Evaluation of CO2 Adsorption Parameters in Fluidised Zeolite 13X Beds Using Non-Linear Multivariate Optimisation
Abstract
:1. Introduction
- Absorption processes;
- Micro-algal ciofixation processes (photosynthetic fixation);
- Cryogenic processes;
- Cold methanol (Rectisol process);
- Polyethylene glycol diethylene ether (Selexol process);
- Propylene carbonate (Fluor process).
- Pressure swing: The pressure of the adsorption chamber is lowered to very low values.
- Temperature swing: The temperature is increased.
- Electrical swing: The electric current that runs through the adsorbent bed is changed.
- n gas phase mass balances;
- n mass balances in the adsorbed phase;
- 1 energy balance related to intra-system exchange;
- 1 energy balance related to external exchange;
- 1 momentum balance;
- n equilibrium relations.
2. Materials and Methods
- Particle size distribution;
- Sauter diameter;
- Volume diameter.
- The upper one has the function of conveying the gas coming out of the bed to the composition analyser.
- The lower one is connected to the distribution chamber through a porous septum that has the task of evenly distributing the gas entering the bed. Glass marbles with a diameter of 11 mm and a density of 2.48 g/cm3 are used to pack the columns.
- Gas sampling probe: This allows samples of gas to be examined. It consists of a handle and a tube, inside of which there is a thermocouple.
- Gas pump: It is located inside the analyser and has the function of sucking the sample.
- Gas chamber: Located inside it are electrochemical cells. The cells measure the oxygen content and send an electrical signal directly proportional to the volumetric concentration of the species.
3. Results and Discussion
- If is high, the adsorption is rapid, and therefore, the breakthrough curve grows very quickly.
- If is low, the adsorption is slow, and therefore, the breakthrough curve grows very slowly.
- The adsorption of nitrogen is much more rapid than that of oxygen.
- The curve value comes above the unit value because the driving force changes the sign.
- At the outlet, there is a flux given by the sum of the incoming flux and the flux desorbed by the solid.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
List of Symbols | |
Symbols | Description |
am | Specific area, m−1 |
Am | Exchange area, m2 |
b0 | Affinity pre-exponential factor, Pa−1 |
b | Affinity, Pa−1 |
cP | Specific heat, K·mol−1·K−1 |
C | Concentration in the fluid phase, mol m−3 |
dP | Particle diameter, m |
D | Diffusion coefficient, m2·s−1 |
fobj | Objective function, - |
F | Flux exchanged with the adsorbed face, mol·m−2·s−1 |
h | Heat transport coefficient, W·m−2·K−1 |
kLDF | Mass transport coefficient, s−1 |
L | Column length, m |
n | Number of species, - |
ni | Number of moles of i species, mol |
N | Total flux, mol·m−2·s−1 |
P | Pressure, Pa |
q | Loading in the adsorbed phase, mol·kg−1 |
qs0 | Saturation loading, mol·kg−1 |
QAds | Heat of adsorption, J·mol−1 |
R | Ideal gas constant, J·mol−1·K−1 |
R2 | Determination coefficient, - |
Re | Reynolds number, - |
t | Time, s |
T | Temperature, K |
u, v | Velocity, m·s−1 |
vf | Superficial velocity, m·s−1 |
V | Volume m3 |
x | Mole fraction, - |
y | Gas mole fraction, - |
Greek symbols | |
α | Generic coefficient |
ΔH | Enthalpy variation, J·mol−1 |
Δx | Space variation, m |
ε | Voidage degree, - |
θ | Generic variable |
μ | Viscosity, Pa·s−1 |
ρ | Density, kg·m−3 |
ϕ | Sphericity, - |
Adsorption parameter, - | |
Subscripts and Superscripts | |
ads | Adsorption |
atm | Atmospheric pressure |
e | Equilibrium |
Exp | Experimental |
g | Gas |
i | Generic species |
j | Index for spatial discretisation |
Lang | Langmuir |
LDF | Linear driving force |
Mod | Model |
n | Index for time discretisation |
p | Particle |
s | Solid |
sat | Saturation |
w | Wall |
Appendix A. Modelling of Carbon Dioxide–Air Adsorption
Appendix A.1. Gas-Phase Balance
Appendix A.2. Mass Balance in the Adsorbed Phase
Appendix A.3. Energy Balance
Appendix A.4. Pressure Loss Equation
Appendix A.5. Simulation System
- The first derivative can be written as Forward, Backward or Centred. The Forward and Backward formulations are less accurate than the Centred formulation, so a method that uses the latter formulation is more accurate.
