Chemical Profiling of Significant Antioxidant and Phytotoxic Microwave-Extracted Essential Oil from Araucaria heterophylla Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of A. heterophyllaresin and EO Microwave-Assisted Extraction (MAE)
2.2. Chemical Characterization of EOs Using GC–MS Analysis
2.3. Antioxidant Activity
2.4. Allelopathic Activity
2.5. Statistical Analysis
3. Results and discussion
3.1. MAE-EO of Araucaria heterophylla Components Characterization
3.2. Chemosystematic Significance
3.3. Antioxidant Activity
3.4. Phytotoxic Activity of MAE-EO of A. heterophylla
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aslam, M.S.; Choudhary, B.A.; Uzair, M.; Ijaz, A.S. Phytochemical and ethno-pharmacological review of the genus Araucaria–review. Trop. J. Pharm. Res. 2013, 12, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Kershaw, P.; Wagstaff, B. The southern conifer family Araucariaceae: History, status, and value for paleoenvironmental reconstruction. Annu. Rev. Ecol. Syst. 2001, 32, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, M.F.; Asaad, G.F.; Ragab, T.I.; Ahmed, R.F.; El Gendy, A.E.-N.G.; El-Rahman, A.; Sahar, S.; Elgamal, A.M.; Elshamy, A.I. Oral and topical anti-inflammatory and antipyretic potentialities of Araucaria bidiwillii shoot essential oil and its nanoemulsion in relation to chemical composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef]
- Mota, M.R.; Criddle, D.N.; Alencar, N.M.; Gomes, R.C.; Meireles, A.V.; Santi-Gadelha, T.; Gadelha, C.A.; Oliveira, C.C.; Benevides, R.G.; Cavada, B.S. Modulation of acute inflammation by a chitin-binding lectin from Araucaria angustifolia seeds via mast cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2006, 374, 1–10. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Yesilada, E. Traditional medicine and gastroprotective crude drugs. J. Ethnopharmacol. 2005, 100, 61–66. [Google Scholar] [CrossRef]
- Freitas, A.; Almeida, M.; Andrighetti-Fröhner, C.; Cardozo, F.; Barardi, C.; Farias, M.; Simões, C. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. J. Ethnopharmacol. 2009, 126, 512–517. [Google Scholar] [CrossRef]
- Elkady, W.M.; Ayoub, I.M. Chemical profiling and antiproliferative effect of essential oils of two Araucaria species cultivated in Egypt. Ind. Crops Prod. 2018, 118, 188–195. [Google Scholar] [CrossRef]
- Peralta, R.M.; Koehnlein, E.A.; Oliveira, R.F.; Correa, V.G.; Corrêa, R.C.; Bertonha, L.; Bracht, A.; Ferreira, I.C. Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. Trends Food Sci. Technol. 2016, 54, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Sattar, E.; Monem, A.R.A.; Ezzat, S.M.; El-Halawany, A.M.; Mouneir, S.M. Chemical and biological investigation of Araucaria heterophylla Salisb. Resin. Z. Für Nat. C 2009, 64, 819–823. [Google Scholar] [CrossRef]
