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Abstract: Livestock and poultry farming, as a crucial component of agricultural production, poses
a substantial threat to the ecological environment due to the discharge of wastewater. In recent
years, researchers have proposed various resource treatment technologies for livestock and poultry
breeding wastewater. However, a comprehensive discussion regarding the limitations and avenues for
optimizing resource utilization technologies for livestock and poultry farming wastewater treatment
is notably absent in existing literature. This paper takes swine wastewater as an illustrative case
and undertakes a review of the advantages, disadvantages, and optimization directions of resource
treatment technologies, including physical and chemical technology, microbial metabolism, microbial
electrochemistry, constructed wetlands, and microalgae-based techniques. Based on mass balance,
the recovery rates of various treatment technologies are estimated, and it was found that microbial
electrochemistry and constructed wetland techniques may become the mainstream for resource
utilization in the future. Furthermore, this paper emphasizes that in addition to resource efficiency,
the optimization of resource utilization technologies for swine wastewater should also focus on
the following aspects: (1) striking a balance between environmental impact and economic benefits;
(2) reducing the cost of resource and energy utilization; and (3) safeguarding environmental and
ecological security.

Keywords: wastewater treatment; swine wastewater; resource utilization; energy utilization

1. Introduction

The livestock and poultry breeding industry is currently experiencing rapid growth
due to the increasing demand for meat consumption. However, as the scale of livestock
and poultry farming continues to expand, it generates a substantial volume of waste and
pollutants, particularly in the form of breeding wastewater. This environmental issue poses
a significant threat to the ecological landscape [1]. Swine wastewater (mainly including
swine manure water, swine washing wastewater, etc.) is the primary contributor to pollu-
tion in the livestock and poultry breeding industry, accounting for a significant portion of
the total wastewater discharge, particularly in China, where swine wastewater discharged
from pig breeding makes up a staggering 76.8% of all livestock and poultry wastewater [2].
Therefore, it is crucial for environmental protection and ecological governance to treat
swine wastewater in a rational and efficient manner.

Currently, many nations have implemented policies to encourage the treatment and
resource recycling of swine wastewater [3]. Researchers also primarily focused on two per-
spectives in studying the resource utilization of swine wastewater. On one hand, from
the perspective of resource recycling, researchers primarily employ physical, chemical,
and other methods to recover carbon, nitrogen, phosphorus, and other essential nutrients
from swine wastewater [4–8]. These reclaimed nutrients can be used as long-lasting and
slow-release fertilizers to provide vital nourishment for crops [9]. On the other hand,
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from the perspective of energy generation, researchers employ various methods, such as
thermochemical conversion and anaerobic fermentation, to produce methane, hydrogen,
ethanol, and other energy substances [10]. It is noteworthy that different resource and
energy treatment methods result in different resource and energy efficiencies [11]. Within
the context of resource and energy scarcity, recycling from swine wastewater emerges as a
promising avenue for the sustainable development of human society [12].

In particular, swine wastewater treatment technology can be broadly categorized into
three main types: physical technology, chemical technology, and biotechnology [2,13,14].
Physical and chemical techniques are effective in removing contaminants and recovering
nutrients from swine wastewater [15]. For instance, the ammonium magnesium phosphate
crystallization method can recover over 92% of the phosphorus in swine wastewater.
Nevertheless, the construction and operational costs of physical and chemical technologies
often tend to be relatively high. Moreover, these methods may inadvertently lead to
secondary pollution of the environment. In contrast, biological treatment technology
offers the benefits of cost-effectiveness, sustainability, and high resource recycling efficiency,
making it a more promising choice [14]. However, the practical implementation of biological
treatment technology for swine wastewater primarily remains limited to laboratory-scale
research and lacks industrial-scale applications [2]. These limitations significantly hinder
the development of biotechnology in the resource recycling of swine wastewater.

This paper focuses on reviewing the swine wastewater treatment technologies that
have gained prominence in recent years. It provides a comprehensive overview of the
research status, pollutant removal efficiency, resource utilization, and energy efficiency
associated with various technologies, including the ammonium magnesium phosphate
crystallization method, anaerobic fermentation, constructed wetlands, electrochemistry, and
other innovative technologies. Via a review of the advantages, disadvantages, and existing
optimization measures of various resource utilization technologies, we have identified
potential areas for future optimization and improvement in these technologies. Different
from the percentage-based representation of the resource recovery rate used in the existing
literature, this paper uses mass balance to make a more intuitive comparison of the effect
of resource recovery. This paper also aims to furnish valuable insights for researchers and
engineers engaged in the study and enhancement of swine wastewater treatment processes.

