Analysis of Volatile Components and Antibacterial Activity of Silver Wormwood Essential Oils from Different Habitats by E-Nose Combined with GC-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Materials
2.3. Isolation of Essential Oil
2.4. Odor Analysis by E-Nose
2.5. GC-MS Analysis
2.6. Antibacterial Activity Determination
2.7. Data Analysis
3. Results and Discussion
3.1. Color and Content of Essential Oil
3.2. Odor Analysis by E-Nose
3.2.1. Radar Chart of Odor Information
3.2.2. Principal Component Analysis (PCA)
3.2.3. Linear Discriminant Analysis (LDA)
3.3. GC-MS Analysis
3.3.1. GC-MS Analysis of Volatile Components
3.3.2. PCA of Volatile Components
3.3.3. Hierarchical Cluster Analysis (HCA)
3.4. Antibacterial Activity Determination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Q.; Liu, Z.; Guo, Y.; Lu, S.; Du, H.; Cao, Y. Antioxidant Capacity of Flavonoids from Folium Artemisiae argyi and the Molecular Mechanism in Caenorhabditis elegans. J. Ethnopharmacol. 2021, 279, 114398. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, D.; Xue, Z.-J.; Jiao, Q.; Liu, A.-P.; Zheng, Y.-G.; Liu, E.-H.; Duan, L. Comparison of Artemisiae argyi Folium and Artemisiae lavandulaefoliae Folium by Simultaneous Determination of Multi-Components with Single Reference Standard Method and Chemometric Analysis. Phytochem. Anal. 2019, 30, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Chen, X.W.; Wu, Y.M. Research Progress on the Chemical Composition and Pharmacological Activity of Moxa Leaf Volatile Oil in the Past 10 Years. Chin. J. Tradit. Chin. Med. 2021, 39, 111–118. [Google Scholar] [CrossRef]
- Gu, L.; Wang, X.; Shao, X.; Ding, Y.; Li, Y. Study on Chemical Constituents of Folium Artemisiae argyi carbonisatum, Toxicity Evaluation on Zebrafish and Intestinal Hemostasis. Saudi Pharm. J. 2022, 30, 532–543. [Google Scholar] [CrossRef]
- Yun, C.; Jung, Y.; Chun, W.; Yang, B.; Ryu, J.; Lim, C.; Kim, J.H.; Kim, H.; Cho, S.-I. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis In Vitro and In Vivo. Mediat. Inflamm. 2016, 2016, 8027537. [Google Scholar] [CrossRef]
- Kolören, O.; Kolören, Z.; Şekeroğlu, Z.A.; Çolayvaz, M.; Karanis, P. Amoebicidal and Amoebistatic Effects of Artemisia argyi Methanolic Extracts on Acanthamoeba castellanii Trophozoites and Cysts. Acta Parasitol. 2019, 64, 63–70. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, N.; Gao, X.; Ma, Q. Integrated Metabolite Profiling and Transcriptome Analysis Reveals Tissue-Specific Regulation of Terpenoid Biosynthesis in Artemisia argyi. Genomics 2022, 114, 110388. [Google Scholar] [CrossRef]
- Xu, D.; Liao, C.; Su, X.; Liang, Y. Modern technology and antioxidant activity of wheat sauce fermented by Artemisia argyi. Food Res. Dev. 2020, 41, 68–74. [Google Scholar]
- Guo, D.; Yang, Y.; Wu, Y.; Liu, Y.; Cao, L.; Shi, Y.; Wan, N.; Wu, Z. Chemical Composition Analysis and Discrimination of Essential Oils of Artemisia argyi Folium from Different Germplasm Resources Based on Electronic Nose and GC/MS Combined with Chemometrics. Chem. Biodivers. 2023, 20, e202200991. [Google Scholar] [CrossRef]
