Purification, Characterization, and Ferrous Oxidation Kinetics of Iron Oxidase from Acidithiobacillus ferridurans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Synthesis, Expression, and Purification of Recombinant Iron Oxidase
2.2. Analytical Methods
2.3. Kinetic Measurement between Oxidized Iron Oxidase and Ferrous Ion
2.4. Bioinformatics Analysis and Molecular Simulation
3. Results
3.1. Expression and Purification of Recombinant Iron Oxidase from A. ferridurans Riv11
3.2. Characterizations of the Iron Oxidase
3.3. Fluorescence Analysis of Iron Oxidase and Its Bioinformatics Insights
3.4. Spectral Difference Analysis of Oxidized and Reduced Iron Oxidase and Ferric and Ferrous Ion
3.5. Electron Transfer from Ferrous Ion to Iron Oxidase
3.6. Molecular Simulation and Bioinformatics Analysis of the Interaction between Iron Oxidase and Ferrous Ion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaksonen, A.H.; Boxall, N.J.; Gumulya, Y.; Khaleque, H.N.; Morris, C.; Bohu, T.; Cheng, K.Y.; Usher, K.M.; Lakaniemi, A.-M. Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Castro, L.; Blazquez, M.L.; Gonzalez, F.; Munoz, J.a. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes. Molecules 2021, 26, 6200. [Google Scholar] [CrossRef] [PubMed]
- Schippers, A.; Hedrich, S.; Vasters, J.; Drobe, M.; Sand, W.; Willscher, S. Biomining: Metal Recovery from Ores with Microorganisms. In Geobiotechnology I: Metal-Related Issues; Advances in Biochemical Engineering-Biotechnology; Schippers, A., Glombitza, F., Sand, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 141, pp. 1–47. [Google Scholar]
- Roberto, F.F.; Schippers, A. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2022, 106, 5913–5928. [Google Scholar] [CrossRef] [PubMed]
- Sand, W.; Schippers, A.; Hedrich, S.; Vera, M. Progress in bioleaching: Fundamentals and mechanisms of microbial metal sulfide oxidation—Part A. Appl. Microbiol. Biotechnol. 2022, 106, 6933–6952. [Google Scholar] [CrossRef]
- Abashina, T.; Vainshtein, M. Current Trends in Metal Biomining with a Focus on Genomics Aspects and Attention to Arsenopyrite Leaching—A Review. Microorganisms 2023, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Santini, J.M. Mechanisms of bioleaching: Iron and sulfur oxidation by acidophilic microorganisms. Essays Biochem. 2023, 67, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Sand, W.; Gehrke, T.; Jozsa, P.G.; Schippers, A. (Bio) chemistry of bacterial leaching—Direct vs. indirect bioleaching. Hydrometallurgy 2001, 59, 159–175. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Diep, P.; Mahadevan, R. Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: Progress and perspectives. J. Hazard. Mater. 2022, 438, 129456. [Google Scholar] [CrossRef]
- Amouric, A.; Brochier-Armanet, C.; Johnson, D.B.; Bonnefoy, V.; Hallberg, K.B. Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 2011, 157, 111–122. [Google Scholar] [CrossRef]
- Nunez, H.; Moya-Beltran, A.; Covarrubias, P.C.; Issotta, F.; Cardenas, J.P.; Gonzalez, M.; Atavales, J.; Acuna, L.G.; Johnson, D.B.; Quatrini, R. Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon. Front. Microbiol. 2017, 8, 30. [Google Scholar] [CrossRef]
- Ibanez, A.; Garrido-Chamorro, S.; Coque, J.J.R.; Barreiro, C. From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus. Genes 2023, 14, 1772. [Google Scholar] [CrossRef] [PubMed]
- Moya-Beltran, A.; Beard, S.; Rojas-Villalobos, C.; Issotta, F.; Gallardo, Y.; Ulloa, R.; Giaveno, A.; Degli Esposti, M.; Barrie Johnson, D.; Quatrini, R. Genomic evolution of the class Acidithiobacillia: Deep-branching Proteobacteria living in extreme acidic conditions. ISME J. 2021, 15, 3221–3238. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rosales, C.; Vergara, E.; Dopson, M.; Valdes, J.H.; Holmes, D.S. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front. Microbiol. 2022, 12, 822229. [Google Scholar] [CrossRef]
- Fry, I.V.; Lazaroff, N.; Packer, L. Sulfate-dependent iron oxidation by Thiobacillus ferrooxidans: Characterization of a new EPR detectable electron transport component on the reducing side of rusticyanin. Arch. Biochem. Biophys. 1986, 246, 650–654. [Google Scholar] [CrossRef]
- Fukumori, Y.; Yano, T.; Sato, A.; Yamanaka, T. Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 1988, 50, 169–172. [Google Scholar] [CrossRef]