2. Research Status of Wastewater Treatment in Swine Wastewater

Currently, the prevailing treatment technologies for swine wastewater primarily in-
clude physical methods such as physical adsorption and electrodialysis, as well as chemical
methods like flocculation and ammonium magnesium phosphate crystallization technology.
While these technologies have shown some effectiveness in treating swine wastewater, they
still face challenges due to limited removal performance and high maintenance costs. In con-
trast, biological treatment technologies, including anaerobic fermentation and constructed
wetlands, are gaining increasing attention from researchers due to their cost-effectiveness
and sustainability. A cluster analysis using the keyword “swine wastewater” affirmed that
the most significant cluster in the literature on swine wastewater treatment revolves around
the “microbial community”. This indicates that research on swine wastewater treatment
mainly focuses on topics like “microbial community”. In addition, the clustering of the
keyword “denitrification” is also prominent, indicating that nitrogen is a key element for
the efficient treatment of swine wastewater. On the one hand, swine wastewater treated
via anaerobic fermentation technology cannot be directly discharged since there are still
residual nitrogen elements in the effluent. On the other hand, the denitrification efficiency
of constructed wetlands is limited due to the lack of a carbon source for denitrification.
These phenomena confirm that the removal of nitrogen elements is a key constraint for the
efficient treatment of swine wastewater. Furthermore, it highlights that biological treatment
technology is the leading direction in contemporary swine wastewater treatment research.
In Figure 1a, the contribution network comprises 223 nodes and 388 connecting lines, with
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a modularity value of Q = 0.5848 and a weighted mean silhouette score of S = 0.8708,
suggesting that the clustering results are reasonably well defined.
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A timeline analysis revealed that “swine wastewater” and “livestock wastewater”
gradually emerged as the dominant clusters in the literature related to swine wastewater
resource treatment after the year 2020 (Figure 1b). This development can be attributed to the
implementation of policies by several countries to promote the resource treatment of swine
wastewater. Consequently, biological treatment technology for swine wastewater resource
management holds promising prospects. Nevertheless, it is essential to note that research
on biological treatment technology remains confined to laboratory-scale experiments, and
the lack of large-scale practical application hinders the advancement of research in this field.

3. Physical and Chemical Technology Treating Swine Wastewater
3.1. Optimization of Materials for Enhancing Physical Adsorption Technology

Physical adsorption has gained significant recognition due to its inherent advantages,
such as simplicity and high efficiency (Figure 2) [16,17]. The mechanism behind phosphate
adsorption mainly involves surface precipitation, ligand exchange, and electrostatic attrac-
tion [18]. Currently, active carbon, zeolite, nanoparticles, and resins are extensively utilized
in physical adsorption technology [19]. In recent years, there has been a concerted research
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focus on discovering more efficient adsorbent materials to enhance the resource recovery
efficiency of nitrogen and phosphorus from swine wastewater.
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Biochar has gained widespread use as an adsorbent for phosphate owing to its sub-
stantial surface area and numerous porous structures [19]. Studies have indicated that the
swine manure of wastewater can be thermally decomposed, generating not only energy but
also sustainable biochar [20]. The incorporation of metal nanoparticles, such as Ca, Mg, and
Fe, into biochar can significantly enhance its adsorption capabilities [21,22]. For instance,
biochar modified with nano zero-valent iron (nZVI) achieved a remarkable phosphate
adsorption rate of 68.0–83.7% within the first 60 min [23]. Elements such as Ca, Fe, Mg, Si,
Mn, and K not only enhanced the adsorption capacity for nitrogen and phosphorus but
also contributed beneficial nutrients and metal ions for crops. These phosphorus-enriched
biochars can be applied in soil as long-lasting and slow-release fertilizers to promote crop
growth [24]. However, although these studies have demonstrated the effectiveness of
physical adsorption technology in recovering phosphorus from swine wastewater, it is
essential to consider the associated operating and maintenance costs. In addition, the range
of applicable phosphorus concentrations for physical adsorption technology is limited [25].
The mass balance results also indicate that the resource recovery rate of the physical adsorp-
tion technology is only 0.48–54.0 mg/L/d [26]. Therefore, physical adsorption technology
is generally considered suitable as a terminal method for treating swine wastewater.

