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Abstract: The exploration of bioactive compounds from natural resources attracts the attention
of researchers and scientists worldwide. M. longipetala is an annual aromatic herb that emits a
pleasant odor during the night. Regarding the chemical composition and biological characteristics,
M. longipetala extracts are poorly studied. The current study aimed to characterize the chemical
composition of M. longipetala methanol extract using GC-MS and determine its biological potencies,
including its capacity for cytotoxicity and antioxidant and antibacterial activities. In this approach,
37 components were identified, representing 99.98% of the total mass. The major chemical components
can be classified as oxygenated hydrocarbons (19.15%), carbohydrates (10.21%), amines (4.85%),
terpenoids (12.71%), fatty acids and lipids (50.8%), and steroids (2.26%). The major identified
compounds were ascaridole epoxide (monoterpene, 12.71%) and methyl (E)-octadec-11-enoate (ester
of fatty acid, 12.21%). The extract of M. longipetala showed substantial antioxidant activity. Based on
the DPPH and ABTS scavenging, the antioxidant activity of the extracted components of M. longipetala
revealed that leaf extract is the most effective with IC50 values of 31.47 and 28.94 mg/L, respectively.
On the other hand, the extracted plant showed low antibacterial activities against diverse bacterial
species, viz., Escherichia coli, Klebsiella pneumonia, Staphylococcus epidermidis, S. haemolyticus, and
S. aureus. The most potent antibacterial results were documented for leaf and flower extracts against
E. coli and S. aureus. Additionally, the extract’s effectiveness against HepG2 cells was evaluated
in vitro using the measures of MTT, DNA fragmentation, and cell proliferation cycle, where it
showed considerable activity. Therefore, we can conclude that M. longipetala extract displayed
improvement in cytocompatibility and cell migration properties. In conclusion, M. longipetala could
be considered a potential candidate for various bioactive compounds with promising biological
activities. However, further characterization of the identified compounds, particularly the major
compounds, is recommended to evaluate their efficacy, modes of action, and safety.

Keywords: Brassicaceae; GC-MS; bioactive compounds; antioxidant activity; ascaridole epoxide

1. Introduction

Drugs derived from natural sources, particularly medicinal plants, attract the inter-
est of scientists and researchers for the production of promising bioactive compounds
that can be integrated into pharmaceutical applications [1]. Plants as natural resources
provide people with various goods and services, such as food, fodder for animals, tex-
tiles, drugs, medicine, and dyes [2–4]. These confidential pharmaceutical drugs available
from natural sources provided a reduction in side effects that were present with synthetic
drugs [5–7]. Family Brassicaceae is an economically important family of flowering plants
with 365 genera and 3250 species. These occur in all phytogeographic regions, notably
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the Mediterranean region, and are extensively dispersed [8]. In Egypt, Brassicaceae is one
of the four largest families, represented by 103 species belonging to 53 genera [8]. Genus
Matthiola incorporates nearly 55 species of herbs that are annual and perennial grown in
the regions of Africa, Asia, and western Europe; in the flora of Egypt, four species are
recorded [8]. The plants of genus Matthiola are grown and obtained throughout the year,
particularly from January to October. The flowers of this genus are varied in color, i.e.,
yellow, red, white, or light purple [9]. Matthiola longipetala (Vent.) DC. is the most common
and widespread member of this genus grown in the north of Africa and is commonly
recognized as “Shigaara” or “Shoqaara”.

Recent research focused on the characterization of the active chemical components and
biological applications of the extracted plants of the Matthiola genus. The different extracts
of Matthiola species were stated to exhibit various biological activities such as antioxidant,
neuroprotective, antimicrobial, antiparasitic, antiurolithiatic, insecticidal, anticancer, and al-
lelopathic activities [10–12]. Chemically, many studies concerning the chemical constituents
of the Matthiola genus revealed the presence of isothiocyanate, anthocyanins, glucosinolates,
flavonoids, lipids, sterol glycosides, and volatile oils [11,13–15]. Subsequently, researchers
prolonged the work on the chemical composition and biological diversity of the Matthiola
genus [16–18].

According to the existing literature on the genus Matthiola, the chemical components of
M. longipetala (evening stock) and its biological assessments are poorly studied. The chem-
ical composition and insecticidal activity of the essential oil extracted from the Tunisian
ecospecies of M. longipetala was reported by Hammami et al. [19]. Moreover, three phenolic
and sterol glycosides were identified from M. longipetala growing in Tunisia [20]. In this
context, the chemistry and antioxidant activity of the essential oil isolated from the Libyan
ecospecies of M. longipetala were studied by Abdelshafeek et al. [18]. The fatty acid compo-
sition of a Turkish sample of M. longipetala was analyzed by Karaman et al. [16]. In order to
investigate the biochemical elements responsible for the biological effects, the current study
set out to characterize the chemical components of the Egyptian ecospecies of M. longipetala
methanol extract by GC-MS, and evaluate the antioxidant, antibacterial, and anticancer
activities of M. longipetala methanol extract.