- Michael, H.N.; Awad, H.M.; El-Sayed, N.H.; Paré, P.W. Chemical and antioxidant investigations: Norfolk pine needles (Araucaria excelsa). Pharm. Biol. 2010, 48, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.I.; Ammar, N.M.; Hassan, H.A.; Al-Rowaily, S.L.; Ragab, T.I.; El Gendy, A.E.-N.G.; Abd-ElGawad, A.M. Essential oil and its nanoemulsion of Araucaria heterophylla resin: Chemical characterization, anti-inflammatory, and antipyretic activities. Ind. Crops Prod. 2020, 148, 112272. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Goswami, P.; Verma, S.K.; Chauhan, A.; Darokar, M.P.J.I.C. Chemical composition and antibacterial activity of foliage and resin essential oils of Araucaria cunninghamii Aiton ex D. Don and Araucaria heterophylla (Salisb.) Franco from India. Ind. Crops Prod. 2014, 61, 410–416. [Google Scholar] [CrossRef]
- Brophy, J.J.; Goldsack, R.J.; Wu, M.Z.; Fookes, C.J.; Forster, P.I. The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria). Biochem. Syst. Ecol. 2000, 28, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.; Abd-ElGawad, A.; Mohamed, T.; El Gendy, A.E.N.; Abd El Aty, A.A.; Saleh, I.; Moustafa, M.F.; Hussien, T.A.; Pare, P.W.; Hegazy, M.E.F. Extraction development for antimicrobial and phytotoxic essential oils from Asteraceae species: Achillea fragrantissima, Artemisia judaica and Tanacetum sinaicum. Flavour Fragr. J. 2021, 36, 352–364. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. Flavour Fragr. J. 2010, 25, 219–312. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M. Chemical constituents, antioxidant and potential allelopathic effect of the essential oil from the aerial parts of Cullen plicata. Ind. Crops Prod. 2016, 80, 36–41. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; El-Amier, Y.A.; Bonanomi, G.; Gendy, A.E.-N.G.E.; Elgorban, A.M.; Alamery, S.F.; Elshamy, A.I. Chemical composition of Kickxia aegyptiaca essential oil and its potential antioxidant and antimicrobial activities. Plants 2022, 11, 594. [Google Scholar] [CrossRef]
- Essa, A.F.; El-Hawary, S.S.; Abd-El Gawad, A.M.; Kubacy, T.M.; AM El-Khrisy, E.E.D.; Elshamy, A.I.; Younis, I.Y. Prevalence of diterpenes in essential oil of Euphorbia mauritanica L.: Detailed chemical profile, antioxidant, cytotoxic and phytotoxic activities. Chem. Biodivers. 2021, 18, e2100238. [Google Scholar] [CrossRef]
- Saleh, I.; Abd-ElGawad, A.; El Gendy, A.E.-N.; Abd El Aty, A.; Mohamed, T.; Kassem, H.; Aldosri, F.; Elshamy, A.; Hegazy, M.-E.F. Phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus essential oils extracted using hydrodistillation and microwave-assisted techniques. Plants 2020, 9, 716. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El-Amier, Y.A.; El Gendy, A.E.N.G.; Al-Rowaily, S.L. Interspecific variation, antioxidant and allelopathic activity of the essential oil from three Launaea species growing naturally in heterogeneous habitats in Egypt. Flavour Fragr. J. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; El-Amier, Y.A.; El Gendy, A.E.-N.G.; Al-Barati, S.A.; Dar, B.A.; Al-Rowaily, S.L.; Assaeed, A.M. Chemical composition variations, allelopathic, and antioxidant activities of Symphyotrichum squamatum (Spreng.) Nesom essential oils growing in heterogeneous habitats. Arab. J. Chem. 2020, 13, 4237–4245. [Google Scholar] [CrossRef]