3.2. Minimum Costs for the Large-Scale Application of Chemical Treatment Technology

Currently, the magnesium ammonium phosphate crystallization (MAP) method stands
as the most extensively employed chemical technology in the field of swine wastewater
resource treatment, serving as the final stage of swine wastewater treatment (Figure 2) [27].
The MAP method primarily utilizes NH4

+ and PO4
3+ in wastewater to combine with Mg2+

to form magnesium ammonium phosphate precipitation, thereby facilitating the recovery
of nitrogen and phosphorus from swine wastewater [28]. It is noteworthy that studies have
indicated the remarkable efficiency of the MAP method capable of recovering over 98% of
phosphorus from wastewater [29]. Furthermore, the magnesium ammonium phosphate
crystals obtained during this process can be employed as slow-release and long-lasting
fertilizers, providing essential nutrients for plant growth [30].

Nevertheless, the efficiency of the MAP method is influenced by various factors, with
pH and molar ratio of NH4

+/Mg2+/PO4
3− being pivotal in determining MAP formation

efficiency [31]. Studies have demonstrated that phosphorus removal efficiency can reach up
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to 97% under specific conditions, such as a Mg/P molar ratio of 1.4 and a pH of 9.5 [32]. Li
et al. [31] also observed that the total phosphorus removal rate reached an impressive 99.99%
under conditions with a pH of 4 and a Mg:N:P ratio of 1.2:1.1:1. Moreover, optimizing
the efficiency of crystallization sedimentation in magnesium ammonium phosphate hold
the potential to enhance nitrogen and phosphorus recovery in swine wastewater [33]. It is
noteworthy that some researchers have raised concerns regarding the maintenance cost
of the ammonium magnesium phosphate crystallization method, which is considered
to be a critical factor restricting its widespread implementation [34]. Therefore, when
considering practical applications, the economic feasibility of the MAP method should be a
crucial consideration.

3.3. Optimization of Membrane Materials to Exploit the Resource Potential

Membrane contactor technology proves to be a highly effective and economically
efficient technology for ammonia recovery from swine wastewater (Figure 2) [35]. This
technology converts NH4

+ into NH3 by increasing the pH or temperature of the wastewater,
subsequently allowing it to diffuse into H2SO4 through the membrane pores. Ultimately,
NH4

+-N is reclaimed in the form of (NH4)2SO4 [36]. The membrane contactor not only
achieves an impressive NH4

+-N recovery rate of 98% but the recovered (NH4)2SO4 can
also be marketed or utilized as agricultural fertilizer [29].

Currently, numerous studies have found that highly hydrophobic membrane materials
facilitate ammonia removal and recovery within membrane contactors [37]. As reported
by Míriam C [38], the nitrogen removal rate can reach 99.99% with a recovery rate of up
to 86.88%. Moreover, it can be observed that the more hydrophobic membrane material
utilized in membrane contactor technology, the longer its stable operation duration and
the higher ammonia recovery rate [38]. Although membrane contactors hold significant
potential for nitrogen recovery, further optimization of membrane materials suitable for
treating swine wastewater is still a vital area required.

3.4. Optimization Wastewater Pretreatment Methods

Electrodialysis technology mainly utilizes an electric potential difference as the driv-
ing force, inducing ions with varying potentials to traverse selective ion exchange mem-
branes [39]. However, the quality of products recovered via electrodialysis technology
is influenced by various factors such as pretreatment methods and the composition of
electrolyte solution. Among them, current density plays a key factor in the removal of
nitrogen in electrodialysis technology. Lim et al. [40] emphasized that a current density of
1.09 A/m2 yielded a noteworthy total nitrogen recovery rate of 75.0%. Additionally, the
addition of dolomite into wastewater has been shown to enhance the electrolysis perfor-
mance, resulting in an increased recovery rate of ammonia nitrogen [41]. Consequently,
optimizing pretreatment methods for wastewater and regulating the composition of elec-
trolyte solutions will be the key focus areas for future enhancements and enhancement in
electrodialysis technology.

