, and
when they had history I1 and I2, they selected I3, so we created the following data and
increased the data size.

X1 = [I1, I2, I3] Y1 = [I4]
X2 = [I1, I2] Y2 = [I3]
X3 = [I1] Y3 = [I2]
After augmenting all the data, we obtained 228,000 data points that could be analyzed

by the neural network. Eighty percent augmented data were used for training, whereas the
remaining 20% were utilized as test data.

Processes 2021, 9, 1454 10 of 13

MovieLens 20M Dataset

This dataset contains 20,000,263 ratings and 465,564 tags applied to 27,278 movies
by 138,493 users of the online movie recommender service MovieLens. Each user rates a
movie from 1 to 5, where 1 is the worst and 5 is the best. Users were randomly selected
for inclusion. All users selected had rated at least 20 movies. The dataset was randomly
divided into 80% for training and 20% for testing.

4.1.2. Implementation Environment

In the experimental evaluation, the proposed and compared methods were deployed
based on the configured hardware and software environments presented in Table 1.

Table 1. Parameters of experimental environment.

Classification Details

OS Windows 10
Programming Language Python (Keras-Anaconda), TensorFlow

CPU Intel(R) core (TM) Core i7-7700
RAM 16.00 GB

4.2. Performance of the Proposed Model
4.2.1. Training

In this section, we assess the performance of our method using the TensorFlow deep-
learning framework. Data were divided into training and testing sets (80% and 20%,
respectively). After training our model, we achieved a prediction accuracy of 60% and
testing loss of 0.139. The visual representation of the loss functions of the training and
validation sets shows that the network is trained without overfitting. In addition, because
the testing loss started to increase (Figure 7), we can conclude that in the 20th epoch, the
training model delivered the best performance.

Processes 2021, 9, x FOR PEER REVIEW 11 of 14

Figure 7. Training and testing losses in 20 epochs.

Using a trained model, we used the embedding of courses in latent space using prin-
cipal component analysis (PCA) and searched the course called “Real Estate Broker_In-
troduction to Real Estate Science 2017(1)”. The obtained answers are presented in Table 2,
which we believe are worth using as k-NN.

Table 2. Similarity between courses.

Course Name Similarity
Real Estate Broker_Civil Act and Special Civil Act) 0.737

Real Estate Broker_Real Estate Disclosure Act 0.697
Real Estate speciality 0.549

Real Estate Agent_Real Estate Act 0.533

4.2.2. Prediction Accuracy
Notably, the proposed deep-sequence–aware candidate-generation model com-

pleted the entire workflow of candidate generation by integrating user history as sequence
data and content information simultaneously. To test the superiority of our model, four
methods were selected for comparison, and the results are summarized in Table 3.
1. YouTube model: Proposed by Covington et al. [10], this method uses continuous and

categorical features to recommend items by ignoring the sequence data of user his-
tory.

2. AutoRec: The model [20] attempts to exploit user preference data for items to provide
personalized recommendations based on the autoencoder concept.

3. Deep interest network: Developed by Zhou et al. [23], deep networks map the histor-
ical behaviors of users into low-dimensional embedding vectors to learn nonlinear
relations among features to predict the click-through rate.

4. DDPG (Tag-aware) model: Designed by Zhiruo Zhao et al. [24], the model is a tag-
aware recommender system based on deep reinforcement learning without complex

Figure 7. Training and testing losses in 20 epochs.

Processes 2021, 9, 1454 11 of 13

Using a trained model, we used the embedding of courses in latent space using
principal component analysis (PCA) and searched the course called “Real Estate Bro-
ker_Introduction to Real Estate Science 2017(1)”. The obtained answers are presented in
Table 2, which we believe are worth using as k-NN.

Table 2. Similarity between courses.

Course Name Similarity

Real Estate Broker_Civil Act and Special Civil Act) 0.737
Real Estate Broker_Real Estate Disclosure Act 0.697

Real Estate speciality 0.549
Real Estate Agent_Real Estate Act 0.533

4.2.2. Prediction Accuracy

Notably, the proposed deep-sequence–aware candidate-generation model completed
the entire workflow of candidate generation by integrating user history as sequence data
and content information simultaneously. To test the superiority of our model, four methods
were selected for comparison, and the results are summarized in Table 3.

1. YouTube model: Proposed by Covington et al. [10], this method uses continuous and
categorical features to recommend items by ignoring the sequence data of user history.

2. AutoRec: The model [20] attempts to exploit user preference data for items to provide
personalized recommendations based on the autoencoder concept.

3. Deep interest network: Developed by Zhou et al. [23], deep networks map the histor-
ical behaviors of users into low-dimensional embedding vectors to learn nonlinear
relations among features to predict the click-through rate.

