Effects of Rare Earth Doping on Structural and Electrocatalytic Properties of Nanostructured TiO2 Nanotubes/SnO2-Sb Electrode for Electrochemical Treatment of Industrial Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Titanium Nanotube (TNT) Arrays as the Substrate for TNTs/SnO2-Sb Electrodes
2.2. Preparation of TNTs/SnO2-Sb Electrodes
2.3. Characterization of Electrodes
2.4. Electrochemical Experiments
2.5. Analysis of Hydroxyl Radicals (•OH) Generation
2.6. Electro-Catalytic Oxidation Experiments
2.7. Electrode Stability Analysis
3. Results and Discussion
3.1. Electrocatalytic Activation Test
3.2. Surface Morphology and Crystal Structure
3.3. Electrochemical Properties of the Electrodes
3.4. Primary Reactive Species and Reaction Mechanisms
3.5. Electrode Stability Analysis
4. Conclusions
- (1)
- The electrodes doped with rare earth elements demonstrated enhanced electrocatalytic activity and stability compared to the undoped electrode. Among the two doped electrodes, TNTs/SnO2-Sb-Gd exhibited a higher phenol and TOC removal rate, surpassing that of the TNTs/SnO2-Sb-Nd electrode by 10.3% and 36.4%, respectively. Additionally, the accelerated service life of TNTs/SnO2-Sb-Gd was extended by 7.5% in comparison to that of the TNTO2-Sb-Nd electrode.
- (2)
- The TNTs/SnO2-Sb-Gd composite exhibited a finer grain size and increased active sites compared to TNTs/SnO2-Sb-Nd, attributed to the smaller ionic radius of the Gd element. This facilitated its incorporation into the SnO2 lattice interior and inhibited grain growth, resulting in a significant enhancement in the exposure of more active sites.
- (3)
- The enhanced electrocatalytic activity observed in the Gd-doped electrode can be attributed to the increased generation of oxygen vacancies on its surface, which act as active sites for enhancing the adsorption of oxygen species and promoting •OH generation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Issakhov, A.; Alimbek, A.; Zhandaulet, Y. The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study. J. Clean. Prod. 2021, 282, 125239. [Google Scholar] [CrossRef]
- Li, L.X.; Han, J.Z.; Huang, X.H.; Qiu, S.; Liu, X.H.; Liu, L.L.; Zhao, M.J.; Qu, J.W.; Zou, J.L.; Zhang, J. Organic pollutants removal from aqueous solutions using metal-organic frameworks (MOFs) as adsorbents: A review. J. Environ. Chem. Eng. 2023, 11, 111217. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, H.; Wang, Q.; Ge, L.; Yang, Y.; Zhu, C. Refractory DOM in industrial wastewater: Formation and selective oxidation of AOPs. Chem. Eng. J. 2021, 406, 126857. [Google Scholar] [CrossRef]
- Li, L.X.; Fu, R.; Zou, J.L.; Wang, S.W.; Ding, J.; Han, J.Z.; Zhao, M.J. Research Progress of Iron-Based Catalysts in Ozonation Wastewater Treatment. ACS EST Water 2023, 3, 908–922. [Google Scholar] [CrossRef]
- Feng, Y.J.; Yang, L.S.; Liu, J.f.; Logan, B.E. Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci. Water Res. Technol. 2016, 2, 800–831. [Google Scholar] [CrossRef]
