
Citation: Polledri, E.; Mercadante, R.;

Fustinoni, S. Validation of a Liquid

Chromatography Coupled to Mass

Spectrometry Method for Glyphosate

and Aminomethylphosphonic Acid in

Urine for Human Biomonitoring Using

Combined Hybrid Anion-Exchange

and Hydrophilic Interaction Liquid

Chromatography. Separations 2023, 10,

576. https://doi.org/10.3390/

separations10110576

Academic Editor: Achille Cappiello

Received: 5 October 2023

Revised: 18 October 2023

Accepted: 26 October 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

separations

Article

Validation of a Liquid Chromatography Coupled to Mass
Spectrometry Method for Glyphosate and
Aminomethylphosphonic Acid in Urine for Human
Biomonitoring Using Combined Hybrid Anion-Exchange and
Hydrophilic Interaction Liquid Chromatography
Elisa Polledri 1 , Rosa Mercadante 1 and Silvia Fustinoni 1,2,*

1 EPIGET—Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community
Health, Università degli Studi di Milano, 20122 Milano, Italy; elisa.polledri@unimi.it (E.P.);
rosa.mercadante@unimi.it (R.M.)

2 Environmental and Industrial Toxicology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico,
20122 Milano, Italy

* Correspondence: silvia.fustinoni@unimi.it; Tel.: +39-0250320158

Abstract: Glyphosate-based herbicides are the most widely used pesticides in the world; however, the
toxicity of glyphosate (GlyP) toward humans, especially its carcinogenicity, is controversial. The aim
of this work was to validate a rapid assay for measuring GlyP and its metabolite aminomethylphos-
phonic acid (AMPA) in urine for human biomonitoring. The analytes were purified via solid-phase
extraction in the presence of isotopically labeled internal standards. An LC-MS/MS assay was
developed using a column with a novel hybrid stationary phase combined with anion exchange and
hydrophilic interaction liquid chromatography. Detection and quantification were performed using
negative electrospray ionization in a hybrid triple quadrupole/linear ion trap mass spectrometer.
The retention times for AMPA and GlyP were 1.44 and 7.24 min, respectively. Calibration curves
showed a linear dynamic range of up to 40 µg/L, inter- and intra-run precisions <7.5%, and accuracies
within 10% of the theoretical concentrations. The limits of quantification were 0.1 µg/L and 0.5 µg/L
for GlyP and AMPA, respectively. The matrix effect bias was controlled using internal standards.
Successful participation in external quality assurance exercises strengthens the validity of the method.
The assay was applied to the measurement of GlyP and AMPA in the urine of 9 urban residents,
26 rural residents, and 12 agricultural workers; while AMPA was mostly not quantifiable, the median
GlyP values were 0.1 and 0.34 µg/L in rural residents and workers, respectively. The assay is useful
to assess GlyP and AMPA in human urine following different exposure scenarios.

Keywords: glyphosate; aminomethylphosphonic acid; human biomonitoring; method validation; urine

1. Introduction

Glyphosate-based herbicides are wide-spectrum herbicides with no selective effect
and are the most widely used pesticides in the world [1]. These types of pesticides, which
represent more than 750 formulations, are extensively used in both intensive farming and
home gardens [2]. However, the toxicity of glyphosate (GlyP), especially its carcinogenicity,
is widely debated; in fact, GlyP has been classified as probably carcinogenic to humans by
the International Agency for Research on Cancer [3], but according to the US Environmental
Protection Agency (EPA) and the European Chemical Agency (ECHA), GlyP is not classified
as a human carcinogen [4,5]. According to the harmonized classification and labeling (CLP)
approved by the European Union, this substance is toxic to aquatic life, has long-lasting
effects, and causes serious eye damage [6]. In a recent peer review of the risk assessment
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of GlyP conducted by the European Food and Safety Agency (EFSA) based on its use as a
herbicide, no critical areas of concern for mammalian toxicology were identified [7].

In the environment, GlyP has been detected in soil and water [8]; microbial degradation
forms an aminomethylphosphonic acid (AMPA), which is also the main metabolite of
GlyP in mammals [9]. Human exposure to GlyP and AMPA can occur in occupational
settings as well as in the general environment. Professional exposure relates to agricultural
workers applying GlyP to crops and pesticide production workers. Environmental exposure
relates to the general population of individuals living in the proximity of treated fields,
ingesting contaminated foods and water, and/or using glyphosate-based herbicides in
non-professional activities, such as gardening. The biological monitoring of exposure has
been applied to assess GlyP and AMPA in urine samples. While concentrations of GlyP in
professional usage may be up to tens of µg/L, for the general population, the concentrations
are typically below 1 µg/L; for AMPA, the concentration is generally much lower [10].

