Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Characterization of Implants
2.3. Implantation of the Collagen Sponge and ACM
2.4. Preparation of Collagen Peptides
2.5. Preparation of Reference Peptides and Collagen Peptide Solution
2.6. HPLC-MS/MS Conditions
2.7. Quantitative Methodological Validation
2.8. Analysis of Data
3. Results
3.1. Characterization of Implants
3.2. Specific Peptide Identification of Bovine Type I Collagen
3.3. Quantification of Bovine Type I Collagen
3.4. Quantitative Methodological Validation
3.4.1. Method Precision
3.4.2. Method Repeatability Verification
3.4.3. Detection Recovery Rate Based on Reference Peptide Spiking Study
3.4.4. Detection and Quantification Limits
3.5. Degradation Analysis of Implants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Xu, H.F.; Bihan, D.; Chang, F.; Huang, P.; Farndale, R.; Leitinger, B. Discoidin domain receptors promote a1b1- and a2b1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS ONE 2012, 7, e52209. [Google Scholar] [CrossRef] [PubMed]
- Kadler, K.; Baldock, C.; Bella, J.; Boot-Handford, R. Collagens at a glance. J. Cell Sci. 2007, 120, 1955–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, Z.; Han, Q.; Huo, S. The protective effects of bexarotene against advanced glycation end-product (AGE)-induced degradation of articular extracellular matrix (ECM). Artif. Cells Nanomed. Biotechnol. 2020, 48, 1–7. [Google Scholar] [CrossRef] [PubMed]
- White, J.F.; Werkmeister, J.A.; Bisucci, T.; Darby, I.A.; Ramshaw, J.A. Temporal variation in the deposition of different types of collagen within a porous biomaterial implant. J. Biomed. Mater. Res. Part A 2014, 102, 3550–3555. [Google Scholar] [CrossRef]
- Blackburn, N.J.; Sofrenovic, T.; Kuraitis, D.; Ahmadi, A.; McNeill, B.; Deng, C.; Rayner, K.J.; Zhong, Z.; Ruel, M.; Suuronen, E.J. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials 2015, 39, 182–192. [Google Scholar] [CrossRef]
- Mayer, S.; Decaluwe, H.; Ruol, M.; Manodoro, S.; Kramer, M.; Till, H.; Deprest, J. Diaphragm repair with a novel cross-linked collagen biomaterial in a growing rabbit model. PLoS ONE 2015, 10, e0132021. [Google Scholar] [CrossRef] [Green Version]
- Otake, T.; Toriumi, T.; Ito, T.; Okuwa, Y.; Honda, M. Recovery of sensory function after the implantation of oriented-collagen tube into the resected rat sciatic nerve. Regen. Ther. 2020, 14, 48–58. [Google Scholar] [CrossRef]
- Ahtzaz, S.; Waris, T.S.; Shahzadi, L.; Chaudhry, A.A.; Yar, M. Boron for tissue regeneration-it’s loading into chitosan/collagen hydrogels and testing on chorioallantoic membrane to study the effect on angiogenesis. Int. J. Polym. Mater. Polym. 2020, 69, 525–534. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.Y.; Min, Y.P.; Chen, J.H. Preparation of methacrylated hyaluronate/methacrylated collagen sponges with rapid shape recovery and orderly channel for fast blood absorption as hemostatic dressing. Int. J. Biol. Macromol. 2022, 222, 30–40. [Google Scholar] [CrossRef]
- Sun, L.L.; Li, B.F.; Jiang, D.D.; Hou, H. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Coll. Oid. Surface. B 2017, 159, 89–96. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Z.H.; Chen, H.Q.; Liu, J.; Lin, R.Y. Application of acellular dermal matrix to reconstruct the defects after hypopharyngeal carcinoma resection. Am. J. Otolaryngol. 2021, 42, 102847. [Google Scholar] [CrossRef] [PubMed]