- Franich, R.A.; McDonald, A.G.; Steward, D. Essential oil of the wood of Araucaria cunninghamii Aiton ex D. Don. J. Essent. Oil Res. 1999, 11, 38–40. [Google Scholar] [CrossRef]
- Briggs, L.; White, G. Constituents of the essential oil of Araucaria araucana. Tetrahedron 1975, 31, 1311–1314. [Google Scholar] [CrossRef]
- Jaramillo, D.; Calva, J.; Bec, N.; Larroque, C.; Vidari, G.; Armijos, C. Chemical characterization and biological activity of the essential oil from Araucaria brasiliensis collected in Ecuador. Molecules 2022, 27, 3793. [Google Scholar] [CrossRef]
- Briggs, L.H. The essential oil of Araucaria excelsa (norfolk island pine). J. Soc. Chem. Ind. 1941, 60, 222–226. [Google Scholar] [CrossRef]
- Olawore, N.O.; Ogunwande, I.A. Analysis of the leaf oil of Araucaria cunninghamii Sweet. grown in Nigeria. J. Essent. Oil Res. 2005, 17, 459–461. [Google Scholar] [CrossRef]
- Ali, D.E.; el-Aziz, A.; Marwa, M.; Ibrahim, S.S.A.; Sheta, E.; Abdel-Sattar, E. Gastroprotective and anti-Helicobacter pylori potentials of essential oils from the oleoresins of Araucaria bidwillii and Araucaria heterophylla. Inflammopharmacology 2022, 1–19, in press. [Google Scholar] [CrossRef]
- Ali, Z.A.A. Taxonomic study of Glossostemon bruguieri Desf.(Malvaceae) in Iraq. Plant Arch. 2020, 20, 926–929. [Google Scholar]
- Frezza, C.; Venditti, A.; De Vita, D.; Toniolo, C.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; Guiso, M.; Nicoletti, M. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family—A review. Plants 2020, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Dhami, A.; Singh, A.; Palariya, D.; Kumar, R.; Prakash, O.; Rawat, D.; Pant, A. α-Pinene rich bark essential oils of Zanthoxylum armatum DC. from three different altitudes of Uttarakhand, India and their antioxidant, in vitro anti-inflammatory and antibacterial activity. J. Essent. Oil Bear. Plants 2019, 22, 660–674. [Google Scholar] [CrossRef]
- Xanthis, V.; Fitsiou, E.; Voulgaridou, G.-P.; Bogadakis, A.; Chlichlia, K.; Galanis, A.; Pappa, A. Antioxidant and cytoprotective potential of the essential oil Pistacia lentiscus var. Chia and its major components myrcene and α-pinene. Antioxidants 2021, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.; Mondin, A.; Chen, Z.; Miranda, F.M.; do Nascimento, B.B., Jr.; Schirato, G.; Pastore, P.; Froldi, G. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: Estragole, trans-anethole, β-caryophyllene and myrcene. Nat. Prod. Res. 2015, 29, 939–946. [Google Scholar] [CrossRef]