- The second derivative can only be expressed through a Centred formulation.
Appendix A.6. Initial and Boundary Conditions
- The concentration inside the bed is the same as that in air (Equation (A37));
- The concentration of the adsorbed phase is zero, as the adsorbent material is considered to be completely regenerated from the previous operations (Equation (A38));
- The temperature is equal to the ambient temperature (Equations (A41)–(A45)).
Appendix A.7. Method of Line
Appendix A.8. Parametric Optimisation
References
- Sreedhara, I.; Vaidhiswarana, R.; Kamania, M.B.; Venugopalb, A. Process and engineering trends in membrane based carbon capture. Renew. Sustain. Energy Rev. 2017, 68, 659–684. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Zhao, S.; Wang, J.; Wang, S. Recent advances on mixed matrix membranes for CO2 separation. Chin. J. Chem. Eng. 2017, 25, 1581–1597. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.Y. High performance polymer membranes for CO2 separation. Curr. Opin. Chem. Eng. 2013, 2, 238–244. [Google Scholar] [CrossRef]
- Abd, A.A.; Naji, S.Z.; Hashim, A.S.; Othman, R.M. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. J. Environ. Chem. Eng. 2020, 8, 104142. [Google Scholar]
- Yu, H.C.; Huang, H.C.; Tan, S.C. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Feng, J.; Guo, H.; Wang, S.; Zhao, Y.; Ma, X. Fabrication of multi-shelled hollow Mg-modified CaCO3 microspheres and their improved CO2 adsorption performance. Chem. Eng. J. 2017, 321, 401–441. [Google Scholar] [CrossRef]
- García, S.; Pis, J.J.; Rubiera, F.; Pevida, C. Predicting mixed-gas adsorption equilibria on activated carbon for Precombustion CO2 capture. Langmuir 2013, 29, 6042–6052. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, L.; Luo, X.; Liang, Z. Optimised process configuration for CO2 recovery from crude synthesis gas via a rectisol wash process. Int. J. Greenh. Gas Control 2018, 79, 83–90. [Google Scholar] [CrossRef]
- Duong, D.D. Adsorption Analysis: Equilibia and Kinetics. Series on Chemical Engineering; Imperial College Press: London, UK, 1998. [Google Scholar]
- Girimonte, R.; Formisani, B.; Testa, F. Adsorption of CO2 on a confined fluidized bed of pelletized 13X zeolite. Powder Technol. 2017, 311, 9–17. [Google Scholar] [CrossRef]
- Girimonte, R.; Formisani, B.; Testa, F. CO2 adsorption in a confined fluidized bed of zeolite pellets: Influence of operating velocity. Particuology 2018, 46, 67–74. [Google Scholar] [CrossRef]
- Ghurabi, E.H.A.; Ajbar, A.; Asif, M. Enhancement of CO2 Removal Efficacy of Fluidized Bed Using Particle Mixing. Appl. Sci. 2018, 8, 1467. [Google Scholar] [CrossRef]
- Poursaeidesfahani, A.; Andres-Garcia, E.; de Lange, M.; Torres-Knoop, A.; Rigutto, M.; Nair, N.; Kapteijn, F.; Gascon, J.; Dubbeldam, D.; Vlugt, T.J. Prediction of adsorption isotherms from breakthrough curves. Predict. Adsorpt. Isotherms Breakthr. Curves 2019, 277, 237–244. [Google Scholar] [CrossRef]
- Ünveren, E.E.; Monkul, Ö.B.; Sarıoğlan, Ş.; Karademir, N.; Alper, E. Solid amine sorbents for CO2 capture by chemical adsorption: A Review. Petroleum 2016, 3, 37–50. [Google Scholar] [CrossRef]