2. Materials and Methods
2.1. Plant Materials Collection, Preparation, and Extraction

The aboveground plant parts (Figure 1), including stems, leaves, flowers, and roots,
were collected from populations of M. longipetala naturally grown in Wadi Ash-Sheikh,
north Eastern Desert, Egypt (28◦40′4.63′′ N 31◦ 3′51.41′′ E). The varied samples were
cleaned of any impurities and left to dry for seven days in shady settings at ambient
temperature (25 ± 3 ◦C). The plant specimen was identified by Dr. Yasser El-Amier (an
author) following Boulos [8].

A voucher specimen was assembled, coded with Mans.0121312001, and deposited
in the Herbarium of the Faculty of Science at Mansoura University, Mansoura, Egypt.
All dried plant materials were combined and ground into a fine powder for chemical
characterization. Ten grams of this mixture were placed in a conical flask (250 mL), covered
with 150 mL of methanol, and shaken vigorously for two hours at room temperature in a
horizontal water bath shaker (model Memmert WB14, Schwabach, Germany). Whatman
filter sheets were used to filter the extract (no. 1, 125 mm, Sigma-Aldrich, Darmstadt,
Germany). The residue was placed into glass vials and stored at 4 ◦C in the refrigerator
while the extract was dried using a rotary evaporator [21].
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Figure 1. Overview of Matthiola longipetala DC. (A), flowering plant (B), and fruiting branches with 
legumes (C). 
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were used to evaluate the chemical composition of the produced extract from M. longi-
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paring the mass spectra with those of the NIST 14 and WILEY 09 databases, the chemical 
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Figure 1. Overview of Matthiola longipetala DC. (A), flowering plant (B), and fruiting branches with
legumes (C).

2.2. Gas Chromatography-Mass Spectrometry (GC-MS) of the Extract

A trace GC-TSQ mass spectrometer (Thermo Scientific, Austin, TX, USA) together
with a TG-5MS capillary column with dimensions of 30 m × 0.25 mm and 0.25 m thickness
were used to evaluate the chemical composition of the produced extract from M. longipetala
aboveground sections. The temperature was first set at 50 ◦C and then it was programmed
to rise by 5 ◦C/minute up to 250 ◦C and hold that temperature for 2 min before being raised
by 30 ◦C/minute to 300 ◦C as the ultimate temperature, also to be held for 2 min. With a
split ratio of 1:10, helium was used as the carrier gas while 0.2 µL of the sample (diluted in
methanol, 1:10, v/v) was introduced into the apparatus. The EI mass spectra were plotted
at 70 EV ionization voltage alongside the range of 50–500 for m/z. By comparing the mass
spectra with those of the NIST 14 and WILEY 09 databases, the chemical authentication of
the components in the M. longipetala extract was carried out and interpreted.

2.3. Antioxidant Activity Assay of M. longipetala Extracts

The methanol extract of different plant organs (root, stem, leaf, and flower) of M. longipetala
were tested for their antioxidant activity over two assays: 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS).

2.3.1. DPPH Assay

The antioxidant activity was determined for each plant organ (root, stem, leaf, and
flower) of M. longipetala according to Miguel [22]. Methanol extract of each plant organ was
prepared by mixing 10 g of the plant powder with 150 mL methanol in a flask. At room
temperature (25 ± 3 ◦C), the flasks were put in a horizontal water bath shaker (Memmert
WB14, Schwabach, Germany) and shaken continuously for two hours. A rotary evaporator
was used to filter and dry the methanol extract, and the dried residue was then collected in
glass vials. Methanol was used to create concentrations of 5, 10, 20, 30, 40, and 50 mg/L from
each residue. For assessment of antioxidant activity, equal volumes (1 mL) of either DPPH
solution (0.135 Mm) or sample were homogenized well. The catechol was treated as the
samples and considered a positive standard control. Following a half-hour of incubation
in the dark at room temperature, the samples’ absorbance at =517 nm was measured
using a UV/Vis spectrophotometer (model Spekol 11, Analytik Jena, Jena, Germany). The
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antioxidant scavenging activity was calculated and expressed as a percentage according to
the following formula:

Scavenging % = 100 ×
[Absorbancecontrol − Absorbancesample

Absorbancecontrol

]
The experiment was designed with three replicas, and the inhibitive concentrations

for 50% (IC50, mg/L) were calculated from the exponential curve between concentration
and inhibition percentage.

2.3.2. ABTS Assay

According to Re et al. [23], the 2,2′azinobis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS, Sigma-Aldrich, Germany) radical cation decolorization test was also used to confirm
the antioxidant activity. In order to determine the kinetic curves of the antioxidant activity
of all samples, the decrease in absorbance was measured at room temperature after 0, 6, 12,
18, 24, and 30 min, and then every 10 min until the reaction reached a steady state or until
the absorbance decreased less than 10% from the previous reading. The radical was created
by combining 2.45 mM of K2S2O8 with 7 mM of ABTS (1/1, v/v) and homogenizing the
mixture for a full 16 h at room temperature (25 ± 2 ◦C). After vigorously mixing 0.2 mL of
each sample concentration (5, 10, 20, 30, 40, and 50 mg/L) with 2 mL of the ABTS solution
in glass tubes, the absorbance at 734 nm was measured after 6 min at room temperature.
The scavenging % and IC50 were computed as previously indicated in the DPPH test.

