A Study on the Removal Characteristics and Mechanism of Phosphorus from Simulated Wastewater Using a Novel Modified Red-Mud-Based Adsorption Material
Abstract
:1. Introduction
2. Experiment
2.1. Minerals and Reagents
2.2. Mechanism Analysis Methods
2.3. Analysis of P Concentration
2.4. Preparation of the NMRM
2.5. Adsorption Experiments
3. Results and Discussion
3.1. Characterization of the NMRM
3.2. Adsorption Performance of the NMRM for P
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Adsorption Thermodynamics
3.6. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyu, F.; Niu, S.; Wang, L.; Liu, R.; Sun, W.; He, D. Efficient removal of Pb(II) ions from aqueous solution by modified red mud. J. Hazard. Mater. 2021, 406, 124678. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Hu, Y.; Wang, L.; Sun, W. Dealkalization processes of bauxite residue: A comprehensive review. J. Hazard. Mater. 2021, 403, 123671. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Gao, J.; Sun, N.; Liu, R.; Sun, X.; Cao, X.; Wang, L.; Sun, W. Utilisation of propyl gallate as a novel selective collector for diaspore flotation. Miner. Eng. 2019, 131, 66–72. [Google Scholar] [CrossRef]
- Rai, S.; Nimje, M.T.; Chaddha, M.J.; Modak, S.; Rao, K.R.; Agnihotri, A. Recovery of iron from bauxite residue using advanced separation techniques. Miner. Eng. 2019, 134, 222–231. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Li, W.; Yu, Y.; Yan, K. Environmental assessment, management and utilization of red mud in China. J. Clean. Prod. 2014, 84, 606–610. [Google Scholar] [CrossRef]
- Lyu, F.; Sun, N.; Sun, W.; Khoso, S.A.; Tang, H.-h.; Wang, L. Preliminary assessment of revegetation potential through ryegrass growing on bauxite residue. J. Cent. South Univ. 2019, 26, 404–409. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Cao, Y.; Li, W.; Wang, Y.; Xu, J.; Xu, G. Molecular evidence for better efficacy of hypocrellin A and oleanolic acid combination in suppression of HCC growth. Eur. J. Pharmacol. 2019, 842, 281–290. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, Y.; Huang, L.; Hu, L.; Sun, W.; Zhong, H.; He, Z. High adsorption capacity and super selectivity for Pb(Ⅱ) by a novel adsorbent: Nano humboldtine/almandine composite prepared from natural almandine. Chemosphere 2020, 253, 126650. [Google Scholar] [CrossRef]
- Pepper, R.A.; Couperthwaite, S.J.; Millar, G.J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si. Miner. Eng. 2016, 99, 8–18. [Google Scholar] [CrossRef]
- Zhu, F.; Li, X.; Xue, S.; Hartley, W.; Wu, C.; Han, F. Natural plant colonization improves the physical condition of bauxite residue over time. Environ. Sci. Pollut. Res. 2016, 23, 22897–22905. [Google Scholar] [CrossRef]
- Dai, X.; Thi Hong Nhung, N.; Hamza, M.F.; Guo, Y.; Chen, L.; He, C.; Ning, S.; Wei, Y.; Dodbiba, G.; Fujita, T. Selective adsorption and recovery of scandium from red mud leachate by using phosphoric acid pre-treated pitaya peel biochar. Sep. Purif. Technol. 2022, 292, 121043. [Google Scholar] [CrossRef]
- Bang, K.-H.; Kang, Y.-B. Recycling red mud to develop a competitive desulfurization flux for Kanbara Reactor (KR) desulfurization process. J. Hazard. Mater. 2022, 440, 129752. [Google Scholar] [CrossRef] [PubMed]
- Habibi, H.; Mokmeli, M.; Shakibania, S.; Pirouzan, D.; Pourkarimi, Z. Separation and recovery of titanium and scandium from the red mud. Sep. Purif. Technol. 2023, 317, 123882. [Google Scholar] [CrossRef]
- Yang, D.; Shi, M.; Zhang, J.; Sasaki, A.; Endo, M. Reductive roasting of arsenic-contaminated red mud for Fe resources recovery driven by johnbaumite-based arsenic thermostabilization strategy. J. Hazard. Mater. 2023, 452, 131255. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, W.; Zhou, P.; Liu, Y.; Lei, X.; Li, B.; Ning, P. Research on red mud-limestone modified desulfurization mechanism and engineering application. Sep. Purif. Technol. 2021, 272, 118867. [Google Scholar] [CrossRef]