4. Microbial Metabolism for Treating Swine Wastewater
4.1. Optimization of Resource Efficiency to Meet Emission Standards

Anaerobic fermentation refers to the biochemical degradation of organic matter under
anaerobic or anoxic conditions, harnessing the metabolic activities of anaerobic and faculta-
tive anaerobic bacteria to produce energy-rich gases such as methane and hydrogen [42].
Anaerobic fermentation consists of four stages, namely hydrolysis stage, acidogenesis stage,
acetogenesis stage, and methanogenesis stage. These stages are facilitated by microorgan-
isms with specialized functions [43]. At present, anaerobic fermentation technology has
been widely used in large-scale swine wastewater treatment owing to its numerous advan-
tages including low energy consumption, reusability of clean production, and utilization of
biological resources (Figure 3) [2].
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However, despite its extensive use, anaerobic fermentation technology still faces
practical challenges. Notably, the efficiency of methane production during anaerobic fer-
mentation is relatively low. The mass balance results indicated that the resource recovery
efficiency of anaerobic fermentation was only 47.9–95.5 mg/L/d [44].To enhance methane
production, researchers have implemented various improvements. For instance, the addi-
tion of straw to livestock and poultry manure for anaerobic fermentation has resulted in a
consistently stable methane production rate exceeding 55% [45]. Additionally, the addition
of exogenous biochar has increased the gas production rate during anaerobic fermentation
of livestock and poultry manure, thus aiding in enhancing the metabolism of methanogenic
bacteria [46]. Nonetheless, swine wastewater treated by anaerobic fermentation technology
still contains a large amount of nutrients, falling short of meeting emission standards [47].
Consequently, the primary focus of research in this field is directed toward optimizing
resource recovery while simultaneously meeting swine wastewater discharge standards.

4.2. Further Optimizing the Resource Efficiency of Anaerobic–Aerobic Coupling Technology

Anaerobic–aerobic coupling technologies can be used for nutrient recovery in the
swine wastewater resource management process (Figure 3) [48]. Among them, various
methods are applied, including internal circulating anaerobic reactor (IC) and anaerobic
migration sludge bed reactor (AMBR) [49]. By employing anaerobic–aerobic coupling
technology, NH4

+-N removal efficiencies can reach up to 99% for concentrations exceeding
200 mg/L [50].

In addition, the coupled aerobic–anoxic nitrous decomposition operation (CANDO)
is an innovative wastewater treatment technology that not only removes nitrogen from
wastewater but also harnesses energy via microbial nitrification and denitrification pro-
cesses [51]. However, the efficacy of CANDO in wastewater treatment is influenced by
several factors, with nitrite concentration in the anoxic reaction stage considered a crucial
factor affecting the production of N2O [52]. Despite the potential of anaerobic–aerobic
coupling technology to enhance the production of energy substances such as CH4 and N2O,
substantial amounts of nutrients persist in swine wastewater [53]. Consequently, exploring
ways to further improve the resource utilization efficiency of anaerobic–aerobic coupling
technology via deliberate optimization represents a valuable direction for future research.
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5. Microbial Electrochemical Technologies for Treating Swine Wastewater
5.1. Optimization Electrode Cost and Durability for Optimized Microbial Fuel Cells (MFCs)