Several analytical methods have been developed for measuring GlyP in human urine,
including AMPA. These include the use of enzyme-linked immunosorbent assays [11,12],
gas chromatography–mass spectrometry after derivatization [13,14], and liquid chromatog-
raphy coupled to mass spectrometry (LC-MS/MS), with different sample preparations and
chromatographic columns [15–24]. Due to its high sensitivity and specificity, LC-MS/MS is
particularly suitable for measuring low levels of chemicals in urine. However, given the
high polarity, amphoteric nature, and low molecular weight of GlyP and AMPA, chromato-
graphic separation may be critical, with very short retention times and the possibility of
peak interferences, especially when reverse-phase chromatography is applied. To overcome
this issue, alternatives have been proposed, such as sample derivatization [21], ion chro-
matography [15,20], and hydrophilic interaction liquid chromatography (HILIC). However,
some drawbacks are associated with these approaches. While sample derivatization is
time-consuming and dirties the column and the mass spectrometer, ion chromatography is
associated with signal suppression and low sensitivity, and HILIC is affected by poor peak
shape and retention time instability. Recently, novel columns with hybrid stationary phases
combined with ion exchange and hydrophilic interaction liquid chromatography have
become available. They increase the retention times of GlyP without the need for sample
derivatization and ensure good chromatographic performances and column duration [24].

The aim of this study was to validate a sensitive and specific analytical method for the
analysis of GlyP and AMPA in urine for the human biological monitoring of exposure based
on LC-MS/MS by applying a column with a novel hybrid stationary phase combining anion-
exchange and hydrophilic interaction liquid chromatography. This method was applied to
determine GlyP and AMPA in urine samples of individuals with different xposures.

2. Materials and Methods
2.1. Chemicals

Analytical standards of GlyP and AMPA (both at a purity of ≥ 99%) were purchased
from Sigma–Aldrich (Milan, Italy). For the preparation of the internal standard solution
(IS), Glyphosate-2-13C,15N and AMPA-13C,15N,D2 were purchased from Sigma–Aldrich
(98% atom 13C and 15N; Milan, Italy) and Cerilliant (99% atom 13C, 98% atom 15N, and
98% atom D; Milan, Italy), respectively. For the mobile phases, standard solutions, assay
optimization, and sample preparation, methanol (MeOH), acetonitrile (CH3CN), and formic
acid (all LC-MS/MS grade, Sigma–Aldrich, Milan, Italy) were used. Purified water was
obtained using a Milli-Q Plus ultra-pure water system (Millipore, Milford, MA, USA).

2.2. Standard, Calibration, and Quality-Control Solutions

Aqueous standard solutions containing both GlyP and AMPA at concentrations of
2500, 250, and 25 µg/L were prepared. An IS solution containing the isotopically labeled
analytes, each at a concentration of 2500 µg/L, was prepared in water. Standard and IS
solutions were stored at −20 ◦C in the dark in plastic tubes. Under these conditions, the
solutions were stable for up to 6 months.
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Calibration solutions containing the analytes, each at concentrations of 0.1, 0.5, 1.0, 2.0,
5.0, 10, 20, and 40 µg/L, and QC solutions at 1.5, 2.5, and 25 µg/L, for low-, medium-, and
high-QC, respectively, were prepared by adding suitable amounts of standard solutions
to water.

Urine samples from healthy volunteers without known exposure to GlyP were tested
for the absence of GlyP and AMPA signals; the blank samples were pooled and used as a
matrix to prepare the calibration curves.

Before starting the analytical procedure, the IS solution was added to each calibration
solution, QC solution, and unknown sample to the final concentration of 25 µg/L.

2.3. Equipment

For sample purification, a solid phase extraction cartridge (SPE, SampliQ Si-SAX,
500 mg × 3 mL, Agilent Technologies, Cernusco sul Naviglio, Italy) was used. A concentra-
tion step was performed using a dry block with nitrogen flow (Reacti-Vap Pierce, Milan,
Italy). The analyses were performed using a high-performance liquid chromatograph
(Agilent Technologies 1260, Cernusco sul Naviglio, Italy) interfaced with a hybrid triple
quadrupole/linear ion trap mass spectrometer (QTRAP 5500; Sciex, Monza, Italy) equipped
with an electrospray ionization source (ESI).