- Manna, M.; Sen, S. Advanced oxidation process: A sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ. Sci. Pollut. Res. 2023, 30, 25477–25505. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B 2023, 328, 122430. [Google Scholar] [CrossRef]
- Jiang, H.F.; Chen, H.M.; Wei, K.J.; Liu, L.F.; Sun, M.D.; Han, W.Q.; Zhou, M.H. Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. Chemosphere 2023, 341, 140083. [Google Scholar] [CrossRef]
- Qiao, J.; Xiong, Y.Z. Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants. J. Water Process Eng. 2021, 44, 102308. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Lu, J.C.; Zhuo, Q.F.; Ren, X.W.; Qiu, Y.F.; Li, Y.L.; Chen, Z.Y.; Huang, K.F. Treatment of wastewater from adhesive-producing industries by electrocoagulation and electrochemical oxidation. Process Saf. Environ. Prot. 2022, 157, 527–536. [Google Scholar] [CrossRef]
- Cao, F.C.; Tan, J.Y.; Zhang, S.P.; Wang, H.Q.; Yao, C.Z.; Li, Y. Preparation and recent developments of Ti/SnO2-Sb electrodes. J. Chem. 2021, 2021, 2107939. [Google Scholar] [CrossRef]
- Yang, L.S.; Liu, J.F.; Huang, L.L.; Zhang, Z.H.; Yu, Y.L.; Liu, J.; Logan, B.E.; Feng, Y.J. Fabrication of nano-structured stacked sphere SnO2-Sb electrode with enhanced performance using a situ solvothermal synthesis method. J. Electrochem. Soc. 2018, 165, E208. [Google Scholar] [CrossRef]
- Zhang, S.C.; Chen, X.; Du, S.W.; Wang, J.L.; Tan, M.Y.; Dong, J.Y.; Wu, D.L. Facile synthesis of highly active Ti/Sb-SnO2 electrode by sol-gel spinning technique for landfill leachate treatment. Water Sci. Technol. 2021, 84, 1366–1378. [Google Scholar] [CrossRef]
- Shao, M.Y.; Hu, B.; Ge, S.Y.; Zhou, X.F. Fabrication of Ti/TiO2/SnO2-Sb-Ir/SnO2-Sb-Ni Using Three Kinds of TiO2 Interlayer and an Optimized TiO2-Nanotube Interlayer-Based Anode for Electrochemical Treatment of Wastewater. J. Electron. Mater. 2023, 52, 907–916. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhao, L.; Chen, D.N.; Hou, P.F.; Liu, J.S.; Wang, C.B.; Aborisade, M.A.; Yin, M.L.; Yang, Y.K. Fabrication of a SnO2-Sb electrode with TiO2 nanotube array as the middle layer for efficient electrochemical oxidation of amaranth dye. Chemosphere 2023, 325, 138380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Liu, J.Q.; Ai, H.Y.; Chen, A.X.; Xu, L.; Labiadh, L.; Fu, M.L.; Yuan, B.L. Construction of the multi-layer TiO2-NTs/Sb-SnO2/PbO2 electrode for the highly efficient and selective oxidation of ammonia in aqueous solution: Characterization, performance and mechanism. J. Environ. Chem. Eng. 2023, 11, 109834. [Google Scholar] [CrossRef]
- Chen, M.; Pan, S.; Zhang, C.; Wang, C.; Zhang, W.Q.; Chen, Z.F.; Zhao, X.; Zhao, Y.X. Electrochemical oxidation of reverse osmosis concentrates using enhanced TiO2-NTA/SnO2-Sb anodes with/without PbO2 layer. Chem. Eng. J. 2020, 399, 125756. [Google Scholar] [CrossRef]