- Mansour, B.M.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Boonchuay, A.; Worathanakul, P. The Diffusion Behavior of CO2 Adsorption from a CO2/N2 Gas Mixture on Zeolite 5A in a Fixed-Bed Column. Atmosphere 2022, 13, 513. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Chen, X.; Xia, Q.; Li, Z. Adsorption of CO2 on Zeolite 13X and Activated Carbon with Higher Surface Area. Sep. Sci. Technol. 2010, 45, 710–719. [Google Scholar] [CrossRef]
- Dantas, T.L.P.; Luna, F.M.T.; Silva, I.J., Jr.; Torres, A.E.B.; Azevedo, D.C.S.; Rodrigues, A.E.; Moreira, R.F.P.M. Modeling of the fixed-bed adsorption of carbon dioxide and a carbon dioxide nitrogen mixture on Zeolite 13X. Braz. J. Chem. Eng. 2011, 28, 533–544. [Google Scholar] [CrossRef]
- Morales, O.R.; Santiago, G.R.; Siqueira, R.M.; Azevedo, S.C.D.; Neto, B.M. Assessment of CO2 Desorption from 13X Zeolite for a Prospective TSA Process; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Moura, P.A.S.; Bezerra, D.P.; Vilarrasa-Garcia, E.; Bastos-Neto, M.; Azevedo, D.C.S. 2016 Adsorption Equilibria of CO2 and CH4 in Cation-Exchanged Zeolites 13X; Springer Science+Business Media: New York, NY, USA, 2015. [Google Scholar]
- Garshasbi, V.; Jahangiri, M.; Anbia, M. Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Appl. Surf. Sci. 2017, 393, 225–233. [Google Scholar] [CrossRef]
- Pereira, A.; Ferreira, A.F.P.; Rodrigues, A.; Ribeiro, A.M.; Regufe, M.J. Evaluation of the potential of a 3D-printed hybrid zeolite 13X/activated carbon material for CO2/N2 separation using electric swing adsorption. Chem. Eng. J. 2022, 450, 138197. [Google Scholar] [CrossRef]
- Kareem, F.A.; Shariff, A.M.; Ullaha, S.; Dreisbachb, F.; Keonga, L.K.; Mellona, N.; Garga, S. Experimental measurements and modeling of supercritical CO2 adsorption on 13X and 5A zeolites. J. Nat. Gas Sci. Eng. 2018, 50, 115–127. [Google Scholar] [CrossRef]
- Majchrzak-Kucęba, I.; Wawrzynczak, D.; Sciubidlo, A. Experimental investigation into CO2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon. J. CO2 Util. 2022, 61, 102027. [Google Scholar] [CrossRef]
- Won, W.; Lee, S.; Lee, K.S. Modeling and parameter estimation for a fixed-bed adsorption process for CO2 capture using zeolite 13X. Sep. Purif. Technol. 2012, 85, 120–129. [Google Scholar] [CrossRef]
- Najafi, A.M.; Soltanali, S.; Khorashe, F.; Ghassabzadeh, H. Effect of binder on CO2, CH4, and N2 adsorption behavior, structural properties, and diffusion coefficients on extruded zeolite 13X. Chemosphere 2023, 324, 138275. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, A.; Dehnavi, M.K.; Khoshraftar, Z. Exploring artificial neural network approach and RSM modeling in the prediction of CO2 capture using carbon molecular sieves. Case Stud. Chem. Environ. Eng. 2023, 7, 100310. [Google Scholar] [CrossRef]
- Beleli, Y.S.; de Paiva, J.L.; Seckler, M.M.; Carrillo Le Roux, G.A. Optimization of a continuous multi-stage fluidized bed system for CO2 capture utilizing temperature swing adsorption. Comput. Aided Chem. Eng. 2023, 52, 3233–3238. [Google Scholar]