2.4. Antibacterial Activity Assay

The antibacterial activity of M. longipetala MeOH extract was evaluated using an agar
well diffusion method [24]. Nutrient agar culture media, anon-selective medium containing
beef extracts with peptone, yeast extracts, and NaCl to supply C, N, vitamins, and some
trace constituents required for bacterial growth, was used. In a 2 L conical flask, 28 g of
the nutrient agar media (Merck, Bangalore, India) was combined with 1000 mL of distilled
water to create the nutrient medium. The medium was sterilized in the autoclave for 15 min
at 121 ◦C under a pressure of 15 lbs. After cooling down to 45–50 ◦C, the medium was
poured into sterilized Petri plates. The Cairo Microbiological Resources Centre (Cairo
MIRCEN), Ain Shams University, Cairo, Egypt, provided eight microbial isolates. These
isolates were four Gram-negative bacteria (Escherichia coli (NR_112558.1), Pseudomonas
aeruginosa (CP050335.1), Salmonella typhimurium (NR_074910.1), and Klebsiella pneumoniae
(NR_117683.1)) and four Gram-positive bacteria (Staphylococcus epidermidis (NR_116352.1),
Staphylococcus aureus (NR_115606.1), Staphylococcus haemolyticus (NR_113345.1), and
Staphylococcus xylosus (NR_113350.1)). Four standard antibiotics (tetracycline, cephradin,
ampicillin, and azithromycin) were used.

The antibacterial effect was estimated by the agar well diffusion method with an
inoculum of 1 × 106 colony-forming units (CFU)/mL that was spread over a medium in
the Petri plates. Within each Petri plate, four wells (5 mm each) were cut from the agar
layer. A rotary evaporator was used to dry the methanol extract, and the dried residue
was collected in glass vials. The residue was produced at a concentration of 10 mg/L
using 1%, v/v dimethyl sulfoxide (DMSO). The standard antibiotics were also prepared
with the same concentration (10 mg/L). About 50 µL of the methanol extract of each plant
part was poured into the wells. As a negative control, DMSO was utilized; however, it
showed no antibacterial action. The prepared plates spent 24 h in an incubator set at
37 ◦C. Measured along three axes, the inhibitory zone diameters in mm were reported as
an average ± standard deviation.

2.5. Cytotoxicity and Cell Proliferation

The cytotoxicity of M. longipetala extract was evaluated via MTT assay [25]. The
hepatocellular carcinoma, HePG-2, was chosen as a tumor cell line. We purchased the
HePG-2 from ATCC via VACSERA (Cairo, Egypt). A stock solution containing 5 mg of
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MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) was produced,
vortexed well, filtered, and stored at −20 ◦C. The HepG2 were seeded onto 96-well plates
with a density of 3 × 103 cells/well suspended in 100 µL of complete medium. The plates
were incubated in 5% CO2 at 37 ◦C for 24 h to promote adhesion and stabilization. Different
quantities of the M. longipetala extract (31.3, 62.5, 125, 500, and 1000 g/mL) were made
using DMSO (1% v/v) as the solvent. The cell lines were exposed to the extracts for 48 h.
The media was discarded by aspiration, MTT (0.5 mg/mL) was supplied for cells, then the
plates were incubated for four hours at 37 ◦C with 5%. About 100 µL of SDS (1%/0.01 M
HCl) was poured into each well, and the growth of cells was measured at λmax = 570 nm
using an absorbance microplate reader (Elx800, BioTek, Winooski, VT, USA). The results
were presented as percentages with respect to the control.

A control of MTT solution without seeded cell lines was performed to avoid the effect
of MTT cytotoxicity, which is also used to calculate cell viability using the formula below:

Cell viability (%) = 100 ×
[ AbsorbanceSample −Absorbanceblank

Absorbancecontrol −Absorbanceblank

]
2.6. Assay of Cell Motility

The motility of cell assay was performed to assess the wound healing effect in the
form of cell migration. In the assay, the culture was imported into a six-well plate, seeded
with cells, and grown to confluence. In order to make a wound, a monolayer of cells was
scratched using a pipette tip, followed by twice washing using buffered salt solutions (PBS),
and media to eliminate floating cells. Different inhibitory doses of M. longipetala extract
were applied to the cells (IC5, IC10, IC25, and IC50). The cells were labelled using Hoechst
(Sigma-Aldrich, Taufkirchen, Germany), which stains the nuclei of cells, at 0 time, following
staining, and after 26 h. Images were collected at 0 time, immediately after staining, and
26 h after the wounds and were evaluated using phase-contrast microscopy on an inverted
microscope [26].