- Xu, L.; Yi, Y.; Liang, G.R.; Zhang, W. Antimony doped tin oxide nanoparticles deposited onto Nb-TiO2 nanotubes for electrochemical degradation of bio-refractory pollutions. Electroanalysis 2020, 32, 1370–1378. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.Y.; Hu, X.Y.; Li, Z.; Fan, J.; Liu, E.Z. Facile fabrication of SnO2/TiO2 nanotube arrays for efficient degradation of pollutants. Opt. Mater. 2022, 127, 112252. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, Q.; Zang, G.L.; Luo, J.T.; Liu, Q. Preparation and characterization of a novel Ni-doped TiO2 nanotube-modified inactive electrocatalytic electrode for the electrocatalytic degradation of phenol wastewater. Electrochim. Acta 2022, 405, 139758. [Google Scholar] [CrossRef]
- Wang, G.X.; Zhang, H.L.; Wang, W.Z.; Zhang, X.F.; Zuo, Y.; Tang, Y.M.; Zhao, X.H. Fabrication of Fe-TiO2-NTs/SnO2-Sb-Ce electrode for electrochemical degradation of aniline. Sep. Purif. Technol. 2021, 268, 118591. [Google Scholar] [CrossRef]
- Shi, C.C.; Yu, S.Y.; Li, C.J. Fabrication of Aligned Carbon Nanofiber Doped with SnO2-Sb for Efficient Electrochemical Removal of Tetracycline. Chem. Eng. J. 2022, 441, 136052. [Google Scholar] [CrossRef]
- Hu, F.P.; Dong, Z.; Cui, X.W.; Chen, W.X. Improved SnO2-Sb2O4 based anode modified with Cr3C2 and CNT for phenol oxidation. Electrochim. Acta 2011, 56, 1576–1580. [Google Scholar] [CrossRef]
- Bi, Q.; Guan, W.Z.; Gao, Y.; Cui, Y.R.; Ma, S.; Xue, J. Study of the mechanisms underlying the effects of composite intermediate layers on the performance of Ti/SnO2-Sb-La electrodes. Electrochim. Acta 2019, 306, 667–679. [Google Scholar] [CrossRef]
- Wai, T.P.; Yin, Y.L.; Zhang, X.; Li, Z.H. Preparation of Ti/SnO2-Sb/Rare Earth Electrodes Containing Different Contents of Ni Intermediate Layer for Efficient Electrochemical Decolorization of Rhodamine B. J. Chem. 2021, 2021, 2672674. [Google Scholar] [CrossRef]
- Wai, T.P.; Yin, Y.L.; Zhang, X.; Li, Z.H. Preparation and Characterization of Rare Earth-Doped Ti/SnO2-Sb-Mn Electrodes for the Electrocatalytic Performance. J. Nanomater. 2020, 2020, 8958043. [Google Scholar] [CrossRef]
- Song, Y.F.; Liu, J.M.; Ge, F.; Huang, X.; Zhang, Y.; Ge, H.H.; Meng, X.J.; Zhao, Y.Z. Influence of Nd-doping on the degradation performance of Ti/Sb-SnO2 electrode. J. Environ. Chem. Eng. 2021, 9, 105409. [Google Scholar] [CrossRef]
- Guo, D.; Guo, Y.B.; Huang, Y.X.; Chen, Y.Y.; Dong, X.C.; Chen, H.; Li, S.P. Preparation and electrochemical treatment application of Ti/Sb-SnO2-Eu&rGO electrode in the degradation of clothianidin wastewater. Chemosphere 2021, 265, 129126. [Google Scholar] [CrossRef]
- Liu, J.F. Investigation on preparation and electrocatalytic characteristics of Ti-base SnO2 electrode with nano-coating. Mater. Sci. Technol. 2006, 14, 200–203. [Google Scholar] [CrossRef]
- Yang, L.S.; Zhang, Z.H.; Liu, J.F.; Huang, L.L.; Jia, L.; Feng, Y.J. Influence of Gd doping on the structure and electrocatalytic performance of TiO2 nanotube/SnO2-Sb nano-coated electrode. ChemElectroChem 2018, 5, 3451–3459. [Google Scholar] [CrossRef]