2.4. LC-MS/MS Analysis

The LC separation was performed with the column Raptor Polar X, 50 × 2.1 mm,
2.7 µm particle size (Restek, Cernusco sul Naviglio, Italy), kept at 40 ◦C using a linear
gradient obtained with the A phase, 0.5% formic acid in water, and the B phase, 0.5% formic
acid in CH3CN, flowing at 500 µL/min. The gradient was programmed as follows: 0–1 min,
65% B isocratic; 1–4 min, from 65% to 10% B; 4–9 min, 10% B isocratic; 9–10 min, from
10% to 65% B; and 10–15 min, 65% B isocratic. The mass spectrometer operated in multiple
reaction monitoring (MRM) mode, with a dwell time of 150 ms, using the ESI source in
negative ionization mode. The principal ionization source parameters were as follows: gas
1 pressure 80 psi, gas 2 pressure 60 psi, curtain gas pressure 20 psi, heater temperature
600 ◦C, and entrance potential 10 V. The two most intense MRM transitions for each native
analyte were recorded; the most intense transition was used for quantitation, and the
other for qualification (Table 1). For each isotopically labeled standard, the most intense
ion transition was recorded. Analist® software (version 1.6.3; Sciex, Monza, Italy) was
used to set up the method and the analysis batches, while MultiQuant™ software (version
3.0.8664.0; Sciex, Monza, Italy) was used for quantification.

2.5. Sample Preparation

Before analysis, samples (calibrators, QCs, and unknown samples) were purified with
SPE cartridges. The workflow was as follows: cartridge conditioning with 2 mL of methanol
followed by 2 mL of water; sample loading with 1 mL of sample; cartridge wash with 2 mL
of water, followed by 2 mL of methanol and 1 mL of 10% formic acid in methanol; and
elution with 1.5 mL of 10% formic acid in methanol. The eluate was evaporated under
a gentle stream of nitrogen, with the heating block set at 45 ◦C. The dried samples were
reconstituted with 100 µL of 0.1% formic acid in water, vigorously mixed with a vortex,
and then transferred into a plastic insert. At the end, an aliquot of 10 µL was injected in
LC-MS/MS for analysis.

2.6. Set Up of the Analytical Sequence

In the routine analysis, the calibration curve and QCs were run with every set of
unknown samples. A typical analytical sequence consisted of a calibration curve, followed
by unknown samples and three QC (low-, medium-, and high-QC) every ten unknown
samples, followed by a second calibration curve.
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Table 1. Principal LC-MS/MS parameters for analyzing GlyP and AMPA and their internal standards.
Molecular structures, MRM transitions (Q1 mass and Q3 mass) for quantifier and qualifier ions,
collision energies (CE), and chromatographic retention times are given.

Analyte Molecular Structure Description Q1 Mass (Da) Q3 Mass (Da) CE
(V)

Retention Time
(min)

Glyphosate
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2.7. Chromatographic Method
2.7.1. Analytical Column Selection and MS/MS Analysis

To define the best chromatographic separation, different columns were tested. They
were as follows: reverse phase columns Betasil C18, 150 × 2.1 mm, 5 µm particle size
(Thermo Fisher Scientific, Rodano, Italy), Betasil C8, 100 × 2.1 mm, 5 µm particle size
(Thermo Fisher Scientific, Rodano, Italy), Zorbax XDB–C8, 150 × 2.1 mm, 3.5 µm particle
size (Agilent Technologies, Cernusco sul Naviglio, Italy), and the novel Raptor Polar X,
50 × 2.1 mm, 2.7 µm particle size (Restek, Cernusco sul Naviglio, Italy), combining anion-
exchange and a hydrophilic interaction liquid chromatography. Different linear gradient
programs, as well as different organic solvents (MeOH or CH3CN), and the addition of
acid (no acid; 0.1% formic acid, or 0.5% formic acid), were tested to improve the peak
separation, peak shape, retention times, and signal-to-noise ratio. The MS/MS working
conditions, such as the ESI and ionization parameters, MRM transitions, and collision
energies, were optimized by a direct infusion of standard solutions in water (0.1 mg/L)
using a combination of manual and auto-tuning.