- Sbi, L.J.; Wang, Y.; Yang, C.; Jiang, W.W. Application of acellular dermal matrix in reconstruction of oral mucosal defects in 36 cases. J. Oral. Maxillofac. Surg. 2012, 70, e586–e591. [Google Scholar]
- Pang, K.; Du, L.; Qu, X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials 2010, 31, 7257–7265. [Google Scholar] [CrossRef]
- Paulo Roberto, G.A.; Hueliton, W.K.; Fernandes, K.R.; Fortulan, C.A.; Muniz Renno, A.C. Effects of bioinspired bioglass/collagen/magnesium composites on bone repair. J. Biomater. Appl. 2019, 34, 261–272. [Google Scholar]
- Yao, Q.; Zheng, Y.W.; Lin, H.L.; Lan, Q.H.; Huang, Z.W.; Wang, L.F.; Chen, R.; Xiao, J.; Kou, L.F.; Xu, H.L.; et al. Exploiting crosslinked decellularized matrix to achieve uterus regeneration and construction. Artif. Cell Nanomed. B 2020, 48, 218–229. [Google Scholar] [CrossRef]
- Li, Z.Q.; Kong, W. Cellular signaling in Abdominal Aortic Aneurysm. Cell. Signal. 2020, 70, 109575. [Google Scholar] [CrossRef]
- Gilbert, T.W.; Stewart-Akers, A.M.; Badylak, S.F. A quantitative method for evaluating the degradation of biologic scaffold material. Biomaterials 2006, 18, 128–130. [Google Scholar]
- Kishore, V.; Uquillas, J.A.; Dubikovsky, A.; Alshehabat, M.A.; Snyder, P.W.; Breur, G.J.; Akkus, O. In vivo response to electrochemically aligned collagen bioscaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 400–408. [Google Scholar] [CrossRef]
- Krawetz, R.J.; Taiani, J.T.; Wu, Y.E.; Liu, S.; Meng, G.; Matyas, J.R.; Rancourt, D.E. Collagen I scaffolds cross-linked with beta-glycerol phosphate induce osteogenic differentiation of embryonic stem cells in vitro and regulate their tumorigenic potential in vivo. Tissue Eng. Part A 2012, 18, 1014–1024. [Google Scholar] [CrossRef]
- Hou, Z.P.; Chen, S.; Hu, W.R.; Guo, J.; Li, P.; Hu, J.S.; Yang, L.Q. Long-term in vivo degradation behavior of poly (trimethylene carbonate-co-2, 2-dimethyltrimethylene carbonate). Eur. Polym. J. 2022, 177, 111442. [Google Scholar] [CrossRef]
- Guo, Y.W.; Chen, Z.C.; Wen, J.C.; Jia, M.H.; Shao, Z.Z.; Zhao, X. A simple semi-quantitative approach studying the in vivo degradation of regenerated silk fibroin scaffolds with different pore sizes. Mat. Sci. Een. C 2017, 79, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.G.; Kang, L.Z.; Meng, Q.Y.; Liu, H.Y.; Wang, Z.L.; Zhongwu Guo, Z.L.; Fuzhai Cui, F.Z. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration. Mater. Sci. Eng. C-Mater. 2014, 45, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Rathod, L.; Bhowmick, S.; Patel, P.; Sawant, K. Calendula flower extract loaded collagen film exhibits superior wound healing potential: Preparation, evaluation, in-vitro & in-vivo wound healing study. J. Drug. Deliv. Sci. Tec. 2022, 72, 103363. [Google Scholar]
- Bhagwat, P.K.; Dandge, P.B. Collagen and collagenolytic proteases: A review. Biocatal. Agric. Biotechnol. 2018, 15, 43–55. [Google Scholar] [CrossRef]
- Hofman, K.; Hall, B.; Cleaver, H.; Marshall, S. High-throughput quantification of hydroxyproline for determination of collagen. Anal. Biochem. 2011, 417, 289–291. [Google Scholar] [CrossRef]
- Silva, C.M.L.; Spinelli, E.; Rodrigues, S.V. Fast and sensitive collagen quantification by alkaline hydrolysis/hydroxyproline assay. Food Chem. 2015, 173, 619–623. [Google Scholar] [CrossRef]
- Langrock, T.; Hoffmann, R. Analysis of hydroxyproline in collagen hydrolysates. Methods Mol. Biol. 2019, 2030, 47–56. [Google Scholar]