- Feng, Y.J.; Cui, Y.H.; Wang, J.J. Preparation and characterization of the Dy doped Ti-based SnO2/Sn electro-catalysis electrode. Chin. J. Inorg. Chem. 2005, 21, 836–841. [Google Scholar]
- Liu, J.F. Investigation on Preparation and Performance of Ti-Base tin Dioxide Nanocoating Electrode Doped by Antimony. Ph.D. Thesis, University of Harbin Institute of Technology, Harbin, China, 2008. [Google Scholar]
- Cui, Y.H.; Feng, Y.J.; Liu, Z.Q. EPR study on Sb doped Ti-base SnO2 electrodes. J. Mater. Sci. 2005, 40, 4695–4697. [Google Scholar] [CrossRef]
- Johnson, S.K.; Houk, L.L.; Feng, J.R.; Houk, R.S.; Johnson, D.C. Electrochemical incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry. Environ. Sci. Technol. 1999, 33, 2638–2644. [Google Scholar] [CrossRef]
Electrode Samples | Phenol | TOC | ||
---|---|---|---|---|
k (min−1) | R2 | k (min−1) | R2 | |
TNTs/SnO2-Sb | 0.020 | 0.9995 | 0.009 | 0.9986 |
TNTs/SnO2-Sb-Nd | 0.029 | 0.9995 | 0.011 | 0.9994 |
TNTs/SnO2-Sb-Gd | 0.032 | 0.9996 | 0.015 | 0.9997 |
Electrode Samples | Lattice Parameters | Average Grain (nm) | Ionic Radius (nm) | |
---|---|---|---|---|
a = b | c | |||
TNTs/SnO2-Sb | 4.717 | 3.154 | 16 ± 0.4 | Sn = 0.071 |
TNTs/SnO2-Sb-Nd | 4.724 | 3.169 | 10 ± 0.2 | Nd = 0.098 |
TNTs/SnO2-Sb-Gd | 4.747 | 3.175 | 9.5 ± 0.3 | Gd = 0.094 |
Sample | Rs (Ω) | Ch (F) | Rh (Ω) | Ct (F) | Rt (Ω) | Rs (Ω) |
---|---|---|---|---|---|---|
TNTs/SnO2-Sb | 4.72 | 5.8 × 10−8 | 43.5 | 2.14 × 10−5 | 65 | 4.72 |
TNTs /SnO2-Sb-Nd | 4.70 | 7.8 × 10−8 | 37.7 | 2.53 × 10−5 | 46 | 4.70 |
TNTs /SnO2-Sb-Gd | 4.68 | 8.1 × 10−8 | 34.5 | 2.67 × 10−5 | 38 | 4.68 |
Electrode Samples | Binding Energies of Sn3d5/2 | Atom Ratio of Oads (%) 1 |
---|---|---|
TNTs/SnO2-Sb | 486.63 | 21.5 |
TNTs/SnO2-Sb-Nd | 486.22 | 35.0 |
TNTs/SnO2-Sb-Gd | 486.18 | 37.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Guo, Y. Effects of Rare Earth Doping on Structural and Electrocatalytic Properties of Nanostructured TiO2 Nanotubes/SnO2-Sb Electrode for Electrochemical Treatment of Industrial Wastewater. Separations 2023, 10, 560. https://doi.org/10.3390/separations10110560
Yang L, Guo Y. Effects of Rare Earth Doping on Structural and Electrocatalytic Properties of Nanostructured TiO2 Nanotubes/SnO2-Sb Electrode for Electrochemical Treatment of Industrial Wastewater. Separations. 2023; 10(11):560. https://doi.org/10.3390/separations10110560
Chicago/Turabian StyleYang, Lisha, and Yanming Guo. 2023. "Effects of Rare Earth Doping on Structural and Electrocatalytic Properties of Nanostructured TiO2 Nanotubes/SnO2-Sb Electrode for Electrochemical Treatment of Industrial Wastewater" Separations 10, no. 11: 560. https://doi.org/10.3390/separations10110560
APA StyleYang, L., & Guo, Y. (2023). Effects of Rare Earth Doping on Structural and Electrocatalytic Properties of Nanostructured TiO2 Nanotubes/SnO2-Sb Electrode for Electrochemical Treatment of Industrial Wastewater. Separations, 10(11), 560. https://doi.org/10.3390/separations10110560