2.7.2. SPE Extraction and Purification

SampliQ Si-SAX cartridges were chosen based on the previous use of this station-
ary phase [16]. To optimize the extraction procedure and the recovery evaluation, low-,
medium-, and high-QC in urine (n = 5 for each level) were analyzed in two different batches.
In the optimization experiment, after the sample loading, all fractions were collected and
analyzed to test the possible leaching of analytes during the washing. The recovery was cal-
culated as the percent ratio between the chromatographic signals of a purified extract versus
the signal of GlyP and AMPA in water directly injected into the chromatographic system.
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2.8. Assay Validation
2.8.1. Calibration Curve, Limits of Detection and Quantification, Carryover, Mid-Term
Stability, Precision, Accuracy, Selectivity, and Matrix Effect

The calibration curve was prepared with one blank and eight non-zero calibration
solutions, covering the expected range of concentrations. A least-squares linear regression
analysis was applied to interpolate the data pairs, where y was the ratio between the
chromatographic peak area and the chromatographic peak area of the corresponding IS,
and x was the concentration (µg/L). For method validation, fourteen replicates of each
calibration level were analyzed.

The limit of quantification (LOQ) of the assay was calculated according to the follow-
ing expression:

LOQ = (5SEq + q)/m

where SEq is the standard error of the intercept q, and m is the slope of the linear regression.
To verify whether the obtained results met the US FDA requirements for the LOQ selection,
the precision (expressed as the coefficients of variation, %RSD) and accuracy (calculated as
the %Theoretical) were calculated at the LOQ level [25].

A sample of water was analyzed immediately after the highest point of the calibration
curve to test the carryover effect.

Mid-term stability was evaluated as the variability of the calibration curve slopes
(n = 14) over a period of six months and estimated as %RSDslope.

The intra- and inter-day precision and accuracy were determined by analyzing the
low-, medium-, and high-QC solutions three times on the same day, on eight different
days over a period of 6 months. The precision was expressed as the relative standard
deviation (%RSD). The accuracy was calculated as the percent ratio between the concen-
tration calculated from the calibration curves and the theoretical (spiked) concentrations
(%Theoretical).

For the selectivity test, two different urine samples were selected: one blank urine from
a subject with no GlyP exposure and one urine from a professionally exposed subject. These
urines were added to a mixture of 40 pesticides from different agrochemical categories
(5 insecticides, 13 herbicides, and 22 fungicides), chosen from the main pesticides used
in the area and including some pesticides not authorized by the EU but persistent in the
environment. Three replicates for each sample were prepared and analyzed.

For the matrix effect determination, urine samples from six different donors without
known exposure to pesticides were used. QC samples and calibration curves were obtained
with the procedure described in Section 2.2. The relative matrix effect (%Matrixrelative) was
determined as the inter-matrix precision value (expressed as %RSD) obtained by comparing
the QC response in water vs. the QC response in urine. Moreover, the inter-matrix slope
range (%Rslope) was calculated via the following formula [26]:

% Rslope = [(Maximumslope −Minimumslope)/Minimumslope] × 100

where Maximumslope and Minimumslope are the highest and the lowest slope values of the
calibration curves obtained from the different subjects. All calculations were performed
both with and without IS adjustment for comparison.

2.8.2. External Verification

To further verify the method, we participated in the German External Quality Assess-
ment Scheme (G-EQUAS) and certification for occupational–medical and environmental–
medical toxicological analyses in biological materials [27]. Three urine samples with
unknown concentrations of GlyP in the environmental concentration range were delivered
to our laboratory in 2022 and 2023 as part of rounds 69, 70, and 71; they were analyzed
with the method described here. To further investigate the validity of our method, another
six G-EQUAS samples, corresponding to three previous rounds, were analyzed.
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2.9. Method Application

Urine samples from 9 urban residents, 26 rural residents living near the treated crops,
and 12 agricultural workers who had mixed, loaded, and applied different pesticides,
including GlyP, on crops (mainly corn, wheat, and soy) were analyzed for GlyP and AMPA.
Spot urine samples were collected in the morning at the end of the application season
(April–May). The samples were stored at −20 ◦C until analysis. Urinary creatinine was
determined using Jaffe’s colorimetric method; the concentrations were in the acceptable
range (from 0.39 to 1.25 g/L) [28] for all samples.