- Mukiza, E.; Zhang, L.; Liu, X.; Zhang, N. Utilization of red mud in road base and subgrade materials: A review. Resour. Conserv. Recycl. 2019, 141, 187–199. [Google Scholar] [CrossRef]
- Qi, L.; Sun, Z.; Tang, Q.; Wang, J.; Huang, T.; Sun, C.; Gao, F.; Tang, C.; Dong, L. Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH3. J. Hazard. Mater. 2020, 396, 122459. [Google Scholar] [CrossRef]
- Gong, Z.; Ma, J.; Wang, D.; Niu, S.; Yan, B.; Shi, Q.; Lu, C.; Crittenden, J. Insights into modified red mud for the selective catalytic reduction of NOx: Activation mechanism of targeted leaching. J. Hazard. Mater. 2020, 394, 122536. [Google Scholar] [CrossRef]
- Hm Ahmed, M.; Batalha, N.; Alothman, Z.A.; Yamauchi, Y.; Valentino Kaneti, Y.; Konarova, M. Transforming red mud into an efficient Acid-Base catalyst by hybridization with mesoporous ZSM-5 for Co-pyrolysis of biomass and plastics. Chem. Eng. J. 2022, 430, 132965. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Ding, S.; Zhang, H.; Xia, F.; Wang, J.; Zhou, M. Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. J. Clean. Prod. 2019, 207, 789–800. [Google Scholar] [CrossRef]
- Kaya-Özkiper, K.; Uzun, A.; Soyer-Uzun, S. Red mud- and metakaolin-based geopolymers for adsorption and photocatalytic degradation of methylene blue: Towards self-cleaning construction materials. J. Clean. Prod. 2021, 288, 125120. [Google Scholar] [CrossRef]
- Cusack, P.B.; Healy, M.G.; Ryan, P.C.; Burke, I.T.; O’Donoghue, L.M.T.; Ujaczki, É.; Courtney, R. Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments. J. Clean. Prod. 2018, 179, 217–224. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol. 2011, 32, 231–249. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, S.; Li, H.; Qian, J.; Lv, L.; Pan, B. Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. Water Res. 2021, 202, 117397. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, B.; Shan, C.; Yan, X.; Chen, H.; Pan, B. Occurrence and transformation of phosphonates in textile dyeing wastewater along full-scale combined treatment processes. Water Res. 2020, 184, 116173. [Google Scholar] [CrossRef]
- Sun, S.; Shan, C.; Yang, Z.; Wang, S.; Pan, B. Self-Enhanced Selective Oxidation of Phosphonate into Phosphate by Cu(II)/H2O2: Performance, Mechanism, and Validation. Environ. Sci. Technol. 2022, 56, 634–641. [Google Scholar] [CrossRef]
- Chen, C.; Ma, C.; Yang, X.; Demeestere, K.; Nikiforov, A.; Van Hulle, S.W.H. Phosphorus recovery from phosphonate-contaminated wastewater by nonthermal plasma treatment prior to adsorption on granular iron-coated sand. Chem. Eng. J. 2023, 464, 142753. [Google Scholar] [CrossRef]
- Makita, Y.; Sonoda, A.; Sugiura, Y.; Ogata, A.; Suh, C.; Lee, J.-h.; Ooi, K. Phosphorus removal from model wastewater using lanthanum hydroxide microcapsules with poly(vinyl chloride) shells. Sep. Purif. Technol. 2020, 241, 116707. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Hussain Lakho, F.; Yang, X.; Depuydt, V.; Igodt, W.; Quan Le, H.; Rousseau, D.P.L.; Van Hulle, S. Iron oxide coated sand (IOS): Scale-up analysis and full-scale application for phosphorus removal from goat farm wastewater. Sep. Purif. Technol. 2022, 284, 120213. [Google Scholar] [CrossRef]
- Wang, H.; Yu, L.-Q.; Chen, S.-N.; Liu, M.; Fan, N.-S.; Huang, B.-C.; Jin, R.-C. Coagulation enhanced high-rate contact-stabilization process for pretreatment of municipal wastewater: Simultaneous organic capture and phosphorus removal. Sep. Purif. Technol. 2022, 298, 121669. [Google Scholar] [CrossRef]