- Nogueira Sobrinho, A.C.; Morais, S.M.d.; Souza, E.B.d.; Albuquerque, M.R.J.R.; Santos, H.S.d.; Cavalcante, C.S.d.P.; Sousa, H.A.d.; Fontenelle, R.O.d.S. Antifungal and antioxidant activities of Vernonia Chalybaea Mart. ex DC. essential oil and their major constituent β-caryophyllene. Braz. Arch. Biol. Technol. 2020, 63, e20190177. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.; El Gendy, A.E.-N.; El-Amier, Y.; Gaara, A.; Omer, E.; Al-Rowaily, S.; Assaeed, A.; Al-Rashed, S.; Elshamy, A. Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale. Saudi J. Biol. Sci. 2020, 27, 1900–1906. [Google Scholar] [CrossRef]
- Pinheiro, P.F.; Costa, A.V.; Tomaz, M.A.; Rodrigues, W.N.; Fialho Silva, W.P.; Moreira Valente, V.M. Characterization of the Essential Oil of Mastic Tree from Different Biomes and its Phytotoxic Potential on Cobbler’s Pegs. J. Essent. Oil Bear. Plants 2016, 19, 972–979. [Google Scholar] [CrossRef]
- Bali, A.S.; Batish, D.R.; Singh, H.P.; Kaur, S.; Kohli, R.K. Chemical characterization and phytotoxicity of foliar volatiles and essential oil of Callistemon viminalis. J. Essent. Oil Bear. Plants 2017, 20, 535–545. [Google Scholar] [CrossRef]
- Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Burhan, A.; Erdogan, S.; Cenet, M.; KARAASLAN, M.G. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils. Chin. J. Nat. Med. 2014, 12, 901–910. [Google Scholar] [CrossRef]
- Amri, I.; Gargouri, S.; Hamrouni, L.; Hanana, M.; Fezzani, T.; Jamoussi, B. Chemical composition, phytotoxic and antifungal activities of Pinus pinea essential oil. J. Pest Sci. 2012, 85, 199–207. [Google Scholar] [CrossRef]
- Salamci, E.; Kordali, S.; Kotan, R.; Cakir, A.; Kaya, Y. Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. Biochem. Syst. Ecol. 2007, 35, 569–581. [Google Scholar] [CrossRef]
- Zhu, X.; Han, C.; Gao, T.; Shao, H. Chemical composition, phytotoxic and antimicrobial activities of the essential oil of Scutellaria strigillosa Hemsley. J. Essent. Oil Bear. Plants 2016, 19, 664–670. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Shao, H.; Zhou, S.; Mei, Y.; Cheng, Z.; Huang, L.; Lv, G. Chemical composition and phytotoxicity of essential oil from invasive plant, Ambrosia artemisiifolia L. Ecotoxicol. Environ. Saf. 2021, 211, 111879. [Google Scholar] [CrossRef] [PubMed]
- Sarić-Krsmanović, M.; Umiljendić, J.G.; Radivojević, L.; Rajković, M.; Šantrić, L.; Đurović-Pejčev, R.J.C. Chemical composition of Ambrosia trifida essential oil and phytotoxic effect on other plants. Chem. Biodivers. 2020, 17, e1900508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Shora, H.M.; El-Gawad, A.M.A.J.P. Response of Cicer arietinum to allelopathic effect of Portulaca oleracea root extract. Phyton Ann. Rei Bot. 2015, 55, 215–232. [Google Scholar]
- El-Shora, H.M.; Abd El-Gawad, A.M. Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresenius Environ. Bull. J. 2015, 24, 386–393. [Google Scholar]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef]
No | Rt a | Type | Compound Name b | KI c | KI d | Relative Concentration (%) |
---|---|---|---|---|---|---|
1 | 3.52 | H | n-Nonane | 900 | 901 | 1.62 ± 0.03 |