3. Results and Discussion
3.1. Method Development
3.1.1. Analytical Column Selection and MS/MS Analysis

By performing tests to select the best chromatographic conditions, we noticed that
operating with reverse phase columns (both C8 and C18), the retention time of GlyP
and AMPA never exceeded 2 min, regardless of the length of the column. With such
short retention times, analytes entered the mass spectrometer ion source together with
several other non-retained small molecules and salts from the biological matrix, which
caused strong ion suppression and decreased sensitivity. The column finally adopted, the
Raptor Polar X, has a stationary phase combining ion exchange and hydrophilic interaction
chromatography in a single ligand. Figure 1 shows an example of the chromatogram of the
quantifier ions of AMPA and GlyP in a sample of an agricultural worker. The retention time
of GlyP is about 7 min, which allows for overcoming the matrix interferences described
above and enhances sensitivity.
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Figure 1. Chromatogram of the quantifier ions of AMPA and GlyP in a urine sample from an
agricultural worker (0.72 µg/L of AMPA and 1.75 µg/L of GlyP).

In Figure 2, an example of the quantifier ion chromatograms of AMPA (a) and GlyP (b)
and their internal standards in blank urine and in urine with the analytes at the LOQ are
shown; although the retention time of AMPA is still quite short (2 min), the chromatographic
signals for both AMPA and GlyP are clearly distinguishable from the noise.

Previous experiences could achieve long retention times only after a derivatization
step [21], but this required reagents that can dirty the system and a longer, and some-
times cumbersome, procedure for sample preparation. Based on these considerations,
we concluded that the proposed column is very convenient as it allowed us to reduce
sample handling and the preparation time to obtain a simple method with good sensitivity.
Indeed, this is a relevant advantage, especially considering that, in studies including the
general population, a large percentage of samples were reported as below the limit of
quantification/detection [10].

To improve the peak separation, peak shape, retention times, and signal-to-noise
ratio, different chromatographic conditions were tested. The addition of 0.5% aqueous
formic acid to both mobile phases was chosen to improve the peak shapes for both GlyP
and AMPA.
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The principal tuning parameters and chromatographic conditions are reported in
Table 1. Signals were registered in a negative ionization mode; for each chemical, the
transitions producing the most abundant ion were chosen for quantification (m/z 168→ 63
for GlyP; m/z 110 → 63 for AMPA; m/z 170 → 63 for Glyphosate-2-13C,15N; and m/z
114→ 63 for AMPA-13C,15N,D2).

3.1.2. SPE Extraction and Purification

In the optimization experiment, no signal was found in the loading fraction or during
the cartridge wash. The elution volume was finally set at 1.5 mL to allow for the complete
elution of both GlyP and AMPA without organic solvent waste.

The recovery of GlyP and AMPA from the urine following the SPE step ranged from
86% to 112%, with lower recovery of AMPA (from 86% to 95%) compared to GlyP (from
92% to 112%); the recovery of IS was similar to that of the respective analyte. Indeed, the
correction of the analyte’s signal with the IS resulted in a ratio close to 100% (94% and 93%
for GlyP and AMPA, respectively), confirming the importance of using the isotopically
labeled analogs to ensure reliable analytical performances.

3.2. Assay Validation
3.2.1. Calibration Curve, Limits of Detection and Quantification, Carryover, Mid-Term
Stability, Precision, Accuracy, Selectivity, and Matrix Effect

A summary of the validation parameters is reported in Table 2.
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Table 2. Major parameters of the assay validation, including limit of detection (LOD), limit of quantification (LOQ), matrix effect, and precision and accuracy for
quality controls.

Analyte

Calibration Curve (Concentration Range 0.1–40 µg/L) QC

n = 14 Matrix Effect
QC

Level

Day 1–8
n = 3

Overall
n = 24 Matrix Effect

LOD LOQ
%RSD at

LOQ
Level

%Theoretical
at LOQ
Level

%RSDslope

%Rslope
without

IS

%Rslope
with IS

%RSD
(Min–
Max)

%Theoretical
(Min–Max) %RSD %Theoretical %Matrixrelative

without IS
%Matrixrelative

with IS

GlyP 0.05 0.1 2.3 112 3.8 14.2 2.8
Low 0.5–7.3 93–108 4.8 105 8.2 5.6

Medium 0.1–4.7 96–106 4.2 101 6.1 5.6
High 0.1–3.2 98–101 2.2 100 6.9 5.8

AMPA 0.1 0.5 3.8 101 5.6 29.7 3.8
Low 0.4–7.2 90–108 5.7 105 9.2 6.3

Medium 0.1–6.2 97–107 4.6 104 8.2 6.8
High 0.1–4.4 97–105 3.6 101 7.5 4.6
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Good linearity was found for both analytes, with coefficients of determination (R2)
higher than 0.992. The LOQ was 0.1 µg/L for GlyP and 0.5 µg/L for AMPA. These
LOQs are in line with or better than those previously reported [10]. At the LOQ, the
precision was 2.3% for GlyP and 3.8% for AMPA, while the accuracy was 112% for GlyP
and 101% for AMPA. No carryover was found. For all analytes, the mid-term stability of
the calibration curve was good, with the %RSDslope up to 5.6%, which is within the range
of intra-day precision. The inter- and intra-run precision and accuracy of the assay met the
US FDA requirements for the validation of bioanalytical methods (precision, estimated as
%RSD < 10%; accuracy between 93 and 108% of the theoretical concentrations) [25].