2.7. Conventional PCR

In order to evaluate the mRNA expression of CD44 and MDR1, the PCR method was
employed. The cells were treated with M. longipetala extract for 24 h and collected for the
extraction of the cellular RNA. The total RNA was transferred to cDNA using (Qiagen,
Germantown, MD, USA) 1 µL of cDNA in a total volume of 20 µL containing 10 µL Master
Mix (Dream Taq Green PCR Master mix 2X, Thermo Fisher, Waltham, MA, USA), forward
primer (0.5 µM), and reverse primer (0.5 µM) then the reaction volume was completed up to
20 µL using nuclease-free water. Conditions for the thermal cycle were set for denaturation
at 95 ◦C for one minute, annealing at 72 ◦C for one minute, and a final extension of 10 min
at 72 ◦C. The mRNA expression primer sequences were MDR1 at 58 ◦C: 5′-CCC ATC ATT
GCA ATA GCA GG-3′ (forward), 5′-TGT TCA AAC TTC TGC TCC TGA-3′ (reverse), CD44
at 55 ◦C: 5′-TTT GCA TTG CAG TCA ACA GTC-3′ (forward), and 5′-TTA CAC CCC AAT
CTT CAT GTC CAC-3′ (reverse).

2.8. Statistical Analysis

The cytotoxicity experiment was performed twice, whereas the antibacterial and
antioxidant activity assays were conducted three times with three replications each. Using
Costat software (CoHort Software, Monterey, CA, USA), the acquired data were put through
a one-way ANOVA to determine the significance between samples.

3. Results and Discussion
3.1. Chemical Characterization of M. longipetala Extract

The characterization of the chemical constituents of the methanol extract of M. longipetala
aboveground parts was performed with gas chromatography-mass spectrometry (GC-MS)
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(Figure 2). The results demonstrated that the methanol extract has 37 compounds that are
listed in detail in Table 1.
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longipetala aboveground parts by GC-MS. The major compounds peaks are numbered in red color
from 1–5.

The M. longipetala extract had numerous main components (>2%), such as ascari-
dole epoxide, methyl (E)-octadec-11-enoate (12.21%), methyl 11-((2R,3S)-3-pentyloxiran-
2-yl)undecanoate (7.51%), 1,3-Dihydroxypropan-2-yl oleate, 2-(hept-6-yn-1-yl)malonic
acid (4.73%), 2-(acetylamino)-2-deoxyhexopyranose, 1-S-[(1E)-N-hydroxy-3-butenimidoyl]-
1-thiohexopyranose (4.09%), (2Z,3E)-2-ethylidene-6-methylhepta-3,5-dienal (4.08%), 2-
(((9Z,12Z)-Octadeca-9,12-dienoyl)oxy)propane-1,3-diyl diacetate, ethyl 2-hydroxycyclohexane-
1-carboxylate (3.68%), (R,Z)-12-hydroxyoctadec-9-enoic acid, (3R,4S,5R)-3,4-dihydroxy-5-
(1,2,3,4-tetrahydroxybutyl)dihydrofuran-2(3H)-one (2.64%), 4-amino-1,5-pentandioic acid
(2.25%), and 2-bromotetradecanoic acid (2.17%) (Figure 3).
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Figure 3. Main chemical components of the methanol extract of M. longipetala aboveground parts
interpreted from GC-MS analysis.

These compounds account for 63.50% of all recognized chemical substances (Table 1).
The chemical composition of M. longipetala extract in the present study revealed variations to
those reported for the Libyan ecospecies [27]. In addition, desulphosinigrin was identified
as glucosides in the present study; however, Hammami et al. [20] and Hammami et al. [19]
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identified different glucosides and phenolics in the Tunisian ecospecies. Six categories may
be established from the M. longipetala methanol extract’s chemical components (Figure 4)
which are identified as oxygenated hydrocarbons (19.15%), carbohydrates (10.21%), amines
(4.85%), terpenoids (12.71%), fatty acids and their derivatives (50.8%), and steroids (2.26%).
Therefore, the fatty acids class and their derivatives “lipids” are the entire major constitutes
with 50.8%, and only ascaridole epoxide as a monocyclic monoterpene compound was
identified with 12.71% of the total percentage of the methanol extract chemical constitutes.
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The abundant identified components of the M. longipetala methanol extract showed
that it is oxygen-rich and related to diverse categories. Among these major compounds,
ascaridole epoxide, methyl (E)-octadec-11-enoate, methyl 11-((2R,3S)-3-pentyloxiran-2-
yl)undecanoate, and 1,3-dihydroxypropan-2-yl oleate represent 38.28% of the total compo-
sition of the M. longipetala methanol extract.

Table 1. Chemical characterization of the identified components in the aboveground parts of
M. longipetala using GC-MS analysis.