- Hou, M.Z.; Chen, L.L.; Chang, C.; Zan, J.F.; Du, S.M. Pharmacokinetic and Tissue Distribution Study of Eight Volatile Constituents in Rats Orally Administrated with the Essential Oil of Artemisiae Argyi Folium by GC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1181, 122904. [Google Scholar] [CrossRef]
- Uehara, A.; Tommis, B.; Belhassen, E.; Satrani, B.; Ghanmi, M.; Baldovini, N. Odor-Active Constituents of Cedrus atlantica Wood Essential Oil. Phytochemistry 2017, 144, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, M.; Wu, F.; Feng, Y. Research progress on chemical constituents detection and material basis of traditional Chinese medicine odor. Res. Dev. Nat. Prod. 2023, 35, 332–341. [Google Scholar]
- Fan, J.; Zhang, W.; Zhou, T.; Zhang, D.; Zhang, D.; Zhang, L.; Wang, G.; Cao, F. Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography−Mass Spectrometry. Sensors 2018, 18, 3429. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lu, F.; Ai, L.; Wu, C.-J.; Liu, Z.; Zhang, M.; Zhong, C. Discovery of Active Ingredients in Traditional Chinese Medicine Based on the Analysis of Odor and Flavor of Compounds. Curr. Pharm. Des. 2022, 28, 2771–2784. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic Tongue and Electronic Nose for Food Quality and Safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef]
- Prasad, P.; Raut, P.; Goel, S.; Barnwal, R.P.; Bodhe, G.L. Electronic Nose and Wireless Sensor Network for Environmental Monitoring Application in Pulp and Paper Industry: A Review. Env. Monit. Assess. 2022, 194, 855. [Google Scholar] [CrossRef]
- Swanson, B.; Fogg, L.; Julion, W.; Arrieta, M.T. Electronic Nose Analysis of Exhaled Breath Volatiles to Identify Lung Cancer Cases: A Systematic Review. J. Assoc. Nurses AIDS Care 2020, 31, 71–79. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, M.; Adhikari, B. Advances of Electronic Nose and Its Application in Fresh Foods: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2700–2710. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Chen, H.X.; Zhang, L.L. Application Progress and Development Prospects of Mugwort Essential Oil. Anhui Agric. Sci. 2022, 50, 6–10. [Google Scholar]
- Zhang, H.; Huang, T.; Liao, X.; Zhou, Y.; Chen, S.; Chen, J.; Xiong, W. Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO2 Extraction. Molecules 2022, 27, 5385. [Google Scholar] [CrossRef]
- Alanazi, A.K.; Alqasmi, M.H.; Alrouji, M.; Kuriri, F.A.; Almuhanna, Y.; Joseph, B.; Asad, M. Antibacterial Activity of Syzygium aromaticum (Clove) Bud Oil and Its Interaction with Imipenem in Controlling Wound Infections in Rats Caused by Methicillin-Resistant Staphylococcus aureus. Molecules 2022, 27, 8551. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Babaeian Jelodar, N.; Modarresi, M.; Bagheri, N.; Jamali, A. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomilla L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions. Foods 2016, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q. Effect of Hot Air Drying on Volatile Compounds of Flammulina velutipes Detected by HS-SPME-GC-MS and Electronic Nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, W.; Shakaff, A.Y.M.; Ahmad, M.N.; Adom, A.H. Classification of Agarwood Oil Using an Electronic Nose. Sensors 2010, 10, 4675–4685. [Google Scholar] [CrossRef] [PubMed]