- Ha, T.-H.; Mahasti, N.N.N.; Lu, M.-C.; Huang, Y.-H. Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Sep. Purif. Technol. 2022, 303, 122192. [Google Scholar] [CrossRef]
- Khani, M.H.; Khamseh, A.G. Statistical analysis, equilibrium and dynamic study on the biosorption of strontium ions on Chlorella vulgaris. J. Radioanal. Nucl. Chem. 2023, 332, 3325–3334. [Google Scholar] [CrossRef]
- Amini, Y.; Hassanvand, A.; Ghazanfari, V.; Shadman, M.M.; Heydari, M.; Alborzi, Z.S. Optimization of liquid-liquid extraction of calcium with a serpentine microfluidic device. Int. Commun. Heat Mass Transf. 2023, 140, 106551. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Ma, X.; Ding, X.; Lai, S.; Li, X.; Liu, G.; Sun, P.; Yao, H. Self-powered wastewater purification and phosphorus recovery systems with novel self-filtering Al-air batteries. Chem. Eng. J. 2023, 460, 141570. [Google Scholar] [CrossRef]
- Rott, E.; Minke, R.; Steinmetz, H. Removal of phosphorus from phosphonate-loaded industrial wastewaters via precipitation/flocculation. J. Water Process Eng. 2017, 17, 188–196. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, W.; Zhao, S.; Cao, J. Hydrothermal oxidation-precipitation method for recovering phosphorus from dewatered sludge and the mechanisms involved. Sep. Purif. Technol. 2022, 298, 121580. [Google Scholar] [CrossRef]
- Yu, X.; Nakamura, Y.; Otsuka, M.; Omori, D.; Haruta, S. Development of a novel phosphorus recovery system using incinerated sewage sludge ash (ISSA) and phosphorus-selective adsorbent. Waste Manag. 2021, 120, 41–49. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Lee, X.; Wu, P.; Liu, F.; Zhang, X.; Li, L.; Chen, M. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci. Total Environ. 2021, 758, 143664. [Google Scholar] [CrossRef]
- Li, S.; Huang, X.; Liu, J.; Lu, L.; Peng, K.; Bhattarai, R. PVA/PEI crosslinked electrospun nanofibers with embedded La(OH)3 nanorod for selective adsorption of high flux low concentration phosphorus. J. Hazard. Mater. 2020, 384, 121457. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.; Song, H.; Liu, Y.; Wang, H.; Tian, F.; Meng, S.; Zhang, K.; Wang, N.; Mu, R.; et al. Mechanism of phosphate adsorption on superparamagnetic microparticles modified with transitional elements: Experimental observation and computational modelling. Chemosphere 2020, 258, 127327. [Google Scholar] [CrossRef]
- Xu, R.; Lyu, T.; Zhang, M.; Cooper, M.; Pan, G. Molecular-level investigations of effective biogenic phosphorus adsorption by a lanthanum/aluminum-hydroxide composite. Sci. Total Environ. 2020, 725, 138424. [Google Scholar] [CrossRef] [PubMed]
- Khamseh, A.G.; Ghorbanian, S.A. Experimental and modeling investigation of thorium biosorption by orange peel in a continuous fixed-bed column. J. Radioanal. Nucl. Chem. 2018, 317, 871–879. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, D.; Ge, Y.; Koehler, S. Surface-Functionalized Porous Lignin for Fast and Efficient Lead Removal from Aqueous Solution. ACS Appl. Mater. Interfaces 2015, 7, 15000–15009. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, B.; Feng, Q.; Chen, M.; Zhang, X.; Zhao, R. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. Sci. Total Environ. 2023, 860, 160289. [Google Scholar] [CrossRef]
- Joseph, C.G.; Taufiq-Yap, Y.H.; Krishnan, V.; Li Puma, G. Application of modified red mud in environmentally-benign applications: A review paper. Environ. Eng. Res. 2020, 25, 795–806. [Google Scholar] [CrossRef]
- Dai, W.; Chang, H.; Liu, J. Method for Colorimetric Determination of Phosphorus Content in Aluminum and Iron Sample, Involves Weighing Aluminum and Iron Samples in Beaker and Adding Mixed Solution of Hydrochloric acid, Nitric Acid and Perchloric Acid. CN106841063-A, 29 December 2016. [Google Scholar]