No. RT Conc. % Chemical Name Classification MW MF

Oxygenated hydrocarbon

1 4.23 0.81 ± 0.02
(E)-2-(1-(2-(2-methylpiperidine-1-

carbonothioyl)hydrazono)ethyl)pyridine
1-oxide

Aryl
hydrocarbon 292.4 C14H20N4OS

2 4.82 4.73 ± 0.03 2-(Hept-6-yn-1-yl)malonic acid Aliphatic
carboxylic acid 453.44 C16H15N5O7S2

3 5.16 0.89 ± 0.02 3-(2-Oxocyclohexyl)propanenitrile Oxygenated
hydrocarbon 151.21 C9H13NO

4 5.61 1.99 ± 0.01 Methyl
3,5-dioxohexahydro-1H-pyrrolizine-2-carboxylate Ester 197.19 C9H11NO4

5 9.32 2.46 ± 0.01 (3R,4S,5R)-3,4-Dihydroxy-5-(1,2,3,4-
tetrahydroxybutyl)dihydrofuran-2(3H)-one

Oxygenated
hydrocarbon 238.19 C8H14O8

6 9.4 3.68 ± 0.02 Ethyl 2-hydroxycyclohexane-1-carboxylate Ester 172.22 C9H16O3

7 12.93 4.08 ± 0.03 (2Z,3E)-2-ethylidene-6-methylhepta-3,5-dienal Oxygenated
hydrocarbon 150.22 C10H14O

8 16.32 0.51 ± 0.02 9,10-Secocholesta-5,7,10(19)-triene-1,3-diol,
25-[(trimethylsilyl)oxy]-, (3á,5Z,7E)-

Oxygenated
hydrocarbon 488.83 C30H52O3Si
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Table 1. Cont.

No. RT Conc. % Chemical Name Classification MW MF

Carbohydrates

9 8.01 4.09 ± 0.02 1-S-[(1E)-N-Hydroxy-3-butenimidoyl]-1-
thiohexopyranose Glycoside 279.31 C10H17NO6S

10 8.72 0.33 ± 0.00 α-D-Glucopyranoside, O-α-D-glucopyranosyl-
(1.fwdarw.3)-α-D-fructofuranosyl Trisaccharide 504.44 C18H32O16

11 8.77 0.38 ± 0.01 2,3,4,5,6,7,8-Heptahydroxyoctanamide Glycosyl amide 255.22 C8H17NO8
12 9.19 4.15 ± 0.02 2-(Acetylamino)-2-deoxyhexopyranose Carbohydrate 221.21 C8H15NO6

13 17.68 1.26 ± 0.01

(2R,3S,4S,5R,6R)-2-(Aminomethyl)-6-(((2R,3S,4R,6S)-
4,6-diamino-3-(((3R,4R,5R)-3,5-dihydroxy-5-methyl-
4-(methylamino)tetrahydro-2H-pyran-2-yl)oxy)-2-

hydroxycyclohexyl)oxy)tetrahydro-2H-pyran-
3,4,5-triol

Aminoglycoside 482.53 C19H38N4O10

Amines

14 4.15 1.71 ± 0.02 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine Diaryl cyclic
amine 277.41 C20H23N

15 6.89 0.89 ± 0.01 1,3,5-Triazine-2,4-diamine,N,N’-bis(1-methylethyl)-
6-(methylsulfonyl)- Hetryl amine 273.36 C10H19N5O2S

16 9.25 2.25 ± 0.02 4-Amino-1,5-pentandioic acid Amino acid 175.18 C7H13NO4

Terpenoids

17 13.34 12.71 ± 0.21 Ascaridole epoxide Bicyclic
monoterpenoid 184.24 C10H16O3

Fatty acids and Lipids

18 4.38 0.53 ± 0.02 Hexyl oleate Fatty acid 366.63 C24H46O2
19 4.7 3.60 ± 0.01 2-(Hept-6-yn-1-yl)malonic acid Oleic acid 450.4 C21H22O11
20 5.52 1.11 ± 0.01 Palmitic acid Fatty acid 256.43 C16H32O2
21 6.51 1.86 ± 0.02 (E)-Hexadec-9-enoic acid Fatty acid 254.41 C16H30O2

22 6.78 0.27 ± 0.00
3-(((9Z,12Z,15Z)-Octadeca-9,12,15-

trienoyl)oxy)propane-1,2-diyl
diacetate

Lipids 436.59 C25H40O6

23 7.36 3.70 ± 0.02
2-(((9Z,12Z)-Octadeca-9,12-dienoyl)oxy)propane-

1,3-diyl
diacetate

Lipids 438.61 C25H42O6

24 9.85 0.77 ± 0.01 Ethyl stearate Lipids 312.54 C20H40O2
25 11.35 1.90 ± 0.02 (Z)-Hexadec-9-enoic acid Lipids 254.41 C16H30O2
26 12.43 1.13 ± 0.01 3-Hydroxydodecanoic acid Lipids 216.32 C12H24O3
27 14.61 2.52 ± 0.01 (R,Z)-12-Hydroxyoctadec-9-enoic acid Fatty acid 298.47 C18H34O3
28 16.2 1.49 ± 0.01 8-((2R,3S)-3-Octyloxiran-2-yl)octanoic acid Lipids 298.47 C18H34O3
29 18.27 1.38 ± 0.00 Oleic acid Fatty acid 282.47 C18H34O2
30 19.81 2.17 ± 0.02 2-Bromotetradecanoic acid Fatty acid 307.27 C14H27BrO2
31 22.36 1.63 ± 0.01 2,3-Dihydroxypropyl palmitate Lipids 330.51 C19H38O4
32 24.26 1.17 ± 0.01 2-Hydroxypropane-1,3-diyl dipalmitate Lipids 568.92 C35H68O5
33 25.88 7.51 ± 0.03 Methyl 11-((2R,3S)-3-pentyloxiran-2-yl)undecanoate Lipids 312.49 C19H36O3
34 29.2 12.21 ± 0.37 Methyl (E)-octadec-11-enoate Lipids 296.5 C19H36O2
35 30.72 5.85 ± 0.04 1,3-Dihydroxypropan-2-yl oleate Lipids 356.55 C21H40O4