- Siger, A.; Górnaś, P. Free Tocopherols and Tocotrienols in 82 Plant Species’ Oil: Chemotaxonomic Relation as Demonstrated by PCA and HCA. Food Res. Int. 2023, 164, 112386. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shao, X.; Wei, Y.; Cheong, L.; Pan, L.; Tu, K. Rapid Detection of Adulterated Peony Seed Oil by Electronic Nose. J. Food Sci. Technol. 2018, 55, 2152–2159. [Google Scholar] [CrossRef]
- Rusinek, R.; Kmiecik, D.; Gawrysiak, W.M.; Malaga, T.U.; Tabor, S.; Findura, P.; Siger, A.; Gancarz, M. Identification of the Olfactory Profile of Rapeseed Oil as a Function of Heating Time and Ratio of Volume and Surface Area of Contact with Oxygen Using an Electronic Nose. Sensors 2021, 21, 303. [Google Scholar] [CrossRef]
- Huang, H.C.; Wang, H.F.; Yih, K.H.; Chang, L.Z.; Chang, T.M. Dual Bioactivities of Essential Oil Extracted from the Leaves of Artemisia argyi as an Antimelanogenic versus Antioxidant Agent and Chemical Composition Analysis by GC/MS. Int. J. Mol. Sci. 2012, 13, 14679–14697. [Google Scholar] [CrossRef]
- Lin, M.A.; Chang, J.C.; Li, P.K.; Yu, H.M.; Yan, F.; Lan, P.G.; Da, H.L.; Lu, Q.H. Effects of Different Planting Density, Leaf Position and Leaf Age on Growth and Quality of Artemisia argyi Var. Argyi “Qiai.”. Zhongguo Zhong Yao Za Zhi 2020, 45, 4031–4040. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Schripsema, J.; Augustyn, W.; Viljoen, A. Characterisation of Sclerocarya birrea (Marula) Seed Oil and Investigation of the Geographical Origin by Applying Similarity Calculations, Differential NMR and Hierarchical Cluster Analysis. In Phytochemical Analysis; Wiley Online Library: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Zargaran, A.; Sakhteman, A.; Faridi, P.; Daneshamouz, S.; Akbarizadeh, A.R.; Borhani-Haghighi, A.; Mohagheghzadeh, A. Reformulation of Traditional Chamomile Oil: Quality Controls and Fingerprint Presentation Based on Cluster Analysis of Attenuated Total Reflectance-Infrared Spectral Data. J. Evid. Based Complement. Altern. Med. 2017, 22, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Radünz, M.; da Trindade, M.L.M.; Camargo, T.M.; Radünz, A.L.; Borges, C.D.; Gandra, E.A.; Helbig, E. Antimicrobial and Antioxidant Activity of Unencapsulated and Encapsulated Clove (Syzygium aromaticum L.) Essential Oil. Food Chem. 2019, 276, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, Y.; Wang, F.; Xu, R.; Yang, M.; Ci, Z.; Wu, Z.; Zhang, D.; Lin, J. From Longevity Grass to Contemporary Soft Gold: Explore the Chemical Constituents, Pharmacology, and Toxicology of Artemisia argyi H.Lév. & Vaniot Essential Oil. J. Ethnopharmacol. 2021, 279, 114404. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Hao, W.F.; Zhang, J.W.; Shu, Z.M. Response of Volatiles of Artemisiae argyi Folium to Climatic Factors. Zhongguo Zhong Yao Za Zhi 2018, 43, 3163–3170. [Google Scholar] [CrossRef]
No. | Sample Name | Habitat |
---|---|---|
1 | HA | Jingxi Village, Quzhou, Zhejiang Province, China |
2 | PA | Tuanzhang Village, Poyang, Jiangxi Province, China |