Microbial fuel cells (MFCs) stand as an environmentally friendly technology that di-
rectly converts the chemical energy found in swine wastewater into electricity (Figure 4) [54].
MFCs have captured the attention of numerous researchers owing to their key attributes,
including access to diverse raw materials, minimal secondary pollution, and efficient re-
source recycling, making them highly valuable in the context of swine wastewater resource
utilization [55]. MFC technology offers several distinct advantages when compared to
traditional wastewater treatment methods. Firstly, MFC will significantly reduce reliance
on external energy inputs, as it can produce electricity. Secondly, the raw materials of MFC
come from a wide range of sources. Thirdly, the working principle of MFC is relatively
straightforward compared to traditional treatment technologies [56]. However, the pro-
cesses of resource recovery and contaminant removal are influenced by several factors,
such as electrode potential, pollutant concentration, HRT, and pH [57]. Studies have shown
that different HRT operating conditions can affect COD removal. For instance, the COD
removal rate at an HRT of 13d ranges from 59% to 71%, while at an HRT of 14d, the COD
removal rate falls within the range of 60–73% [58]. Moreover, in MFCs with air as the
cathode, phosphorus in swine wastewater tends to be adsorbed on the cathode surface in
the form of suspended solids, with some precipitation observed in the liquid phase on the
cathode side. The X-ray diffraction analysis revealed that the primary constituent of the
precipitate on the liquid side of the cathode is struvite [59]. Currently, researchers have
successfully achieved the resourceful treatment of swine wastewater from small-scale farms
using MFC technology. In this study, a large-scale MFC system achieved a maximum COD
removal rate of 5.0 kg COD/m3 d−1, with an energy generation efficiency of approximately
310–414 mW/m3 [60]. This confirmed the viability of MFCs technology in the large-scale
treatment of swine wastewater.
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Although MFCs showed promising results in small-scale applications, they still faced
challenges in terms of the cost of reactor materials [61]. Additionally, concerns regarding the
cost and durability of the electrodes, the enhancement of hydrogen production efficiency,
the balancing of voltage and hydrogen production efficiency, and the maximization of
economic benefits necessitate further exploration.

5.2. Optimization of Electrode Materials for Microbial Electrolytic Cells (MECs)

Microbial Electrolysis Cells (MECs) represent an emerging bio-electrochemical tech-
nology, initially discovered by Wageningen University [62] and Pennsylvania State Univer-
sity [63]. MECs harness electricity-producing microorganisms immobilized on the surface
of the anode to oxidize organic matter under an applied voltage. The process results in the
generation of electrons, which combine with protons diffusing from the cathode to produce
hydrogen, concurrently yielding energy or valuable chemicals from wastewater [64,65]. In
recent years, MECs have gained significant attention as a research hotspot due to their ad-
vantages of minimal secondary pollution, high removal rates, and low energy consumption
(Figure 4) [66]. When treating highly concentrated swine wastewater using MECs, COD
removal rates could reach 69–75% after 184 h, while the hydrogen production rate was
approximately 66–88% [55]. Additionally, research has demonstrated that the effectiveness
of the MEC-AD system, which involves a stainless-steel mesh encasing a Fe/Ni-MOF elec-
trospun film composite cathode, in efficiently treating swine wastewater and recovering
energy. The MEC-AD system achieved a COD removal of 82.92% and an alkane yield
of 213.47 mL CH4/g COD [67]. Previous researchers have confirmed that the resource
recovery rate of MEC is approximately 190–285 mg/L/d via mass balance estimation [68].
However, the abundance of microorganisms in swine wastewater can reduce the lifespan of
the proton exchange membrane in the MECs [69]. Therefore, a key focus for future research
in MEC technology lies in the identification of substances that can be used as electrodes to
enhance hydrogen recovery efficiency. Furthermore, in practical applications, the energy
conversion cost of MEC also needs to be considered. Existing research has shown that the
cost of hydrogen production via MECs needs to be reduced to below USD 0.30 per kilogram
to achieve commercial viability compared to traditional gasoline energy prices [70].

6. Microalgal-Based Technology for Treating Swine Wastewater
6.1. Selection of Microalgal Species and Optimization of Biomass Recovery Methods

Microalgae, known for their short maturation period and ease of cultivation, hold
substantial economic potential for resource utilization, particularly in the domains of
wastewater treatment and resource utilization (Figure 5) [71]. In recent years, the explo-
ration of cultivating microalgae from swine wastewater for biomass energy production
has generated considerable interest, opening up new possibilities in biomass energy pro-
duction [47]. Microalgae such as Chlorella, Chlamydomonas, Scenedesmus, S. obliquus, etc.,
have been successfully cultivated in wastewater for biodiesel production, as demonstrated
in Table 1. Existing studies have summarized the resource recovery rates of different
types of microalgae in swine wastewater based on mass balance results. The results in-
dicated that the resource recovery rates of microalgae in swine wastewater range from
0.54 to 505 mg/L/d [72]. This finding suggested that the resource recovery efficiency of
microalgae was highly dependent on the specific type of microalgae used.
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Nonetheless, several studies have reported challenges in sustaining microalgae growth
in swine wastewater, attributed to the high concentration of ammonia-nitrogen and low
light transmission [73]. To resolve this issue, researchers have successfully addressed the
problem of low light transmittance in swine wastewater by employing the ultraviolet
irradiation acclimation method. This innovative approach resulted in recovery rates of
89.5% for total nitrogen and 85.3% for total phosphorus [74]. Therefore, while the use
of swine wastewater to generate biomass energy from microalgae proves to be efficient
and environmentally sustainable, it is important to acknowledge that challenges persist,
particularly in the selection, cultivation, and harvesting of microalgae [75].