2 | 4.04 | MH | α-Thujene | 924 | 926 | 1.21 ± 0.02 |
3 | 4.22 | MH | α-Pinene | 932 | 933 | 62.57 ± 0.42 |
4 | 4.58 | MH | Camphene | 946 | 944 | 2.51 ± 0.05 |
5 | 5.07 | MH | β-Pinene | 974 | 972 | 6.60 ± 0.07 |
6 | 5.2 | MH | Sabinene | 975 | 976 | 2.58 ± 0.03 |
7 | 6.51 | MH | D-Limonene | 1024 | 1025 | 2.31 ± 0.02 |
8 | 7.38 | MH | γ-Terpinene | 1054 | 1054 | 0.08 ± 0.01 |
9 | 7.77 | OM | trans-Sabinene hydrate | 1065 | 1067 | 0.01 ± 0.00 |
10 | 8.61 | OM | α-Pinene oxide | 1099 | 1100 | 0.01 ± 0.00 |
11 | 9.39 | OM | α-Campholenal | 1126 | 1124 | 0.01 ± 0.00 |
12 | 9.58 | OM | Chrysanthenone | 1127 | 1129 | 0.34 ± 0.01 |
13 | 9.95 | OM | cis-Verbenol | 1137 | 1135 | 0.38 ± 0.01 |
14 | 10.10 | OM | Camphor | 1146 | 1147 | 1.24 ± 0.03 |
15 | 10.22 | OM | trans-3-Pinanone | 1162 | 1160 | 0.16 ± 0.01 |
16 | 10.65 | OM | Pinocarvone | 1164 | 1166 | 0.01 ± 0.00 |
17 | 11.36 | OM | Terpinen-4-ol | 1177 | 1175 | 0.01 ± 0.00 |
18 | 11.85 | OM | Myrtenal | 1195 | 1197 | 0.30 ± 0.01 |
19 | 12.29 | OM | Verbenone | 1205 | 1203 | 0.06 ± 0.01 |
20 | 16.33 | SH | α-Cubebene | 1351 | 1354 | 0.02 ± 0.00 |
21 | 17.05 | SH | α-Ylangene | 1375 | 1374 | 0.01 ± 0.00 |
22 | 17.27 | SH | α-Copaene | 1376 | 1379 | 2.49 ± 0.06 |
23 | 17.53 | SH | β-Bourbonene | 1387 | 1386 | 2.14 ± 0.02 |
24 | 18.68 | SH | β-Caryophyllene | 1427 | 1430 | 3.56 ± 0.05 |
25 | 19.85 | SH | α-Humulene | 1452 | 1450 | 0.80 ± 0.01 |
26 | 20.46 | SH | γ-Muurolene | 1478 | 1480 | 1.11 ± 0.02 |
27 | 20.65 | SH | Germacrene D | 1484 | 1486 | 5.88 ± 0.06 |
28 | 21.09 | SH | γ-Elemene | 1436 | 1435 | 0.04 ± 0.00 |
29 | 21.22 | SH | α-Muurolene | 1500 | 1500 | 0.32 ± 0.01 |
30 | 21.68 | SH | γ-Cadinene | 1513 | 1511 | 0.16 ± 0.01 |
31 | 21.79 | SH | δ-Cadinene | 1523 | 1522 | 0.54 ± 0.02 |
32 | 23.79 | OS | Caryophyllene oxide | 1583 | 1584 | 0.23 ± 0.01 |
33 | 42.02 | DH | Cembrene | 1938 | 1940 | 0.54 ± 0.02 |
Total identified | 99.85 | |||||
Hydrocarbons (H) | 1.62 | |||||
Monoterpenes hydrocarbons (MH) | 77.86 | |||||
Oxygenated monoterpenes (OM) | 2.53 | |||||
Sesquiterpenes hydrocarbons (SH) | 17.07 | |||||
Oxygenated Sesquiterpenes(OS) | 0.23 | |||||
Diterpene hydrocarbons (DH) | 0.54 |
No | Compound Name a | Relative Concentration (%) | ||
---|---|---|---|---|
Resin MA-EO a | Resin HD-EO b | Leaves HD-EO c | ||
1 | α-Pinene | 62.57 | 44.88 | 70.85 |
2 | β-Pinene | 6.60 | 1.79 | 1.51 |
3 | Sabinene | 2.58 | 4.44 | -- |
4 | D-Limonene | 2.31 | 4.13 | 4.26 |
5 | γ-Terpinene | 0.08 | 0.27 | 3.00 |
6 | α-Copaene | 2.49 | 4.72 | 0.20 |
7 | β-Caryophyllene | 3.56 | 7.90 | 2.93 |
8 | Germacrene D | 5.88 | 10.25 | 2.99 |
Total identified | 99.85 | 98.68 | 95.16 | |
Monoterpenes hydrocarbons (MH) | 77.86 | 61.20 | 83.01 | |
Sesquiterpenes hydrocarbons (SH) | 17.07 | 30.12 | 6.69 |
Araucaria sp. | Plant Part | Collected from | Main Components (%) | Reference |
---|---|---|---|---|
A. angustifolia | Leaves | Australia | 16-Kaurene (60.3), hibaene (29.7%), phyllocladene (20.1%) | [13] |
