Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Heart Rate Variability Assessment Methods
2.3. Protocol
2.4. Interbeat Interval Analysis
2.5. Statistical Analysis
2.5.1. Validity
2.5.2. Reliability
3. Results
3.1. Validity of the PPG Finger Monitor
3.2. Reliability of the PPG Finger Monitor and Polar H10 HR Sensor Chest Strap
3.2.1. Interclass Correlation
3.2.2. Typical Error of Measurement
4. Discussion
4.1. Validity of the PPG Finger Monitor
4.2. Reliability of the PPG Finger Monitor
4.3. Limitations
4.4. Practical Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weippert, M.; Kumar, M.; Kreuzfeld, S.; Arndt, D.; Rieger, A.; Stoll, R. Comparison of three mobile devices for measuring R-R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur. J. Appl. Physiol. 2010, 109, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Gerardo, G.M.; Williams, D.P.; Kessler, M.; Spangler, D.P.; Hillecke, T.K.; Thayer, J.F.; Koenig, J. Body mass index and parasympathetic nervous system reactivity and recovery following graded exercise. Am. J. Hum. Biol. 2019, 31, e23208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestanikova, A.; Mestanik, M.; Ondrejka, I.; Hrtanek, I.; Cesnekova, D.; Jurko, A.; Visnovcova, Z.; Sekaninova, N.; Tonhajzerova, I. Complex cardiac vagal regulation to mental and physiological stress in adolescent major depression. J. Affect. Disord. 2019, 249, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Moneghetti, K.J.; Christle, J.W.; Hadley, D.; Plews, D.; Froelicher, V. Heart Rate Variability: An Old Metric with New Meaning in the Era of using mHealth Technologies for Health and Exercise Training Guidance. Part One: Physiology and Methods. Arrhythm. Electrophysiol. Rev. 2018, 7, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, C.; Casagranda, L.; Pichot, V.; Trombert-Paviot, B.; Faure-Conter, C.; Freycon, C.; Isfan, F.; Guichard, I.; Durieu, I.; Garcin, A.; et al. Dysautonomia in Childhood Cancer Survivors: A Widely Underestimated Risk. J. Adolesc. Young Adult Oncol. 2019, 8, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sookan, T.; McKune, A.J. Heart rate variability in physically active individuals: Reliability and gender characteristics. Cardiovasc. J. Afr. 2012, 23, 67–72. [Google Scholar] [CrossRef]
- Haraldsdottir, K.; Watson, A.M.; Beshish, A.G.; Pegelow, D.F.; Palta, M.; Tetri, L.H.; Brix, M.D.; Centanni, R.M.; Goss, K.N.; Eldridge, M.W. Heart rate recovery after maximal exercise is impaired in healthy young adults born preterm. Eur. J. Appl. Physiol. 2019, 119, 857–866. [Google Scholar] [CrossRef]
- Seppala, S.; Laitinen, T.; Tarvainen, M.P.; Tompuri, T.; Veijalainen, A.; Savonen, K.; Lakka, T. Normal values for heart rate variability parameters in children 6–8 years of age: The PANIC Study. Clin. Physiol. Funct. Imaging 2014, 34, 290–296. [Google Scholar] [CrossRef]
- Vrijkotte, T.G.; van den Born, B.J.; Hoekstra, C.M.; Gademan, M.G.; van Eijsden, M.; de Rooij, S.R.; Twickler, M.T. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study. PLoS ONE 2015, 10, e0138302. [Google Scholar] [CrossRef] [Green Version]
- De Hert, M.; Detraux, J.; Vancampfort, D. The intriguing relationship between coronary heart disease and mental disorders. Dialogues Clin. Neurosci. 2018, 20, 31–40. [Google Scholar]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.K.; Wachholtz, A. The benefit of heart rate variability biofeedback and relaxation training in reducing trait anxiety. Korean J. Health Psychol. 2015, 20, 391–408. [Google Scholar]