Table 1. Wastewater treatment efficiencies and biomass yield by microalgae.

Species
Biomass

Productivity
(mg L−1 d−1)

TN Removal
(%)

NH4
+-N

Removal (%)
TP

Removal (%)
COD

Removal (%) References

C. sorokiniana 23.4–408.9 60–98.6 79.1–85 64.7–96.4 36–93.7 [76–78]
C. subellipsoidea 860 75.3 – 78 – [79]

C. vulgaris 86.1–101.7 69.6–80.9 91.2 64.4–94 72.2–95.7 [80–82]
Chlamydomonas 28 62.00 – 28.00 – [83]

Chlorella 48–130 74.2–97.6 92–95 28–97.1 66.7–75 [83–85]
Diplosphaera – 54.5 – 82.5 70.7 [86]

Monoraphidium 860 65.8–76.7 – 37.8–75.2 81.5–84 [86,87]
Oleoabundans 5.1 – 37.5 26.9 – [88]
Pyrenoidosa 7.7–29.9 – 65.8–97.6 75.4–85.3 – [88,89]
S. abundans 970 81 – 65.9 77 [90]
S. obliquus 11.8 – 72.4 80.9 – [88]

S. quadricauda – 95.5 – 96.4 81.9 [91]
Scenedesmus 7.1–211 77.8 80–95 86.7–94.1 26.4–83.3 [84,92,93]

Spirulina 48.4–115 75 80 86.7 68.8 [84,94]
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Furthermore, efficiently harvesting microalgal biomass from swine wastewater poses
another major challenge. When compared to traditional methods like centrifugation and
filtration, flocculation and gravity sedimentation are more cost effective and convenient for
collecting algal biomass [95]. Similarly, various technologies for lipid extraction, such as
organic solvents, supercritical fluids, pulsed electric field-assisted methods, and subcritical
fluids, can be utilized to recover lipids from algal biomass with considerable economic
benefits [96–98]. It is important to emphasize that the harvesting and lipid extraction phases
may result in secondary pollution due to the introduction of foreign flocculants or organic
solvents [97]. Therefore, the exploration of innovative lipid extraction methods that can not
only enhance lipid recovery but also mitigate pollution stemming from lipid extraction is a
crucial area that warrants attention.

6.2. Coupling Microbial Fuel Cells Technique

With the advancement of microalgae-related research, microalgae–microbial fuel cells
(M-MFCs) have emerged as a promising solution for concurrent electricity generation and
wastewater treatment (Figure 5). They offer substantial advantages and hold the potential
to address concerns related to energy, cost, and the environment [99]. Relevant studies
have illustrated the remarkable potential of combining Chlorella vulgaris (FACHB-26) with
microbial fuel cells. This synergy has resulted in impressive removal rates, including a COD
removal rate of 93.2%, NH4

+-N removal rate of 95.9%, TN removal rate of 95.1%, PO4
3-

removal rate of 82.7%, and maximum power density of 466.9 mW/m3 [100]. Furthermore,
M-MFCs have also demonstrated their capability to enhance battery performance [101].
For example, the utilization of immobilized or suspended yeast as a biocatalyst, combined
with microalgae Spirulina on the cathode side, has yielded higher average power density
and current density in suspended yeast M-MFC when compared to immobilized yeast. The
average power density and current density are found to be 1.69 mW m−2 and 1.38 mA m−2,
respectively [102]. Based on this, microalgae-based microbial fuel cells present an envi-
ronmentally friendly and sustainable approach; however, the technology still confronts
the challenges such as high installation costs and energy consumption associated with
microalgae acquisition.