4. DDPG (Tag-aware) model: Designed by Zhiruo Zhao et al. [24], the model is a tag-
aware recommender system based on deep reinforcement learning without complex
function design, taking advantage of tags to make up for the interpretability problems
existing in the recommender system.

Table 3. Performance prediction.

Model
Ubob.Com Dataset MovieLens 20M

Precision 1 Precision 5 Precision 10 MAE

YouTube model 0.593 0.461 0.294 0.6471
Proposed deep-sequence–aware model 0.599 0.482 0.358 0.6328

AutoRec 0.309 0.213 0.175 0.6854
Deep interest network 0.32 0.254 0.197 0.7086

DDPG (Tag-aware) - - - 0.7143

4.2.3. Dealing with the User Cold-Start Issue

One of the biggest challenges in building a recommender system is the cold-start
problem that occurs when a new user or item is introduced, for which no past interactions
are available. This is an important problem that is a well-researched issue.

The Ubob.com dataset has sufficient interaction information regarding users and
items; thus, the new community issue can be avoided. In addition, courses are not seasonal
and changeable; thus, new items are also not a problem for this e-learning system. Only
making predictions for new users can be a problem.

To solve the problem of new users, during training and testing, we input a default
embedding as user history to the network, together with their “jobcode” and “company id,”
so that the system learns predicting items based only on data that are usually available for
new users. The comparative results are presented in Table 4, which show that the proposed
method outperformed the other models. Thus, user history data as sequence information
and content information can be used simultaneously to provide recommendations for

Processes 2021, 9, 1454 12 of 13

cold-start items. In both instances, clearly, the proposed methodology helped mitigate the
cold-start problem for new users significantly better than the other models.

Table 4. User cold-start performance.

Model
Ubob.Com Dataset MovieLens 20M

MAE of 25 Cold-Start Users MAE of 50 Cold-Start Users MAE of 50 Cold-Start Users

YouTube model 0.651 0.721 0.6987
Proposed deep-sequence–aware model 0.637 0.685 0.6901

AutoRec 0.753 0.802 0.7458
Deep interest network 0.749 0.787 0.7136

DDPG (Tag-aware) - - 0.7044

5. Conclusions

Although the development of recommender systems is progressing at a high rate,
user- and item-cold-start problems and the accuracy of recommender systems are open
challenges that must be overcome. Herein, we proposed a novel method for recommen-
dation systems that simultaneously integrates content (heterogeneous) information and
sequence data. In addition, by utilizing default embedding as nonexistent history, our
model can provide recommendations for users who do not have item interaction data.
The proposed model differs from other existing works in terms of the ability to identify
changes in user preferences over time. In addition, the experimental results revealed the
significant influence of the combination of sequence and content (heterogeneous) data on
alleviating the user-cold-start problem; in terms of the accuracy of the recommendation
system, our proposed model was superior to other models such as the collaborative au-
toencoder, deep interest network, and deep YouTube recommendation model. Our model
performed well on the Ubob.com dataset, which is highly dependent on sequence data.
Despite the superiority of the proposed approach, several problems were encountered. In
particular, with advances in the domain, a high volume of data is available for making
recommendations. Therefore, future research could explore more sophisticated models
to estimate the importance of the hidden features of users and items that are represented
as a sequence as well as content (heterogeneous) information preference using recent
deep-learning methods and algorithms. Additionally, in future research, an explainable
and interpretable recommendation system based on sequence and content features could
be developed.

Author Contributions: This manuscript was designed and written and the experiments were per-
formed by A.I.; A.K. helped revise and improve the model and the manuscript; the theory and
experiments were analyzed and commented on by T.-K.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the GRRC program of Gyeonggi province. [GRRC-Gachon2021
(B04), Development of AI-based Healthcare Devices].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: A.I and A.K. would like to express their sincere gratitude and appreciation to
their supervisor, Taeg Keun Whangbo (Gachon University), for his support, comments, remarks, and
engagement over the period in which this manuscript was written. Moreover, the authors would
like to thank the editor and anonymous referees for their constructive comments on improving the
content and presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2021, 9, 1454 13 of 13

References
1. Kutlimuratov, A.; Abdusalomov, A.; Whangbo, T.K. Evolving Hierarchical and Tag Information Via the Deeply Enhanced

Weighted Non-Negative Matrix Factorization of Rating Predictions. Symmetry 2020, 12, 1930. [CrossRef]
2. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
3. Fang, Y.; Si, L. Matrix co-factorization for recommendation with rich side information and implicit feedback. In Proceedings

of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, Chicago, IL, USA,
23–27 October 2011; pp. 65–69.