3 | QA | Qizhou Town, Qichun, Hubei Province, China |
4 | CZA | Guichi District, Chizhou, Anhui Province, China |
5 | SYA | Longhui Village, Shaoyang, Hunan Province, China |
6 | BGA | Dacheng Village, Poyang, Jiangxi Province, China |
7 | LJA | Linjiang Town, Kaixian, Chongqing Municipality, China |
Sample Name | Color | Yields (%) |
---|---|---|
HA | Dark blue | 0.60 ± 0.03 |
PA | Blue–green | 0.57 ± 0.04 |
QA | Blue–green | 1.09 ± 0.02 |
CZA | Blue–green | 0.69 ± 0.07 |
SYA | Light blue–green | 0.74 ± 0.06 |
BGA | Yellow | 0.30 ± 0.00 |
LJA | Grass green | 0.33 ± 0.03 |
No. | Compounds | RI from Experiment | RI from Literature | Relative Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HA | PA | CZA | QA | SYA | BGA | LJA | ||||
1 | 1-Hexanol | 892 | - | - * | - | - | - | - | 0.48 | 0.53 |
2 | Santolina triene | 936 | - | - | - | 0.23 | - | - | - | - |
3 | α-Tricyclene | 953 | - | - | - | - | 0.14 | - | - | - |
4 | α-Pinene | 965 | 977 | 0.30 | 0.38 | 0.40 | 0.81 | 0.56 | 1.16 | 0.95 |
5 | Camphene | 980 | 988 | - | - | - | 3.13 | - | - | - |
6 | α-Sabinene | 1002 | 1013 | 1.17 | - | - | - | 0.94 | - | 0.23 |
7 | 3-Octenol | 1006 | 1019 | 0.79 | 0.89 | 0.32 | 0.93 | 0.67 | - | - |
8 | β-Pinene | 1007 | 1018 | - | - | - | - | - | 1.22 | 1.23 |
9 | Dehydrocineole | 1022 | 1041 | 0.39 | - | - | 0.34 | - | - | 0.67 |
10 | Yamogi alcohol | 1028 | - | 2.94 | 4.23 | 3.54 | - | - | - | 4.36 |
11 | α-Terpinene- | 1049 | 1067 | 1.17 | 0.45 | 0.28 | 0.87 | 1.00 | 0.47 | 0.36 |
12 | Cymene | 1057 | 1071 | 1.40 | 0.78 | 0.71 | 0.78 | 1.56 | 0.99 | 0.39 |
13 | Limonene | 1062 | 1074 | 0.42 | 0.92 | 0.31 | 0.93 | 0.64 | - | 0.55 |
14 | Eucalyptol | 1065 | 1076 | 13.81 | 13.02 | 7.31 | 14.46 | 4.81 | 5.37 | 11.57 |
15 | g-Terpinene | 1090 | 1097 | - | - | - | 1.41 | 1.76 | 0.35 | - |
16 | Atemisia ketone | 1091 | 1098 | 7.96 | 18.09 | 22.45 | - | - | - | 10.89 |
17 | 4-Thujanol | 1099 | 1171 | 1.10 | 0.44 | 1.42 | 1.23 | - | 0.31 | 1.00 |
18 | Artemesia alcohol | 1114 | - | 5.65 | 6.30 | 14.97 | - | - | - | 5.43 |
19 | Thujone | 1142 | - | 25.88 | 18.05 | 8.22 | 3.84 | 58.44 | - | - |
20 | 2-Cyclohexenol | 1158 | 1109 | 0.57 | - | - | - | 0.90 | - | 2.37 |
21 | trans-Verbenol | 1181 | 1192 | 0.40 | - | - | - | 0.69 | - | - |
22 | Methyl methacrylate | 1182 | - | - | - | 0.22 | - | - | - | - |
23 | 2-Bornanone | 1183 | - | 0.93 | 3.17 | - | 28.65 | - | 2.92 | 5.41 |
24 | Photocitral B | 1196 | - | - | - | - | - | 0.60 | 0.42 | - |
25 | cis-Chrysanthenol | 1197 | - | - | - | - | 2.17 | - | - | - |
26 | Lavandulol | 1199 | - | - | - | - | - | - | 0.42 | 0.56 |
27 | 3-Methyl-3-nitro-1-butene | 1199 | - | - | - | 0.18 | - | - | - | - |
28 | 4-Methyl-1, 4-heptadiene | 1199 | - | - | 0.75 | - | - | - | - | - |
29 | Artemisia triene | 1269 | - | 0.51 | - | - | - | - | - | - |
30 | 1,5-Dimethyl-6-methylenespiro [2.4]heptane | 1200 | - | - | - | - | - | 1.34 | - | - |
31 | p-Menthaol | 1202 | - | - | - | - | - | 1.00 | - | - |
32 | Borneol | 1203 | 1218 | 3.56 | 1.82 | - | 14.79 | - | 4.32 | 2.97 |
33 | 4-Terpineol | 1215 | 1236 | 5.47 | 2.96 | 1.32 | 3.98 | 5.31 | 1.07 | 1.99 |