7. Constructed Wetlands for Treating Swine Wastewater
7.1. Optimization of Nitrogen Removal to Improve the Resource Treatment Effect of Constructed
Wetlands (CWs)

CWs harness the combined forces of physical, chemical, and biological processes,
utilizing substrates, plants, and microorganisms to efficiently purify swine wastewa-
ter [76,103,104]. CWs are widely adopted due to their advantages of exceptional treatment
efficiency, high shock load resistance, low investment requirement, and high ecological
and landscape value (Figure 6) [105]. Furthermore, researchers have also confirmed via the
evaluation of mass balance that the resource recovery efficiency of constructed wetlands
is approximately 168–262 mg/m2/d [106]. However, the nitrogen removal effect of CW
treatment for swine wastewater encounters limitations arising from the lack of carbon
sources. Studies have shown that the addition of microalgae in CWs can significantly
enhance denitrification, thereby improving nitrogen removal efficiency while concurrently
recovering biomass energy from available resources [107]. Therefore, integrating CWs with
other technologies or optimizing the internal configuration of CWs for swine wastewater
treatment not only enhances wastewater treatment efficiency but also bolsters both resource
utilization and treatment efficiency [108,109].
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Constructed wetland–microbial fuel cells (CW-MFCs) are an innovative green power
generation technology based on constructed wetlands and microbial fuel cells [102]. A
study investigating CW-MFCs using different plant species discovered that the CW-MFCs
employing plantain outperformed other plant species in terms of contaminant removal and
biopower generation capabilities from swine wastewater [103]. In addition, the arrange-
ment of the electrodes plays a crucial role in determining the decontamination capability
of CW-MFCs. Dohert et al. found that simultaneous upstream and downstream feeding
of CW-MFCs could reduce internal resistance and enhance electrical performance [104].
Furthermore, employing glass wool spacer as separation materials can effectively narrow
electrode spacing, leading to improved power production and pollutant treatment efficacy.
However, there is currently a lack of clear explanation regarding the potential reaction
principle underlying CW-MFC. This knowledge gap posed a challenge to the practical
application and widespread adoption of CW-MFC in mitigating external interference in
wastewater treatment.

7.2. Optimization of Microalgae-Based CWs

In recent years, the combination of algal ponds and constructed wetlands has gained
recognition as a highly effective method for treating various types of wastewater, including
that from agriculture, industry, and municipalities (Figure 6) [110]. This technique is
favored for its superior economic efficiency and the capacity to produce treated swine
wastewater that aligns with discharge standards [111]. Within the framework of algae pond
tandem constructed wetland systems, the algal pools play a pivotal role in overcoming
the limited nitrogen removal capacity typical of traditionally constructed wetlands. They
achieve this via processes such as assimilation, nitrification, denitrification, and anaerobic
ammonia oxidation [112]. However, it is essential to acknowledge that high concentrations
of NH4+-N in swine wastewater can severely limit the growth of microorganisms in algal
pools and diminish the effectiveness of resource utilization [113]. As a result, appropriate
pretreatment of swine wastewater and the careful selection of suitable microalgae are critical
aspects of this approach. These steps ensure optimal performance and the sustainable
resource recovery capabilities of algae pond tandem constructed wetland systems in the
treatment of swine wastewater.
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7.3. Choice of Duckweed or Microalgae for the Purpose of Optimizing CW Operation

Duckweed is increasingly recognized as a valuable source of protein and starch,
primarily owing to its exceptional nutrient recovery efficiency [111]. Currently, researchers
have established duckweed ponds on farms in North Carolina to utilize swine wastewater
for producing protein and starch. Under the climate conditions in North Carolina, the
protein and starch yields of duckweed in swine wastewater can reach up to 2.68 m−2 d−1

and 1.88 g m−2 d−1, respectively [114]. In addition, the integration of duckweed into
CWs has also proven to significantly enhance the removal capacity for dissolved nutrients
in swine wastewater [115]. Numerous studies have demonstrated that duckweed-CWs
outperform traditional CWs without duckweed, achieving notably higher removal rates
of TN and TP [116]. The combined duckweed and CW system for swine wastewater
treatment not only effectively eliminate high concentrations of nutrients while maintaining
the ecological balance but also provides abundant biological resources for recycling. It is
worth noting, however, that the choice of duckweed species exerts a substantial influence
on the removal efficiency and biomass in duckweed-type CWs. Therefore, the selection of
appropriate duckweed species is important when considering duckweed-type-based CW
for resource utilization.