Steroids

36 21.68 0.87 ± 0.01 Estra-1,3,5(10)-trien-17β-ol Steroid 256.39 C18H24O
37 31.43 1.39 ± 0.01 Ethyl 3,7,12-trihydroxycholan-24-oate Steroidal ester 436.63 C26H44O5

Total 99.98

RT: Retention time, MW: Molecular Weight, MF: Molecular Formula.
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3.2. Biological Activities of the M. longipetala Extracts
3.2.1. Antioxidant Activity

The antioxidant activity was appraised for the methanol extract of different parts of
M. longipetala plant by DPPH and ABTS colorimetric assays. The assays showed substantial
antioxidant activities compared to catechol as a reference standard. For the DPPH method,
the scavenging activity of the extract was concentration-dependent, and a significant
difference (p < 0.0001) among the different organs was observed (Figure 5a).
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M. longipetala methanol extract (a), and IC50 values (b). Values are average (n = 3), and the bars
represented the standard deviation.

At the lower dose (5 mg/L), flower extract showed the highest activity (15.65%);
moreover, at the highest concentration of the extract (10 mg/L), the most potent scavenging
activity percent (30.34%) was documented for leaf extract. Subsequently, and based on
the calculations of the IC50 values, the results verified that leaf extract has the highest
antioxidant scavenging activity (IC50 = 31.47 mg/L) compared to the other plant parts
(Figure 5b). Furthermore, the flower extract revealed IC50 of 40.19 mg/L in the second
order of the antioxidant potency followed by stem extract (IC50 = 45.4 mg/L), and finally
root extract (IC50 = 53.76 mg/L).

On the other hand, the ABTS assay confirmed the data of the DPPH method, where
the M. longipetala showed significant antioxidant activity in a concentration-dependent
manner (Figure 6). Based on the IC50 value, results revealed that leaf extract had the highest
antioxidant scavenging activity (IC50 = 28.94 mg/L), compared to the other plant parts.
In the second, the flower extract revealed an IC50 value of 35.04 mg/L, followed by stem
extract (IC50 = 41.56 mg/L), and finally root extract (IC50 = 50.23 mg/L).
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Many studies on plant extracts showed that the leaf extracts have higher antioxidant
activity compared to the other plant parts of the same plant [28,29]. The prevalence of oxy-
genated compounds in the methanol extract of M. longipetala could be the main cause for the
substantial determined antioxidant activity of the present investigation [30,31]. It has been
observed that terpenoid chemicals extracted from a variety of plants have a significant role
as strong antioxidant agents [32,33], for instance, Deverra tortuosa [7], Salvia officinalis [34],
Cleome amblyocarpa [31], Launaea species [35], Persicaria lapathifolia [31], Symphyotrichum
squamatum [36], and Coriandrum sativum [37]. Predominantly, the major compounds are as-
caridole epoxide (bicyclic monoterpenoid, 12.71%), methyl (E)-octadec-11-enoate (12.21%),
methyl 11-((2R,3S)-3-pentyloxiran-2-yl)undecanoate (7.51%), and 1,3-dihydroxypropan-2-yl
oleate (5.85%) as a category of fatty acids and their derivatives. Hence, ascaridole epoxide,
and methyl (E)-octadec-11-enoate, as the major constituents of the methanol extract of
M. longipetala, were reported as substantial antioxidant agents in many plants, for exam-
ple, tea tree oil [38,39], and Chenopodium ambrosioides [40]. On the other hand, ascaridole
activation was used recently as an effective step for skin sensitization [41]. Ascaridole
epoxide, fatty acids, and lipids isolated from C. ambrosioides, and Euphorbia lathyrus revealed
antioxidant activity for the free radicals [40,42].

Bioactive compounds such as phenolics, flavonoids, terpenes, or oxygenated hydro-
carbons can scavenge free radicals because they contain active functional groups such as
the OH group [43,44]. Herein, the leaf extract has more potent antioxidant activity than
the flower, stem, and root extracts. The variation of the antioxidant activities between the
extracted parts of M. longipetala is a result of the percentage of reactive oxygen species
including the phenolic and flavonoid contents in each extract. Furthermore, the chemical
components of plant extract have the propensity to combine with DPPH solution and
subsequently stabilize free radicals [45]. The antioxidant results are in accordance with
the literature that reported that the increased number of free hydroxy groups provided
approach antioxidant characteristics [46,47].