34 | α-Terpineol | 1229 | 1265 | 1.57 | 1.54 | 0.88 | 1.82 | - | 0.36 | 1.56 |
35 | cis-Piperitol | 1246 | - | - | - | - | - | - | - | 0.61 |
36 | 1,4-Dimethyl-cyclohex-3-enyl methyl ketone | 1249 | - | - | - | - | 0.55 | - | - | - |
37 | Verbenone | 1251 | - | - | 0.41 | - | - | 0.51 | - | - |
38 | Carveol | 1257 | 1274 | 0.94 | 1.77 | 0.86 | 1.19 | 1.01 | 0.33 | 0.74 |
39 | cis-p-mentha-1 (7), 8-dien-2-ol | 1267 | - | 0.60 | - | - | - | - | - | |
40 | 1-Imidazole-1-yl-3-methylbut-2-en-1-one | 1275 | - | - | 0.36 | 0.52 | - | - | - | - |
41 | 3-Carvomenthenone | 1295 | - | - | - | - | - | - | - | 0.69 |
42 | 2-Butylphenol | 1327 | - | 0.33 | - | -- | - | - | - | - |
43 | Bornyl acetate | 1328 | 1364 | - | - | - | 0.75 | - | - | - |
44 | α-EIemene | 1382 | - | - | - | - | - | - | 2.22 | 0.41 |
45 | 3-Allylguaiacol | 1398 | - | 0.38 | - | - | 0.50 | 0.51 | - | - |
46 | Eugenol | 1398 | 1418 | - | 0.45 | 0.43 | - | - | - | - |
47 | Copaene | 1425 | - | - | - | - | - | - | - | 0.33 |
48 | Crysanthenone | 1436 | - | - | - | - | - | 0.70 | - | - |
49 | β-Elemene | 1440 | - | - | - | - | - | - | 1.41 | - |
50 | Caryophyllene | 1473 | 1487 | 6.27 | 4.35 | 4.42 | 5.67 | 4.52 | 10.62 | 15.12 |
51 | Humulene | 1508 | - | 0.75 | - | - | 0.46 | - | - | - |
52 | 1, 4, 7,-Cycloundecatriene, 1, 5, 9, 9-tetramethyl- | 1508 | - | - | 0.48 | 0.55 | - | 0.44 | 4.50 | 2.15 |
53 | Alloaromadendrene | 1516 | 1516 | - | - | - | - | - | - | 0.33 |
54 | g-Muurolene | 1529 | - | - | - | - | - | - | - | 0.53 |
55 | Germacrene | 1537 | 1551 | 2.45 | 1.51 | 1.95 | 1.93 | 1.30 | 7.13 | 8.60 |
56 | 1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethylnaphthalene | 1544 | - | 1.10 | 1.05 | 1.33 | - | - | - | 1.30 |
57 | Bicylogermacrene | 1553 | 1573 | 0.92 | - | 0.53 | 0.42 | - | 2.86 | 3.32 |
58 | g-Elemene | 1553 | - | - | - | - | - | 0.43 | - | - |
59 | Davana ether | 1556 | - | - | - | - | - | - | 0.82 | - |
60 | α-Amorphene | 1569 | - | - | - | - | - | - | 1.17 | 0.76 |
61 | Nerolidol | 1609 | 1630 | - | - | - | - | - | 0.55 | - |
62 | Virdiflorol | 1630 | - | - | - | - | - | - | 3.11 | 2.96 |
63 | Spatulenol | 1638 | 1595 | 0.43 | 0.34 | 0.41 | - | - | - | 0.60 |
64 | Isolongifolen-5-one | 1643 | 1602 | - | - | - | - | - | 0.85 | - |
65 | Caryophyllene oxide | 1647 | - | 0.82 | 1.15 | 1.09 | 0.75 | 0.75 | 1.06 | 1.26 |
66 | Umbelliferone | 1660 | - | - | - | - | - | - | 0.31 | - |
67 | 2-Norprezizene | 1664 | - | - | - | - | - | - | 1.52 | - |
68 | γ-Gurjunene | 1667 | - | - | - | - | - | - | - | 0.93 |
69 | Ledol | 1667 | 1666 | - | - | - | - | - | 0.76 | - |
70 | Junenol | 1684 | - | - | - | - | - | - | - | 0.94 |
71 | Isospathulenol | 1688 | - | - | - | - | - | - | 1.77 | - |
72 | 3-Ethyl-2-methyl-1,3-hexadiene | 1696 | - | - | - | - | - | - | 0.82 | - |
73 | Cariophylladienol | 1698 | - | 1.00 | 1.21 | 0.59 | 0.48 | 0.61 | - | - |
74 | τ-Cadinol | 1699 | - | - | - | - | - | - | 1.80 | 1.83 |
75 | α-Cadinol | 1715 | - | - | - | - | - | - | - | 1.09 |
76 | Longiverbenone | 1717 | - | - | - | - | - | - | 26.02 | - |
77 | Neointermedeol | 1719 | - | 1.12 | 6.12 | 10.06 | 5.35 | - | - | 0.95 |