- Brown, S.R.; Cleveland, E.M.; Deeken, C.R.; Huitron, S.S.; Aluka, K.J.; David, K.G. Type I/type III collagen ratio associated with diverticulitis of the colon in young patients. J. Surg. Res. 2017, 207, 229–234. [Google Scholar] [CrossRef]
- Song, H.D.; Zhang, S.Q.; Zhang, L.; Li, B. Effect of orally administered collagen peptides from bovine bone on skin aging in chronologically aged mice. Nutrients 2017, 9, 1209. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Y.; Kawaguchi, H.; Ogasawara, T.; Asawa, Y.; Kishimoto, J.; Takahashi, T.; Chung, U.; Yamaka, H.; Asato, H.; Nakamura, K.; et al. Optimal combination of soluble factors for tissue engineering of permanent cartilage from cultured human chondrocytes. J. Biol. Chem. 2007, 282, 20407–20415. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Xiao, Y.M.; Fan, Y.J.; Liang, J.; Zhang, X.D. The degradation and local tissue effects of collagen hydrogel and sponge implants in muscle. Polym. Test. 2017, 62, 348–354. [Google Scholar] [CrossRef]
- Zhang, G.F.; Sun, A.M.; Li, W.J.; Liu, T.; Su, Z.G. Mass spectrometric analysis of enzymatic digestion of denatured collagen for identification of collagen type. J. Chromatog. A 2006, 1114, 274–277. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, T.; Wang, Q.; Chen, L.; Lei, J.D.; Luo, J.; Ma, G.H.; Su, Z.G. Mass spectrometric detection of marker peptides in tryptic digests of gelatin: A new method to differentiate between bovine and porcine gelatin. Food Hydrocoll. 2009, 23, 2001–2007. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Zhao, B.; Gao, J.P.; Xia, L.L.; Xing, F.Y.; Kong, Y.J.; Li, Y.C.; Zhang, G.F. Detection of type I and III collagen in porcine acellular matrix using HPLC-MS. Regen. Biomater. 2020, 7, 577–582. [Google Scholar] [CrossRef]
- YY/T 1805.3-2022; Chinese Industry Standard, Tissue engineering medical device products—Collagen protein—Part 3: Quantification of collagen based on marker peptide detection—Liquid chromatography—mass spectrometry. Standardization Administration of China: Beijing, China, 2022.
- Holmes, R.; Kirk, S.; Tronci, G.; Yang, X.B.; Wood, D. Influence of telopeptides on the structural and physical properties of polymeric and monomeric acid-soluble type I collagen. Mat. Sci. Eng. C 2017, 77, 823–827. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Wang, Z.J.; Wang, X.J.; Shi, S.M.; Shen, M.R.; Bai, X.J. Pharmacopoeia of People’s Republic of China; Chian Medical Science Press: Beijing, China, 2020; pp. 480–483. [Google Scholar]
- Agren, M.S.; Schnabel, R.; Christensen, L.H.; Mirastschijski, U. Tumor necrosis factor-alpha-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur. J. Cell Biol. 2015, 94, 12–21. [Google Scholar] [CrossRef]
- Klinger, A.; Asad, R.; Shapira, L.; Zubery, Y. In vivo degradation of collagen barrier membranes exposed to the oral cavity. Clin. Oral Implants Res. 2010, 21, 873–876. [Google Scholar]
- Shanmugam, K.; Subha, V.; Renganathan, S. Type 1 collagen scaffold functionalized with ciprofloxacin loaded gelatin microspheres– fabrication, In vitro & In vivo evaluation, histological and biochemical analysis. Drug Des. Dev. Ther. 2019, 3, 1–10. [Google Scholar]
m/z | Charge State | Sequences | Rt/Min | Confidence |
---|---|---|---|---|
604.96722 | 3 | VGPPGPSGNAGP*P*GP*PGPAGK | 15.98 | High |
580.82599 | 2 | GVPGPPGAVGPAGK | 20.73 | High |
418.72323 | 2 | GPAGPQGPR | 2.18 | High |
844.74567 | 3 | GNDGATGAAGPPGPTGPAGP*P*GFPGAVGAK | 38.70 | High |
1012.81787 | 3 | GLPGPP*GAP*GPQGFQGPPGEPGEPGASGPMGPR | 46.34 | High |