4. Ricci, F.; Rokach, L.; Shapira, B.; Kantor, P.B. Recommender Systems Handbook; Springer: Berlin, Germany, 2011; ISBN 978-0-387-85819-7.
5. Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl. Based Syst. 2013, 46, 109–132.

[CrossRef]
6. Wang, J.; de Vries, A.P.; Reinders, M.J.T. Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity

Fusion. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, Seattle, WA, USA, 6–11 August 2006; pp. 501–508.

7. Su, X.; Khoshgoftaar, T.M. A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 2009, 1–19. [CrossRef]
8. Zheng, L.; Lu, C.-T.; He, L.; Xie, S.; He, H.; Li, C.; Noroozi, V.; Dong, B.; Yu, P.S. MARS: Memory Attention-Aware Recommender

System. In Proceedings of the 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Washington,
DC, USA, 5–8 October 2019; pp. 11–20.

9. Ruining, H.; Julian, J. VBPR: Visual bayesian personalized ranking from implicit feedback. In Proceedings of the AAAI-16
Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.

10. Covington, P.; Adams, J.; Sargin, E. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198.

11. Deshpande, M.; Karypis, G. Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. 2004, 22, 143–177. [CrossRef]
12. Schein, A.I.; Popescul, A.; Ungar, L.H.; Pennock, D.M. Methods and metrics for cold-start recommendations. In Proceedings of

the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY,
USA, 11–15 August 2002; pp. 253–260.

13. Lam, X.N.; Vu, T.; Le, T.D.; Duong, A.D. Addressing cold-start problem in recommendation systems. In Proceedings of the 2nd
International Conference on Ubiquitous Information Management and Communication, Suwon, Korea, 31 January–1 February
2008; ACM: New York, NY, USA, 2008; pp. 208–211.

14. Agrawal, R.; Srikant, R. Mining sequential patterns. In Proceedings of the 11th International Conference on Data Engineering
(ICDE), Taipei, Taiwan, 6–10 March 1995; pp. 3–14.

15. Mobasher, B.; Dai, H.; Luo, T.; Nakagawa, M. Using sequential and non-sequential patterns in predictive Web usage mining
tasks. In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002;
pp. 669–672. [CrossRef]

16. Yu, H.; Riedl, M.O. A sequential recommendation approach for interactive personalized story generation. In Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012.

17. Zhao, G.; Lee, M.L.; Hsu, W.; Chen, W. Increasing temporal diversity with purchase intervals. In Proceedings of the 35th interna-
tional ACM SIGIR conference on Research and development in information retrieval, Portland, OR, USA, 12–16 August 2012.

18. Qiao, Z.; Zhang, P.; Cao, Y.; Zhou, C.; Guo, L.; Fang, B. Combining Heterogenous Social and Geographical Information for Event
Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014;
pp. 165–174. [CrossRef]

19. Bao, Y.; Fang, H.; Zhang, J. TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation. In Proceedings of the
AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014.

20. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th
International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 111–112.

21. Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C. A Neural Probabilistic Language Model. J. Mach. Learn. Res. 2003, 3, 1137–1155.
22. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian Personalized Ranking from Implicit Feedback.

arXiv 2012, arXiv:1205.2618.
23. Zhou, G.; Zhu, X.; Song, C.; Fan, Y.; Zhu, H.; Ma, X.; Yan, Y.; Jin, J.; Li, H.; Gai, K. Deep Interest Network for Click-Through Rate

Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London,
UK, 19–23 August 2018; pp. 1059–1068. [CrossRef]

24. Zhao, Z.; Chen, X.; Xu, Z.; Cao, L. Tag-Aware Recommender System Based on Deep Reinforcement Learning. Math. Probl. Eng.
2021, 2021, 5564234. [CrossRef]

http://doi.org/10.3390/sym12111930
http://doi.org/10.1109/MC.2009.263
http://doi.org/10.1016/j.knosys.2013.03.012
http://doi.org/10.1155/2009/421425
http://doi.org/10.1145/963770.963776
http://doi.org/10.1109/ICDM.2002.1184025
http://doi.org/10.1145/2348283.2348309
http://doi.org/10.1145/3219819.3219823
http://doi.org/10.1155/2021/5564234

	Introduction
	Related Work
	Proposed Methodology
	Sequence-Aware Embedding
	Content Data
	Deep Network
	Network Optimization

	Experimental Results
	Experimental Setup
	Datasets
	Implementation Environment

	Performance of the Proposed Model
	Training
	Prediction Accuracy
	Dealing with the User Cold-Start Issue

	Conclusions
	References