- Parry, D.A.; Oeppen, R.S.; Amin, M.S.A.; Brennan, P.A. Could exercise improve mental health and cognitive skills for surgeons and other healthcare professionals? Br. J. Oral Maxillofac. Surg. 2018, 56, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Weiner, O.M.; McGrath, J.J. Test-Retest Reliability of Pediatric Heart Rate Variability: A Meta-Analysis. J. Psychophysiol. 2017, 31, 6–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, F.L.; Leicht, A.S. Short-term stability of resting heart rate variability: Influence of position and gender. Appl. Physiol. Nutr. Metab. 2011, 36, 210–218. [Google Scholar] [CrossRef]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [CrossRef] [Green Version]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.L.; Alloy, L.B. Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research. Clin. Psychol. Rev. 2016, 50, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef]
- Androne, A.S.; Hryniewicz, K.; Goldsmith, R.; Arwady, A.; Katz, S.D. Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart 2003, 89, 854–858. [Google Scholar] [CrossRef]
- Henje Blom, E.; Olsson, E.M.; Serlachius, E.; Ericson, M.; Ingvar, M. Heart rate variability (HRV) in adolescent females with anxiety disorders and major depressive disorder. Acta Paediatr. 2010, 99, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukmani, M.R.; Seshadri, S.P.; Thennarasu, K.; Raju, T.R.; Sathyaprabha, T.N. Heart Rate Variability in Children with Attention-Deficit/Hyperactivity Disorder: A Pilot Study. Ann. Neurosci. 2016, 23, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, H.A.; Benton, D. Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological health? Behav. Pharm. 2018, 29, 140–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunan, D.; Donovan, G.; Jakovljevic, D.G.; Hodges, L.D.; Sandercock, G.R.; Brodie, D.A. Validity and reliability of short-term heart-rate variability from the Polar S810. Med. Sci. Sports Exerc. 2009, 41, 243–250. [Google Scholar] [CrossRef]
- Krejčí, J.; Botek, M.; McKune, A.J. Stabilization period before capturing an ultra-short vagal index can be shortened to 60 s in endurance athletes and to 90 s in university students. PLoS ONE 2018, 13, e0205115. [Google Scholar] [CrossRef]
- Hopkins, W.A. Analysis of Validity by Linear Regression. Available online: https://www.sportsci.org/resource/stats/ (accessed on 15 November 2018).
- Hopkins, W.A. Consecutive Pairwise Analysis of Trials for Reliability. Available online: https://www.sportsci.org/resource/stats/ (accessed on 15 November 2018).
- Bruton, A.; Conway, J.H.; Holgate, S.T. Reliability: What is it, and how is it measured? Physiotherapy 2000, 86, 94–99. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Agreement between methods of measurement with multiple observations per individual. J. Biopharm. Stat. 2007, 17, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Šerbetar, I. Establishing Some Measures of Absolute and Relative Reliability of a Motor Test/Određivanje nekih mjera apsolutne i relativne pouzdanosti motoričkih testova. Croat. J. Educ. 2015, 17, 37–48. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, T.; Konkol, K.; Biccard, B.; Dudose, K.; McKune, A.J. Elevated salivary C-reactive protein predicted by low cardio-respiratory fitness and being overweight in African children. Cardiovasc. J. Afr. 2012, 23, 501–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, S.; Graham, K.S.; Davis, G.M.O. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals-A Review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, D.; Draper, N.; Neil, W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 2016, 116, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart-Rate-Variability Recording with Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef]
- Cadmus-Bertram, L.; Gangnon, R.; Wirkus, E.J.; Thraen-Borowski, K.M.; Gorzelitz-Liebhauser, J. The Accuracy of Heart Rate Monitoring by Some Wrist-Worn Activity Trackers. Ann. Intern. Med. 2017, 166, 610–612. [Google Scholar] [CrossRef]
- Parak, J.; Korhonen, I. Evaluation of wearable consumer heart rate monitors based on photopletysmography. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3670–3673. [Google Scholar]
- Lang, M. Beyond Fitbit: A Critical Appraisal of Optical Heart Rate Monitoring Wearables and Apps, Their Current Limitations and Legal Implications. Albany Law J. Sci. Technol. 2017, 28, 39. [Google Scholar]
- Sun, Y.; Thakor, N. Photoplethysmography Revisited: From Contact to Noncontact, From Point to Imaging. IEEE Trans. Biomed. Eng. 2016, 63, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Shin, H. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult. J. Clin. Monit. Comput. 2016, 30, 939–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofstee, P.; McKeating, D.R.; Perkins, A.V.; Cuffe, J.S. Placental adaptations to micronutrient dysregulation in the programming of chronic disease. Clin. Exp. Pharm. Physiol. 2018, 45, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Caro-Moran, E.; Fernandez-Lao, C.; Galiano-Castillo, N.; Cantarero-Villanueva, I.; Arroyo-Morales, M.; Diaz-Rodriguez, L. Heart Rate Variability in Breast Cancer Survivors After the First Year of Treatments: A Case-Controlled Study. Biol. Res. Nurs. 2016, 18, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Michels, N.; Clays, E.; De Buyzere, M.; Huybrechts, I.; Marild, S.; Vanaelst, B.; De Henauw, S.; Sioen, I. Determinants and reference values of short-term heart rate variability in children. Eur. J. Appl. Physiol. 2013, 113, 1477–1488. [Google Scholar] [CrossRef]
- Thomas, B.L.; Claassen, N.; Becker, P.; Viljoen, M. Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function. Neuropsychobiology 2019, 78, 14–26. [Google Scholar] [CrossRef]
- McKune, A.J.; Peters, B.; Ramklass, S.S.; Van Heerden, J.; Roberts, C.; Krejci, J.; Botek, M. Autonomic cardiac regulation, blood pressure and cardiorespiratory fitness responses to different training doses over a 12 week group program in the elderly. Arch. Gerontol. Geriatr. 2017, 70, 130–135. [Google Scholar] [CrossRef]
Males (n = 12) | Females (n = 4) | Significance (p) | |
---|---|---|---|
Age (years) | 3.95 ± 0.49 | 4.40 ± 0.77 | 0.33 |
Height (cm) | 103.45 ± 4.28 | 106.33 ± 5.51 | 0.47 |
Weight (kg) | 17.28 ± 2.48 | 17.47 ± 2.41 | 0.91 |
BMI (kg/m2) | 16.10 ± 1.30 | 15.39 ± 1.08 | 0.39 |
Chest Strap (mean ± SD) | Finger Monitor (mean ± SD) | Bias (LOA) | Pearson Correlation (95%CI) | Effect Size (Interpretation) | |
---|---|---|---|---|---|