In addition, based on the characteristics of duckweed and microalgae, which grow in
the upper layer of water bodies with the highest pollutant concentration, researchers have
developed a microalgae–duckweed-type constructed wetland (DM-CW) system [111]. This
innovative approach showed that the DM-CW system achieved an average removal rate
of 65.9% for ammonia nitrogen and 21.5% for total phosphorus over a 3-day evaluation
period [117]. Moreover, the treated swine wastewater from the DM-CW system has been
demonstrated to meet the standards required for agricultural reusability. However, it is
worth noting that certain reports indicated that the DM-CW system may exhibit a lower
pollutant removal capacity in wastewater treatment compared to systems that solely rely
on duckweed or microalgae in combination with constructed wetlands [111]. Therefore,
selecting the appropriate species of microalgae and duckweed to maximize pollutant
removal and efficiency may be the direction of optimization and improvement for the
DM-CW technology.

8. Envisioning the Future: Optimizing Resource Utilization Techniques for
Swine Wastewater

In the context of energy resources, resource utilization has become an inevitable trend
in the treatment of swine wastewater. Numerous resource utilization technologies pro-
posed by researchers can be roughly classified into five categories based on their recovery
principles, namely adsorption technology, microbial metabolism, microbial electrochemical,
microalgae reactor, and constructed wetland (Figure 7). Among them, adsorption technol-
ogy is limited by adsorbent materials, resulting in generally low resource recovery rates,
ranging from only 0.48–54.0 mg/L/d (Table 2). It is worth noting that microalgae reactors,
as a popular resource recovery technology in recent years, have significant fluctuations
in resource recovery rates (0.54–505 mg/L/d), which is highly dependent on the type of
microalgae. This drawback may greatly influence the potential for large-scale applica-
tion of microalgae reactors in the future. In comparison, microbial electrochemical and
constructed wetlands have higher and more stable resource recovery rates, ranging from
190 to 285 mg/L/d and 168 to 262 mg/m2/d, respectively, and are expected to become the
mainstream technologies for resource utilization of swine wastewater.
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Table 2. Optimization direction and efficiency of resource treatment technology for swine wastewater.

Advantage Disadvantage Optimization
Direction

Resource Recovery
Efficiency

Adsorption technology Lower cost

Recovered element
unitary;

small scope of
application

Optimized adsorption
material 0.48–54.0 mg/L/d

Microbial metabolism Recovery of energy gas Tailwater cannot be
discharged directly

Make tailwater meet
discharge standards 47.9–95.5 mg/L/d

Microbial
electrochemical

A wide range of raw
materials; High

productivity
Expensive Optimize electrode cost 190–285 mg/L/d

Microalgae reactor Make up for the lower
energy density

High environmental
load and economic cost

Reduce environmental
load and economic cost 0.54–505 mg/L/d

Constructed wetlands Treatment results are
satisfactory

The processing
mechanism remains to

be studied

Accurately evaluate the
operation efficiency of

CWs
168–262 mg/m2/d

Additionally, environmental concerns and economic costs emerged as two key factors
limiting the rapid and sustainable development of the livestock and poultry farming
industry in recent years. In the process of optimizing and developing various resource
utilization technologies, a balance needs to be achieved between environmental impact and
economics. Previous researchers have utilized response surface methodology to optimize
the resource utilization of microalgae in swine wastewater, resulting in a reduction of
48.0% in overall environmental impact and 10.2% in total economic costs during the
treatment process [47]. Additionally, the utilization of genetically engineered products in
the recycling and energy generation from swine wastewater may inadvertently result in the
discharge of these products into the natural environment via water flows, thereby posing
an unpredictable risk to the ecological integrity of the natural environment.

9. Conclusions and Implications

This study takes swine wastewater as an example to comprehensively explore the ad-
vantages, disadvantages, and optimization directions of resource recycling and utilization
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technologies. While resource utilization treatment of livestock and poultry wastewater is
theoretically feasible, there are still several issues that need to be addressed during its large-
scale implementation: (1) striking a balance between environmental impact and economic
benefits has become a key issue; (2) the challenge of reducing the cost associated with
resource and energy utilization; And (3) the challenge of averting threats to the ecological
security of the environment.
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