- Nezamzadeh-Ejhieh, A.; Shirzadi, A. Enhancement of the photocatalytic activity of Ferrous Oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere 2014, 107, 136–144. [Google Scholar] [CrossRef]
- Li, W.; Liu, W.; Liu, W.; Zhou, S.; Gao, S.; Shen, Y. Capture of copper cyanide complex ions based on self-assembly of ionic liquids actuation and application to cyanide wastewater. Hydrometallurgy 2023, 218, 106043. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, Q.; He, Q.; Song, J.; Zhang, S.; Wang, H.; Zhou, J.; Zhang, H. A facile synthesis of core-shell/bead-like poly (vinyl alcohol)/alginate@PAM with good adsorption capacity, high adaptability and stability towards Cu(Ⅱ) removal. Chem. Eng. J. 2018, 351, 462–472. [Google Scholar] [CrossRef]
- Peng, X.; Liu, W.; Liu, W.; Zhao, P.; Yu, X.; Wang, Y. Fabrication of eco-friendly adsorbent derived from serpentine tailings for the removal of organic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128761. [Google Scholar] [CrossRef]
- Razmi, B.; Ghasemi-Fasaei, R. Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for phosphorus adsorption onto natural zeolite of clinoptilolite type. Adsorpt. Sci. Technol. 2018, 36, 1470–1483. [Google Scholar] [CrossRef]
- Li, B.; Guo, J.-Z.; Liu, J.-L.; Fang, L.; Lv, J.-Q.; Lv, K. Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar. Sci. Total Environ. 2020, 714, 136897. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.-H.; Kang, J.-K.; Park, S.-J.; Lee, C.-G. Application of the anion-exchange resin as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment. Environ. Sci. Pollut. Res. 2020, 27, 41688–41701. [Google Scholar] [CrossRef] [PubMed]
Components | Al2O3 | CaO | SiO2 | Fe2O3 | TiO2 | K2O | MgO | SO3 | Na2O | ZrO2 | other |
---|---|---|---|---|---|---|---|---|---|---|---|
Content | 25.95 | 25.51 | 19.59 | 14.62 | 7.36 | 2.61 | 2.08 | 0.74 | 0.73 | 0.26 | 0.57 |
Samples | SBET (m2/g) | VTotal (cm3/g) | DAver (nm) |
---|---|---|---|
Before modification | 11.60 | 0.057 | 19.73 |
After modification | 0.52 | 0.004 | 31.32 |
qe,exp (mg/g) | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|
k1 | qe (mg/g) | R2 | k2 | qe (mg/g) | R2 | |
4.08 | 0.08 | 3.14 | 0.91 | 0.09 | 4.44 | 0.99 |
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
KL | qm (mg/g) | R2 | KF | n | R2 |
0.02 | 17.7 | 0.97 | 0.60 | 0.69 | 0.98 |
T (K) | ΔH0 (kJ/mol) | ΔS0 (J mol−1 K−1) | ΔG0 (kJ/mol) |
---|---|---|---|
298 | −70.1 | −0.23 | −2.05 |
308 | 0.24 | ||
318 | 2.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, Q.; Shen, Y.; Li, W.; Zhao, S.; Zhao, Q.; Zhang, Y. A Study on the Removal Characteristics and Mechanism of Phosphorus from Simulated Wastewater Using a Novel Modified Red-Mud-Based Adsorption Material. Separations 2023, 10, 562. https://doi.org/10.3390/separations10110562
Liu W, Zhang Q, Shen Y, Li W, Zhao S, Zhao Q, Zhang Y. A Study on the Removal Characteristics and Mechanism of Phosphorus from Simulated Wastewater Using a Novel Modified Red-Mud-Based Adsorption Material. Separations. 2023; 10(11):562. https://doi.org/10.3390/separations10110562
Chicago/Turabian StyleLiu, Wenbao, Qin Zhang, Yanbai Shen, Weichao Li, Sikai Zhao, Qiang Zhao, and Yiqun Zhang. 2023. "A Study on the Removal Characteristics and Mechanism of Phosphorus from Simulated Wastewater Using a Novel Modified Red-Mud-Based Adsorption Material" Separations 10, no. 11: 562. https://doi.org/10.3390/separations10110562
APA StyleLiu, W., Zhang, Q., Shen, Y., Li, W., Zhao, S., Zhao, Q., & Zhang, Y. (2023). A Study on the Removal Characteristics and Mechanism of Phosphorus from Simulated Wastewater Using a Novel Modified Red-Mud-Based Adsorption Material. Separations, 10(11), 562. https://doi.org/10.3390/separations10110562