- Hamdi, S.; Schiesser, W.E.; Griffiths, G.W. Method of Lines, Part I: Basic Concepts. Scholarpedia 2007, 2, 2859. [Google Scholar] [CrossRef]
- Scott, D.M. Effects of bed pressure drop on adsorption and desorption with Langmuir Isotherms. Chem. Eng. Sci. 1993, 17, 3001–3006. [Google Scholar] [CrossRef]
|
|
|
|
|
1 | Compressor | 6 | Moisture Abatement System |
2 | CO2 cylinder (Pyrossigeno®) | 7 | U-shaped manhole |
3 | CO2 rotameter (ASA S.p.A.®) | 8 | Fluidisation column |
4 | 3-way valve (Plasson®) | 9 | Computer |
5 | MFC Air (Brooks Instruments®) | 10 | Composition Analyser (Madur®) |
Parameter | Value |
---|---|
fobj | 0.22 |
R2 | 0.9985 |
Species | Parameters | Optimal Value | Confidence Intervals | Units |
---|---|---|---|---|
CO2 | KLDF | 0.7722 | ±0.0641 | s−1 |
10.358 | ±0.0268 | mol·kg−1 | ||
0.6372 | ±0.0475 | - | ||
b0 | 6.328 × 10−9 | ±0.216 × 10−9 | Pa−1 | |
Qads | 22017 | ±65 | J·mol−1 | |
N2 | KLDF | 0.8534 | ±0.0424 | s−1 |
3.4695 | ±0.0419 | mol·kg−1 | ||
0.01499 | ±0.0033 | - | ||
b0 | 1.535 × 10−5 | ±0.236 × 10−5 | Pa−1 | |
Qads | 1788 | ±48 | J·mol−1 | |
O2 | KLDF | 6.0846 | ±0.9426 | s−1 |
2.9904 | ±0.5273 | mol·kg−1 | ||
1.1707 | ±0.0337 | - | ||
b0 | 1.447 × 10−5 | ±0.119 × 10−5 | Pa−1 | |
Qads | 4819 | ±21 | J·mol−1 |
Species | Parameter | Conditions | This Work | The Literature | Ref. |
---|---|---|---|---|---|
CO2 | qsat, mol·kg−1 | 298 K | 7.4 | 7.5 | [22] |
298 K | 7.4 | 7.1 | [23] | ||
308 K | 7.2 | 6.6 | [23] | ||
318 K | 6.9 | 6.2 | [23] | ||
328 K | 6.7 | 5.7 | [23] | ||
273 K | 8.0 | 7.4 | [24] | ||
323 K | 6.8 | 7.3 | [25] | ||
343 K | 6.4 | 6.8 | [25] | ||
N2 | q, mol·kg−1 | (303 K, 1 bar) | 0.91 | 0.63 | [26] |
(298 K, 1 bar) | 0.53 | 0.40 | [27] | ||
(323 K, 1 bar) | 0.49 | 0.23 | [27] | ||
(323 K, 1 bar) | 0.42 | 0.11 | [27] | ||
(298 K, 1 bar) | 0.53 | 0.38 | [28] | ||
O2 | q, mol·kg−1 | (303 K, 1 bar) | 0.83 | 0.31 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caravella, A.; Prenesti, G.; De Luca, S.; Turano, M.; Testa, F.; Girimonte, R. Evaluation of CO2 Adsorption Parameters in Fluidised Zeolite 13X Beds Using Non-Linear Multivariate Optimisation. Separations 2023, 10, 558. https://doi.org/10.3390/separations10110558
Caravella A, Prenesti G, De Luca S, Turano M, Testa F, Girimonte R. Evaluation of CO2 Adsorption Parameters in Fluidised Zeolite 13X Beds Using Non-Linear Multivariate Optimisation. Separations. 2023; 10(11):558. https://doi.org/10.3390/separations10110558
Chicago/Turabian StyleCaravella, Alessio, Giuseppe Prenesti, Salvatore De Luca, Maria Turano, Flaviano Testa, and Rossella Girimonte. 2023. "Evaluation of CO2 Adsorption Parameters in Fluidised Zeolite 13X Beds Using Non-Linear Multivariate Optimisation" Separations 10, no. 11: 558. https://doi.org/10.3390/separations10110558
APA StyleCaravella, A., Prenesti, G., De Luca, S., Turano, M., Testa, F., & Girimonte, R. (2023). Evaluation of CO2 Adsorption Parameters in Fluidised Zeolite 13X Beds Using Non-Linear Multivariate Optimisation. Separations, 10(11), 558. https://doi.org/10.3390/separations10110558