3.2.2. Antibacterial Activity

To test the antibacterial efficacy of root, stem, leaf, and flower extracts from M. longipetala,
we used an agar well diffusion experiment with four Gram-negative and four Gram-positive
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bacterial strains. The results demonstrated that the majority of the extracts considerably
outperformed the tested conventional antibiotics in terms of their antibacterial activity
against a variety of bacterial isolates with the exception of P. aeruginosa and S. typhimurium
(Table 2). Regarding the effect on the Gram-negative bacterial isolates, leaf and flower
extracts showed higher antibacterial activity against E. coli compared to root and stem
extracts, while the four tested extracts (root, stem, leaf, and flower) showed comparable
activity against K. pneumoniae (Table 2). However, all tested extracts were non-active against
both P. aeruginosa and S. typhimurium. On the other hand, all tested extracts are comparable
in their activity against the Gram-positive bacterial strains (S. epidermidis, S. aureus, and
S. haemolyticus). However, only the flower extract of M. longipetala showed low antibacterial
activity on S. xylosus, while the other extracts did not show activity against this strain.

Table 2. The antibacterial activity of the methanol extract (10 mg/L) of different parts of M. longipetala
and antibiotics against various bacterial isolates.

Microbes
M. longipetala (10 mg/L) Standard Antibiotic (10 mg/L)

Root Stem Leaf Flower Ampicillin Azithromycin Cefotaxime Tetracycline

Gram-negative bacteria

E. coli 11 ± 0.51 a 12 ± 0.21 15 ± 0.57 15 ± 0.31 19 ± 0.46 19 ± 0.31 28 ± 0.71 17 ± 0.58

P. aeruginosa NA NA NA NA NA 14 ± 0.65 9 ± 0.45 NA

S. typhimurium NA NA NA NA NA NA 9 ± 0.22 9 ± 0.34

K. pneumoniae 12 ± 0.44 10 ± 0.51 10 ± 0.66 12 ± 0.70 6 ± 0.08 11 ± 0.51 18 ± 0.43 19 ± 0.33

Gram-positive bacteria

S. epidermidis 10 ± 0.27 10 ± 0.32 10 ± 0.09 10 ± 0.68 9 ± 0.20 21 ± 0.62 18 ± 0.55 18 ± 0.62

S. aureus 15 ± 0.41 12 ± 0.20 15 ± 0.33 15 ± 0.50 27 ± 0.87 18 ± 0.81 20 ± 0.53 18 ± 0.44

S. haemolyticus 11 ± 0.22 10 ± 0.11 12 ± 0.41 12 ± 0.69 18 ± 0.71 21 ± 0.53 6 ± 0.66 21 ± 0.48

S. xylosus NA NA NA 6 ± 0.54 23 ± 0.30 17 ± 0.50 16 ± 0.35 19 ± 0.53

p-value 0.05
b <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

a value is an average of the inhibition zone diameter (mm) ± standard deviation, b the p-values were calculated
based on factorial ANOVA at a probability level of 0.05, NA: no activity, *** p < 0.001.

The assessed antibacterial activity of the M. longipetala extract could be attributed
to its contents of terpenoids and hydrocarbons, particularly the oxygenated compounds
that have been reported to possess antimicrobial activity [48,49]. In addition, the major
compound, ascaridole epoxide, as well as some fatty acids in the essential oils from several
plants have been reported to possess antimicrobial characteristics [50,51].

It is important to note that some isolates of Gram-negative bacteria, such P. aeruginosa,
showed resistance to the commonly used conventional antibiotics at a dosage of 10 mg L−1.
Furthermore, neither ampicillin nor Zithromax had any effect on S. typhimurium (Table 2).
However, none of the tested Gram-positive isolates showed any resistance to the used
standard antibiotics. This result is in accordance with previously reported data [52].

3.2.3. Cytotoxicity and Cell Migration Analysis

Scientists and researchers make their best effort to explore and develop new treat-
ment protocols for using natural resources such as plants to control various types of
cancer disease [53]. In comparison to chemotherapy medications, herbal extracts with
specific therapeutic qualities are thought to be an efficient and safe resource for the treat-
ment of illnesses [54]. In the current investigation, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide), which is used to determine cell viability, was employed to
investigate M. longipetala extract for its efficacy as an anticancer agent. Additionally, the
HepG2 cell line, a kind of hepatocellular carcinoma, was used to test the M. longipetala
extract’s anticancer effectiveness.
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The cell viability after the application of the M. longipetala extract revealed low activity
as shown in Table 3. At the highest concentration of the extract (1000 µg/mL), the cell
viability became 75.19%.

Table 3. Effect of M. longipetala extract at different concentrations on cell viability based on HepG2
cancer cell line.

Conc. (µg/mL) Cell Viability (%) Standard
DeviationR1 R2 Average

1000 76.46 73.92 75.19 1.79
500 92.31 92.31 92.31 0.00
125 115.38 115.38 115.38 0.00
62.5 117.69 118.46 118.08 0.54
31.3 119.23 123.08 121.15 2.72

0 100.00 100.00 100.00 0.00

The mechanism of cytotoxicity, which is frequently reliant on the structure and nature
of the extract’s bioactive chemical components, concentration, and the characteristics of
the cancer cell line, might be attributed to the plant extract’s reported weak cytotoxic
activity [55]. In addition, the cytotoxicity has been reported to affect according to the speci-
fication of the compound such as the morphology of the surface, volume, and condensation.