Mean R-R (ms) | 624.01 ± 75.15 | 632.10 ± 79.19 | 8.09 (−84.19 to 100.38) | 0.81 (−0.60–0.80) | 0.11 (Trivial) |
Mean HR (bpm) | 97.51 ± 11.54 | 96.35 ± 11.79 | −1.15 (−12.77 to 10.46) | 0.87 (−0.79–0.59) | −0.10 (Trivial) |
SDNN (ms) | 37.53 ± 18.05 | 67.50 ± 54.46 | −29.98 (−126.67 to 66.72) | 0.43 (0.02–1.45) | 0.74 (Moderate) |
Ln RMSSD (ms) | 3.51 ± 0.66 | 4.09 ± 0.75 | 0.57 (−0.56 to 1.71) | 0.67 (0.10–1.54) | 0.82 (Moderate) |
Ln Power HF (ms2) | 5.84 ± 1.23 | 6.85 ± 1.53 | −1.01 (−3.25 to 1.24) | 0.67 (0.01–1.44) | 0.73 (Moderate) |
SD1/SD2 | 1.75 ± 0.51 | 1.48 ± 0.30 | 0.27 (−0.51 to 1.05) | 0.63 (−0.65– 0.07) | −0.65 (Moderate) |
HRV Domains | Day 2 vs. Day 1 | Day 3 vs. Day 2 | |||||
---|---|---|---|---|---|---|---|
TEM | TEM (%) | ICC | TEM | TEM (%) | ICC | ||
Mean R-R (ms) | Chest Strap | 40.49 (31.13–59.10) | 6.7 (5.1–9.9) | 0.76 (0.49–0.90) | 32.06 (24.65–46.80) | 5.3 (4.1–7.9) | 0.84 (0.65–0.93) |
Finger Monitor | 57.98 (44.91–83.33) | 9.0 (6.9–13.1) | 0.57 (0.21–0.80) | 54.85 (42.49–78.83) | 8.9 (6.8–13.1) | 0.46 (0.06–0.73) | |
Mean HR (bpm) | Chest Strap | 6.33 (4.87–9.25) | 6.7 (5.1–9.9) | 0.76 (0.49–0.89) | 5.15 (3.96–7.51) | 5.3 (4.1–7.9) | 0.83 (0.63–0.93) |
Finger Monitor | 7.84 (6.07–11.26) | 9.0 (6.9–13.1) | 0.65 (0.32–0.84) | 8.14 (6.30–11.69) | 8.9 (6.8–13.1) | 0.50 (0.11–0.76) | |
SDNN (ms) | Chest Strap | 10.74 (8.26–15.68) | 40.6 (30.0–64.5) | 0.65 (0.31–0.84) | 8.91 (6.85–13.01) | 32.0 (23.8–49.9) | 0.82 (0.60–0.92) |
Finger Monitor | 53.34 (41.32–76.66) | 77.8 (56.2–128.7) | 0.12 (−0.30–0.51) | 47.03 (36.43–67.59 | 74.7 (54.0–122.9) | 0.00 (−0.42–0.41) | |
Ln RMSSD (ms) | Chest Strap | 0.42 (0.32–0.061) | 14.0 (10.6–21.2) | 0.65 (0.30–0.84) | 0.34 (0.27–0.50) | 11.1 (8.5–16.7) | 0.79 (0.55–0.91) |
Finger Monitor | 0.61 (0.47–0.89) | 15.2 (11.5–22.9) | 0.41 (−0.03–0.71) | 0.57 (0.44–0.83) | 14.3 (10.8–21.5) | 0.32 (−0.14–0.65) | |
Ln Power HF (ms2) | Chest Strap | 0.75 (0.58–1.10) | 15.9 (12.0–24.0) | 0.68 (0.35–0.86) | 0.65 (0.50–0.95) | 13.8 (10.5–20.8) | 0.78 (0.53–0.91) |
Finger Monitor | 1.25 (0.97–1.80) | 18.7 (14.2–28.0) | 0.41 (0.00–0.71) | 1.27 (0.98–1.83) | 19.4 (14.8–29.1) | 0.21 (−0.23–0.57) | |
SD1/SD2 | Chest Strap | 0.30 (0.23–0.43) | 18.2 (13.7–27.6) | 0.73 (0.44–0.88) | 0.23 (0.17–0.33) | 14.5 (11.0–21.9) | 0.84 (0.65–0.93) |
Finger Monitor | 0.24 (0.19–0.34) | 17.2 (13.0–25.5) | 0.55 (0.17–0.78) | 0.23 (0.18–0.33) | 16.5 (12.6–24.6) | 0.44 (0.03–0.72) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speer, K.E.; Semple, S.; Naumovski, N.; McKune, A.J. Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 390-404. https://doi.org/10.3390/ejihpe10010029
Speer KE, Semple S, Naumovski N, McKune AJ. Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study. European Journal of Investigation in Health, Psychology and Education. 2020; 10(1):390-404. https://doi.org/10.3390/ejihpe10010029
Chicago/Turabian StyleSpeer, Kathryn E., Stuart Semple, Nenad Naumovski, and Andrew J. McKune. 2020. "Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study" European Journal of Investigation in Health, Psychology and Education 10, no. 1: 390-404. https://doi.org/10.3390/ejihpe10010029
APA StyleSpeer, K. E., Semple, S., Naumovski, N., & McKune, A. J. (2020). Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study. European Journal of Investigation in Health, Psychology and Education, 10(1), 390-404. https://doi.org/10.3390/ejihpe10010029