520.94293 | 3 | GETGPAGPAGPIGPVGAR | 29.13 | High |
924.44672 | 2 | GEPGPTGIQGPP*GPAGEEGK | 22.28 | High |
1067.49597 | 2 | GEPGPPGPAGFAGP*P*GADGQP*GAK | 27.99 | High |
702.35028 | 2 | GEPGPAGLPGPP*GER | 23.45 | High |
764.38611 | 3 | GDAGPPGPAGPAGPPGP*IGNVGAP*GPK | 39.42 | High |
691.67938 | 3 | GAPGADGPAGAPGTP*GPQGIAGQR | 24.60 | High |
558.75189 | 2 | EGAP*GAEGSP*GR | 2.27 | High |
781.40356 | 2 | DGLNGLPGP*IGP*P*GPR | 36.60 | High |
845.89221 | 2 | DGEAGAQGPPGPAGPAGER | 15.89 | High |
Groups | Sample No. | Peptide G-R (μg/mg) | Average (μg/mg) | SD | RSD% |
---|---|---|---|---|---|
A | 1 | 5.57 | 5.63 | 0.10 | 1.70 |
2 | 5.64 | ||||
3 | 5.52 | ||||
4 | 5.66 | ||||
5 | 5.58 | ||||
6 | 5.52 | ||||
7 | 5.74 | ||||
8 | 5.80 | ||||
9 | 5.70 | ||||
10 | 5.56 | ||||
B | 1 | 5.84 | 5.92 | 0.11 | 1.79 |
2 | 5.90 | ||||
3 | 5.86 | ||||
4 | 5.97 | ||||
5 | 5.80 | ||||
6 | 5.96 | ||||
7 | 5.93 | ||||
8 | 5.89 | ||||
9 | 5.86 | ||||
10 | 6.18 | ||||
Average | 5.77 | ||||
SD | 0.21 | ||||
RSD % | 3.55 |
Groups | Sample No. | Peptide G-R (μg/mg) | Average (μg/mg) |
---|---|---|---|
1 | 1-1 | 5.45 | 5.52 |
1-2 | 5.53 | ||
1-3 | 5.59 | ||
2 | 2-1 | 5.46 | 5.55 |
2-2 | 5.77 | ||
2-3 | 5.43 | ||
3 | 3-1 | 5.52 | 5.59 |
3-2 | 5.66 | ||
3-3 | 5.58 | ||
Average concentration (μg/mg) | 5.55 | ||
SD | 0.04 | ||
RSD % | 0.63 |
Sample No. | Spiking Amount of Reference Peptide (µg) | Peptide G-R Concentration of Test Sample (μg/mg) | Peptide G-R Concentration of Spiking Samples (μg/mg) | Spiking Recovery Content (µg) | Spiking Recovery Rate % |
---|---|---|---|---|---|
1-1 | 0.20 | 5.37 | 7.57 | 0.24 | 118.28 |
1-2 | 0.20 | 5.37 | 7.55 | 0.23 | 116.79 |
1-3 | 0.20 | 5.37 | 7.48 | 0.22 | 112.12 |
2-1 | 0.40 | 5.37 | 9.42 | 0.43 | 107.45 |
2-2 | 0.40 | 5.37 | 9.34 | 0.42 | 105.34 |
2-3 | 0.40 | 5.37 | 9.48 | 0.44 | 109.15 |
3-1 | 1.00 | 5.37 | 14.24 | 0.94 | 94.27 |
3-2 | 1.00 | 5.37 | 15.01 | 1.02 | 102.36 |
3-3 | 1.00 | 5.37 | 14.34 | 0.95 | 95.25 |
Average spiking recovery rate % | 106.78 | ||||
SD | 9.23 | ||||
RSD % | 8.63 |
Sample No. | Spiking Amount of Reference Peptide (µg) | Spiking Recovery Content (µg) | Spiking Recovery Rate % |
---|---|---|---|
1-1 | 0.5 | 0.468 | 93.6 |
1-2 | 0.5 | 0.497 | 99.4 |
1-3 | 0.5 | 0.503 | 100.6 |
2-1 | 1.0 | 1.102 | 110.2 |
2-2 | 1.0 | 1.030 | 103 |
2-3 | 1.0 | 0.987 | 98.7 |
3-1 | 2.5 | 2.712 | 108.5 |
3-2 | 2.5 | 2.683 | 107.3 |
3-3 | 2.5 | 2.780 | 111.2 |
Average spiking recovery rate % | 103.6 | ||
SD | 5.58 | ||
RSD % | 5.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Ma, Y.; Guo, Z.; Zhang, Y.; Xing, F.; Zhang, T.; Kong, Y.; Luo, X.; Xu, L.; Zhang, G. Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method. Separations 2023, 10, 47. https://doi.org/10.3390/separations10010047
Gao J, Ma Y, Guo Z, Zhang Y, Xing F, Zhang T, Kong Y, Luo X, Xu L, Zhang G. Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method. Separations. 2023; 10(1):47. https://doi.org/10.3390/separations10010047
Chicago/Turabian StyleGao, Jianping, Ye Ma, Zhenhu Guo, Yang Zhang, Fangyu Xing, Tianyang Zhang, Yingjun Kong, Xi Luo, Liming Xu, and Guifeng Zhang. 2023. "Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method" Separations 10, no. 1: 47. https://doi.org/10.3390/separations10010047
APA StyleGao, J., Ma, Y., Guo, Z., Zhang, Y., Xing, F., Zhang, T., Kong, Y., Luo, X., Xu, L., & Zhang, G. (2023). Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method. Separations, 10(1), 47. https://doi.org/10.3390/separations10010047