- Kusano, T.; Takeshima, T.; Sugawara, K.; Inoue, C.; Shiratori, T.; Yano, T.; Fukumori, Y.; Yamanaka, T. Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(II) oxidase. High homology of the gene product with HiPIP. J. Biol. Chem. 1992, 267, 11242–11247. [Google Scholar] [CrossRef] [PubMed]
- Cavazza, C.; Guigliarelli, B.; Bertrand, P.; Bruschi, M. Biochemical and EPR characterization of a high potential iron-sulfur protein in Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 1995, 130, 193–199. [Google Scholar] [CrossRef]
- Zeng, J.; Geng, M.; Liu, Y.; Zhao, W.; Xia, L.; Liu, J.; Qiu, G. Expression, purification and molecular modelling of the Iro protein from Acidithiobacillus ferrooxidans Fe-1. Protein Expr. Purif. 2007, 52, 146–152. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, Q.; Zhang, X.; Mo, H.; Wang, Y.; Chen, Q.; Liu, Y. Functional Roles of the Aromatic Residues in the Stabilization of the Fe4S4 Cluster in the Iro Protein from Acidithiobacillus ferrooxidans. J. Microbiol. Biotechnol. 2010, 20, 294–300. [Google Scholar] [CrossRef]
- Bruscella, P.; Cassagnaud, L.; Ratouchniak, J.; Brasseur, G.; Lojou, E.; Amils, R.; Bonnefoy, V. The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. Microbiology 2005, 151, 1421–1431. [Google Scholar] [CrossRef]
- Sato, A.; Hori, Y.; Shigeta, Y. Characterization of the Geometrical and Electronic Structures of the Active Site and Its Effects on the Surrounding Environment in Reduced High-Potential Iron-Sulfur Proteins Investigated by the Density Functional Theory Approach. Inorg. Chem. 2023, 62, 2040–2048. [Google Scholar] [CrossRef] [PubMed]
- Heering, H.A.; Bulsink, Y.B.; Hagen, W.R.; Meyer, T.E. Reversible super-reduction of the cubane 4Fe-4S(3+;2+;1+) in the high-potential iron-sulfur protein under non-denaturing conditions. EPR spectroscopic and electrochemical studies. Eur. J. Biochem. 1995, 232, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Rayment, I.; Wesenberg, G.; Meyer, T.E.; Cusanovich, M.A.; Holden, H.M. Three-dimensional structure of the high-potential iron-sulfur protein isolated from the purple phototrophic bacterium Rhodocyclus tenuis determined and refined at 1.5 A resolution. J. Mol. Biol. 1992, 228, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Malik, L.; Hedrich, S. Ferric Iron Reduction in Extreme Acidophiles. Front. Microbiol. 2022, 12, 818414. [Google Scholar] [CrossRef] [PubMed]
- Holm, R.H. Iron-sulphur clusters in natural and synthetic systems. Endeavour 1975, 34, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Jalali, F.; Fakhar, J.; Zolfaghari, A. On using a new strain of Acidithiobacillus ferridurans for bioleaching of low-grade uranium. Sep. Sci. Technol. 2020, 55, 994–1004. [Google Scholar] [CrossRef]
- Hedrich, S.; Johnson, D.B. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. Int. J. Syst. Evol. Microbiol. 2013, 63, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Jalali, F.; Fakhari, J.; Zolfaghari, A. Response surface modeling for lab-scale column bioleaching of low-grade uranium ore using a new isolated strain of Acidithiobacillus ferridurans. Hydrometallurgy 2019, 185, 194–203. [Google Scholar] [CrossRef]
- Kaur, J.; Kumar, A.; Kaur, J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol. 2018, 106, 803–822. [Google Scholar] [CrossRef]
- Crowe, J.; Dobeli, H.; Gentz, R.; Hochuli, E.; Stuber, D.; Henco, K. 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol. Biol. 1994, 31, 371–387. [Google Scholar]
- Lovenberg, W.; Buchanan, B.B.; Rabinowitz, J.C. Studies on the Chemical Nature of Clostridial Ferredoxin. J. Biol. Chem. 1963, 238, 3899–3913. [Google Scholar] [CrossRef] [PubMed]
- Siegel, L.M. A Direct Microdetermination for Sulfide. Anal. Biochem. 1965, 11, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Grabarczyk, D.B.; Ash, P.A.; Myers, W.K.; Dodd, E.L.; Vincent, K.A. Dioxygen controls the nitrosylation reactions of a protein-bound 4Fe4S cluster. Dalton Trans. 2019, 48, 13960–13970. [Google Scholar] [CrossRef]
- Qi, Y.; Shangguan, X.; He, J.; Chen, L.; Jin, J.; Liu, Y.; Qiu, G.; Yu, R.; Li, J.; Zeng, W.; et al. Expression, purification, characterization and direct electrochemistry of two HiPIPs from Acidithiobacillus caldus SM-1. Anal. Biochem. 2022, 652, 114724. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
- Gutfreund, H. Proteins: Structures and molecular properties (second edition). FEBS Lett. 1993, 323, 294. [Google Scholar] [CrossRef]