Cell migration is an important procedure that is integrated into many biological
processes, such as tissue formation, development of the embryo, inflammation, immune
defense, and cancer development [26]. After being treated with M. longipetala extract in the
current study, HepG2 cell lines demonstrated wound healing activity in the cell migration
test, where cells moved and covered the scratch’s center (Figure 7).
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Figure 7. The impact of M. longipetala extracts on the cell cycle development of HepG2. (A) Micro-
scopic reflection at 0 time of HepG2 cell line with 200× magnification, (B) Microscopic reflection 
after staining. (C) Microscopic reflection after 26 h. The photomicrographs referred to control group 
and treated groups at different doses of M. longipetala extracts. 

The healing of the wound was concentration-dependent, and the maximum healing 
was determined for the IC50 dose. Several bioactive compounds extracted from plants such 

Figure 7. The impact of M. longipetala extracts on the cell cycle development of HepG2. (A) Micro-
scopic reflection at 0 time of HepG2 cell line with 200×magnification, (B) Microscopic reflection after
staining. (C) Microscopic reflection after 26 h. The photomicrographs referred to control group and
treated groups at different doses of M. longipetala extracts.

The healing of the wound was concentration-dependent, and the maximum healing
was determined for the IC50 dose. Several bioactive compounds extracted from plants
such as phenolics, volatile oils, and flavonoids were determined to possess wound-healing
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activity [56,57]. These compounds improve wound healing via epithelialization, stimulating
fibroblasts, collagen deposition, angiogenesis, and reduced aggregation of the platelets [56].
The essential oil of Plectranthus tenuiflorus leaves has been reported to stimulate fibroblasts
in vitro [58]. Moreover, terpenes of several plants have been reported to improve wound
healing [59,60]. According to the observed substantial therapeutic activity of M. longipetala
extract, it could be considered a biocompatible green material for wound healing; however,
further study is recommended to determine its application in vivo.

DNA Fragmentation

DNA fragmentation is the crucial characteristic of apoptosis, and it was assessed by gel
electrophoresis to characterize the cell death mediated by M. longipetala extract (Figure 8).
The present results showed ladder pattern DNA fragmentation, where the densitometry
analysis revealed a substantial increase in the DNA fragmentation with MDR1: 40.23% and
CD44: 70.53% with respect to control.
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that could act either singularly or in a synergetic manner. 

Figure 8. The fragmentation analysis of DNA under the effect of M. longipetala extract. MDR1 and
CD44 antibody pathways were characterized as targets of M. longipetala-dependent apoptosis.

The EC50 Value of M. longipetala Extract

In order to determine the EC50 value of the M. longipetala extract, a dose-dependent
curve was performed as shown in Figure 9. The absorbance of the sample versus the log
of extract dosages at various concentrations was plotted in order to determine the EC50
value of the M. longipetala extract. While high concentrations of the plant extract produce
a maximum reaction, low dosages of the extract are insufficient to elicit a response [61];
the vertical point of the curve revealed the EC50 value. Regarding its cytotoxic impact on
HepG2 cell lines, the extract of M. longipetala had an EC50 value of 2.36 g/mL.

Several Mentha species have been identified as possessing cytotoxic activity such
as M. arvensis, M. piperita, M. longifolia, M. spicata [62], and M. piperita [63]. However, a
further study in vivo is recommended for more assessment of the biological activities of M.
longipetala for various applications. The observed cytotoxic activity of the presently studied
M. longipetala could be attributed to the activity of the major compounds within the extract
that could act either singularly or in a synergetic manner.
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demonstrated the ability of the M. longipetala extract to improve the proliferation and vi-
ability of hepatocellular carcinoma cells in a wound closure in vitro assay. The character-
ized chemical compounds and their significant biological activities from M. longipetala, 
particularly ascaridole epoxide, reinforced the opportunity for further research on this 
wild species for green eco-friendly drug discovery. Thus, more study is recommended for 
the further characterization of the major compounds, as well as for assessment of their 
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4. Conclusions

The present study revealed the presence of 37 chemical compounds of the Egyptian
ecospecies M. longipetala extract. Most of the identified compounds were fatty acids and
their derivatives. Ascaridole epoxide and methyl (E)-octadec-11-enoate are the major
compounds. The methanol extracts of different organs of M. longipetala displayed aus-
picious biological activities, such as antioxidant, antibacterial, and anticancer activities.
Specifically, leaf extract showed a higher antioxidant effect compared to other plant parts.
The M. longipetala extract revealed considerable antibacterial activity. The obtained data
demonstrated the ability of the M. longipetala extract to improve the proliferation and
viability of hepatocellular carcinoma cells in a wound closure in vitro assay. The charac-
terized chemical compounds and their significant biological activities from M. longipetala,
particularly ascaridole epoxide, reinforced the opportunity for further research on this wild
species for green eco-friendly drug discovery. Thus, more study is recommended for the
further characterization of the major compounds, as well as for assessment of their mode(s)
of action and safety.
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