78 | Isoaromadendrene epoxide | 1750 | - | - | - | - | - | - | 1.01 | - |
79 | Silane, diphenylisobutoxy (2-methodyethoxy)- | 1835 | - | - | - | - | 0.39 | - | - | - |
80 | 3, 4, 5-Trimethoxy-β-methyl-β-nitrostyrene | 1835 | - | - | - | 1.46 | - | - | - | - |
81 | 2,3-Dphenyl-1H-1,2,4-triazole-5-thion | 1835 | - | 1.00 | - | - | - | - | - | - |
82 | 1-Naphthylamine | 1835 | - | - | 0.99 | - | - | - | - | - |
83 | 1, 5-Diphenyl-2H-1, 2, 4-triazoline-3-thione | 1867 | - | - | - | - | - | 0.28 | 0.39 | - |
84 | Methyl oleate | 2053 | - | 0.57 | - | 10.05 | - | - | - | 0.43 |
85 | 4-[(Dimethylamino)methyl]-2,5-dimethylphenol | 2170 | - | - | - | - | 0.21 | - | - | - |
86 | Octasiloxane, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15-hexadecamethyl- | 2190 | - | 1.29 | - | - | - | - | - | - |
87 | Cyclotrisiloxane, hexamethyl | 2209 | - | - | 0.85 | - | - | - | - | - |
Total | 95.36 | 95.43 | 97.01 | 98.93 | 91.28 | 90.89 | 98.90 |
Principal Component | Eigenvalue | Variance Contribution (%) | Cumulative Variance Contribution (%) |
---|---|---|---|
1 | 3.91 | 55.80 | 55.80 |
2 | 1.63 | 23.30 | 79.10 |
Sample Name | F1 1 | F2 2 | F 3 |
---|---|---|---|
HA | 2.186 | −0.506 | 1.392 |
PA | 0.208 | 2.295 | 0.824 |
CZA | −0.952 | 0.495 | −0.525 |
QA | 1.301 | 0.769 | 1.144 |
SYA | 2.376 | −1.366 | 1.272 |
BGA | −2.001 | −1.715 | −1.917 |
LJA | −3.119 | 0.028 | −2.190 |
Essential Oil | Gram-Positive Bacteria (mm) | Gram-Negative Bacteria (mm) | |
---|---|---|---|
Bacillus Subtilis | Staphylococcus Aureus | Escherichia coli | |
HA | 13.89 ± 0.75 | 11.48 ± 0.12 | 17.93 ± 1.04 |
PA | 20.32 ± 0.82 | 6.29 ± 0.41 | 16.09 ± 0.91 |
CZA | 21.22 ± 1.05 | 4.47 ± 0. 08 | 15.67 ± 0.27 |
QA | 13.80 ± 1.74 | 18.20 ± 0.17 | 13.78 ± 0.48 |
SYA | 15.42 ± 0.66 | 15.28 ± 0.33 | 16.07 ± 0.45 |
BGA | 17.27 ± 0.56 | 7.67 ± 0.71 | 8.21 ± 0.16 |
LJA | 16.30 ± 1.01 | 7.76 ± 0.22 | 11.50 ± 0.45 |
Positive control | 19.57 ± 0.63 | 16.55 ± 0.35 | 23.32 ± 0.45 |
Negative control | - 1 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Guo, D.; Yang, S.; Hu, H.; Luo, X.; Wan, N. Analysis of Volatile Components and Antibacterial Activity of Silver Wormwood Essential Oils from Different Habitats by E-Nose Combined with GC-MS. Separations 2023, 10, 553. https://doi.org/10.3390/separations10110553
Yang Y, Guo D, Yang S, Hu H, Luo X, Wan N. Analysis of Volatile Components and Antibacterial Activity of Silver Wormwood Essential Oils from Different Habitats by E-Nose Combined with GC-MS. Separations. 2023; 10(11):553. https://doi.org/10.3390/separations10110553
Chicago/Turabian StyleYang, Yiqin, Dongyun Guo, Shujie Yang, Huiquan Hu, Xiaorong Luo, and Na Wan. 2023. "Analysis of Volatile Components and Antibacterial Activity of Silver Wormwood Essential Oils from Different Habitats by E-Nose Combined with GC-MS" Separations 10, no. 11: 553. https://doi.org/10.3390/separations10110553
APA StyleYang, Y., Guo, D., Yang, S., Hu, H., Luo, X., & Wan, N. (2023). Analysis of Volatile Components and Antibacterial Activity of Silver Wormwood Essential Oils from Different Habitats by E-Nose Combined with GC-MS. Separations, 10(11), 553. https://doi.org/10.3390/separations10110553