- Im, W.; Beglov, D.; Roux, B. Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. Commun. 1998, 111, 59–75. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Shangguan, X.; Ouyang, J.; He, J.; Wang, K.; Tong, Y.; Yu, R.; Zeng, W.; Wu, X.; et al. Expression, Purification and Characterization of a Novel Rusticyanin from the Psychrotolerant Acidithiobacillus ferrivorans. Separations 2023, 10, 448. [Google Scholar] [CrossRef]
- Celej, M.S.; Montich, C.G.; Fidelio, G.D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci. 2003, 12, 1496–1506. [Google Scholar] [CrossRef] [PubMed]
- Hochkoeppler, A.; Kofod, P.; Ferro, G.; Ciurli, S. Isolation, characterization, and functional role of the high-potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans. Arch. Biochem. Biophys. 1995, 322, 313–318. [Google Scholar] [CrossRef]
- Hochstrasser, R.M.; Negus, D.K. Picosecond fluorescence decay of tryptophans in myoglobin. Proc. Natl. Acad. Sci. USA 1984, 81, 4399–4403. [Google Scholar] [CrossRef] [PubMed]
- Sau, A.K.; Chen, C.A.; Cowan, J.A.; Mazumdar, S.; Mitra, S. Steady-state and time-resolved fluorescence studies on wild type and mutant Chromatium vinosum high potential iron proteins: Holo- and apo-forms. Biophys. J. 2001, 81, 2320–2330. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.A.; Meyer, T.E.; Cusanovich, M.A. Kinetics of oxidation and reduction of high-potential iron-sulfur proteins with nonphysiological reactants. Biochemistry 1980, 19, 4727–4733. [Google Scholar] [CrossRef] [PubMed]
- Page, C.C.; Moser, C.C.; Chen, X.X.; Dutton, P.L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 1999, 402, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, J.; Wherland, S.; Gray, H.B. Kinetic studies of the oxidation and reduction of Chromatium high potential iron-sulfur protein (HiPIP) by inorganic complexes. Comparison of the electron transfer reactivities of HiPIP and horse heart cytochrome c. J. Am. Chem. Soc. 1976, 98, 2177–2180. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.A.; Wood, F.E.; Cusanovich, M.A. Oxidation-reduction properties of Chromatium vinosum high potential iron-sulfur protein. Biochemistry 1976, 15, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Jiang, N.; He, Z.; Yang, Y.; Li, Y. Direct electrochemical detection of extracellular nitric oxide in Arabidopsis protoplast based on cytochrome P450 55B1 biosensor. Nitric Oxide-Biol. Chem. 2023, 132, 8–14. [Google Scholar] [CrossRef]
- Koroleva, P.I.; Gilep, A.A.; Kraevsky, S.V.; Tsybruk, T.V.; Shumyantseva, V.V. Improving the Efficiency of Electrocatalysis of Cytochrome P450 3A4 by Modifying the Electrode with Membrane Protein Streptolysin O for Studying the Metabolic Transformations of Drugs. Biosensors 2023, 13, 457. [Google Scholar] [CrossRef]
- Chen, J.J.; Liu, Y.L.; Mahadevan, R. Genetic Engineering of Acidithiobacillus ferridurans Using CRISPR Systems To Mitigate Toxic Release in Biomining. Environ. Sci. Technol. 2023, 57, 12315–12324. [Google Scholar] [CrossRef]
- Jung, H.; Inaba, Y.; West, A.C.; Banta, S. Overexpression of quorum sensing genes in Acidithiobacillus ferrooxidans enhances cell attachment and covellite bioleaching. Biotechnol. Rep. 2023, 38, e00789. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; He, J.; Shangguan, X.; Liu, R.; Zeng, X.; Belqadi, W.; Wang, K.; Tong, Y.; Yu, R.; Zeng, W.; et al. Purification, Characterization, and Ferrous Oxidation Kinetics of Iron Oxidase from Acidithiobacillus ferridurans. Separations 2023, 10, 554. https://doi.org/10.3390/separations10110554
Liu Y, He J, Shangguan X, Liu R, Zeng X, Belqadi W, Wang K, Tong Y, Yu R, Zeng W, et al. Purification, Characterization, and Ferrous Oxidation Kinetics of Iron Oxidase from Acidithiobacillus ferridurans. Separations. 2023; 10(11):554. https://doi.org/10.3390/separations10110554
Chicago/Turabian StyleLiu, Yuandong, Jiayu He, Xiangdong Shangguan, Run Liu, Xiaofeng Zeng, Wissal Belqadi, Kan Wang, Yan Tong, Runlan Yu, Weimin Zeng, and et al. 2023. "Purification, Characterization, and Ferrous Oxidation Kinetics of Iron Oxidase from Acidithiobacillus ferridurans" Separations 10, no. 11: 554. https://doi.org/10.3390/separations10110554
APA StyleLiu, Y., He, J., Shangguan, X., Liu, R., Zeng, X., Belqadi, W., Wang, K., Tong, Y., Yu, R., Zeng, W., Wu, X., Shen, L., & Qiu, G. (2023). Purification, Characterization, and Ferrous Oxidation Kinetics of Iron Oxidase from Acidithiobacillus ferridurans. Separations, 10(11), 554. https://doi.org/10.3390/separations10110554