In the selectivity experiment, no interference in the signal of GlyP and AMPA from
other pesticides was highlighted. In the samples of the exposed subjects, the quantification
showed good reproducibility (%RSD = 3.7%), with precision in line with those obtained for
the intra-day experiment.

For both GlyP and AMPA, a significant matrix effect was found; this was, however,
completely overcome using the IS. The variability of the QC obtained in different matrices
(%Matrixrelative) ranged from 6.1 to 9.2% without IS correction and from 4.6 to 6.8% with
IS. Other studies have confirmed the importance of using isotopically marked analogs
to minimize the matrix effect [14–16]. Finally, the %Rslope, representing the maximum
difference in the slope values obtained using matrices from different individuals, were
14.2 and 29.7% without IS for GlyP and AMPA, respectively. They were reduced to below
3.9% with IS correction. Overall, some matrix effect was observed; however, the use of
isotopically labeled IS effectively reduced it and maintained a good analytical performance.

3.2.2. External Verification

The external verification was performed only for GlyP, as it is not available for AMPA.
Participation in the G-EQUAS rounds 69, 70, and 71 was evaluated as satisfactory for both
the low and high levels. In round 69, we reported concentrations of 0.49 and 1.67 µg/L
vs. 0.45 (0.33–0.57) and 1.86 (1.44–2.28) µg/L. In round 70, we reported concentrations of
0.21 and 0.97 µg/L vs. 0.22 (0.16–0.28) and 1.03 (0.76–1.30) µg/L. In round 71, we reported
concentrations of 0.36 and 1.51 µg/L vs. 0.33 (0.24–0.42) and 1.58 (1.22–1.94) µg/L (see
Figure 3). Also, considering the G-EQUAS samples of three previous rounds, the accuracies
ranged from 90 to 110%.
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3.3. Method Application

The results of GlyP and AMPA in the urine samples of 47 volunteers are summarized
in Table 3.
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Table 3. Results of GlyP and AMPA in urine samples of urban residents, rural residents, and
agricultural workers.

Analyte
Urban

Residents
Rural

Residents
Agricultural

Workers

N = 9 N = 26 N = 12

GlyP (µg/L)

N◦ samples
>LOQ (%) 0 15 (58%) 11 (92%)

Mean <0.1 0.13 0.42

Standard deviation - 0.09 0.45

Median <0.1 0.1 0.34

Min–Max - <0.1–0.38 <0.1–1.75

AMPA (µg/L)

N◦ samples
>LOQ (%) 0 0 2 (17%)

Mean <0.5 <0.5 < 0.5

Standard deviation - - 0.15

Median <0.5 <0.5 < 0.5

Min–Max - - <0.5–0.72

In the urban residents, GlyP and AMPA were always below the limit of quantification.
In the rural residents, GlyP was above the LOQ in 58% of the samples, with a mean level of
0.13 µg/L, while AMPA was never detected. In the agricultural workers, GlyP was detected
in almost all samples (92%), with a mean level of 0.42 µg/L and a maximum of 1.75 µg/L,
while AMPA was detected in only two samples (0.50 and 0.72 µg/L). In Figure 4, the box
plot distributions of GlyP in the three groups are reported. The median levels follow the
order of agricultural workers > rural residents > urban residents (p < 0.001). The levels of
GlyP and AMPA detected in these samples are in line with those previously reported for
both the exposed and the non-occupationally exposed subjects [10,13,29–31].
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4. Conclusions

An LC-MS/MS method for determining GlyP and its main metabolite AMPA in human
urine was validated in-house, according to international guidelines, and participating in
an external verification exercise. Good linearity, precision, and accuracy were obtained.
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Isotopically labeled internal standards play an essential role in controlling the sources of
bias. The high sensitivity of the method allows for the quantification of GlyP and AMPA in
the urine samples of both individuals with occupational exposure and those belonging to
the general population.
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