A. bidwillii | Leaves | Australia | Hibaene (76%), 16-kaurene (19.4), phyllocladene (12.5%) | [13] |
Shoots | Egypt | Beyerene (20.81%), α-pinene (16.21%), D-limonene (14.22%) | [3] | |
Leaves | Egypt | Beyerene (35.65%), trans-nerolidol (13.66%) α-elemene (6.09%) | [7] | |
Oleoresins | Egypt | α-Pinene (63.4%), trans-3-caren-2-ol (4.37%), nonane (5.21%) | [29] | |
A. columnaris | Leaves | Australia | 16-Kaurene (37.3), luxuriadiene (23.3%), hibaene (9.4%) | [13] |
A. cunninghamii | Leaves | Australia | 16-Kaurene (53.0%), 5,15-rosadiene (60%), hibaene (29.3%), | [13] |
Foliage | India | Beyerene (44.4%), caryophyllene oxide (17.9%), α-pinene (16.2%) | [12] | |
Resin | India | E-Caryophyllene (60.8%), caryophyllene oxide (13.4%), E-β-farnesene (4.9%) | [12] | |
Leaves | Nigeria | α-Pinene (14.8%), terpinen-4-ol (14.7%), shyobunol (8.9%) | [27] | |
softwood | Australia | Hexanal (11.5%), α-copaene (31.1%), β-farnesene (11.3%) | [23] | |
A. heterophylla | Leaves | Egypt | α-Pinene (70.85%), d-limonene (4.26%) and germacrene D (2.99%) | [7] |
Resin | Egypt | α-Pinene (44.88%), germacrene-D (10.25%), α-copaene (4.72%) | [11] | |
oleoresins | Egypt | α-Pinene (57.59%), caryophyllene (5.40%), trans-3-caren-2-ol (4.56%) | [29] | |
Leaves | Australia | α-Pinene (52.4%), phyllocladene (32.2%), β- caryophyllene (3.1%) | [13] | |
Foliage | India | 13-epi-Dolabradiene (42.7%), beyerene (22.2%), rimuene (13.7%) | [12] | |
Resin | India | α-Copaene (29.9%), germacrene D (21.4%), γ-gurjunene (9.7%) | [12] | |
A. hunsteinii | Leaves | Australia | α-Pinene (18.2%), sclarene (10.7%), 16-kaurene (5.7%) | [13] |
A. luxurians | Leaves | Australia | Luxuriadienea (65.6%), 5,15-rosadiene (19.6%) | [13] |
A. montana | Leaves | Australia | Phyllocladene (61.0%), 16-kaurene (22.8%), α -pinene (3.2%) | [13] |
A. muelleri | Leaves | Australia | Sclarene (20.1%), huxuriadienea (18.8%), C20H32 (25.1%) | [13] |
A. scopulorum | Leaves | Australia | 16-Phyllocladanol (41%), luxuriadienea (10.0%), α-copaene (6.0%) | [13] |
A. excels | Terminal branchlites | New Zealand | α-Pinene (70%), phyllocladene (19%) | [13] |
A. brasiliensis | Leaves | Ecuador | Beyerene (26.08%), kaurene (24.86%), myrcene (11.02%), α-pinene (9.99%) | [25] |
Treatment | Conc. (mg L−1) | DPPH a Scavenging (%) | IC50 b (mg L−1) | ABTS c Scavenging (%) | IC50 (mg L−1) |
---|---|---|---|---|---|
Essential oil | 6.25 | 61.13 ± 2.36 | 142.42 ± 5.49 | 63.98 ± 1.53 | 118.03 ± 3.97 |
12.5 | 42.10 ± 0.43 | 50.25 ± 0.94 | |||
25.0 | 34.60 ± 0.56 | 40.27 ± 0.96 | |||
50.0 | 23.68 ± 0.21 | 33.68 ± 1.45 | |||
100.0 | 17.53 ± 0.71 | 25.61 ± 1.55 | |||
200.0 | 16.17 ± 0.78 | 20.55 ± 1.54 | |||
Catechol | 19.95 ± 0.73 | 12.48 ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-ElGawad, A.M.; Saleh, I.; El-Razek, M.H.A.; Elkarim, A.S.A.; El-Amier, Y.A.; Mohamed, T.A.; El Gendy, A.E.-N.G.; Afifi, S.M.; Esatbeyoglu, T.; Elshamy, A.I. Chemical Profiling of Significant Antioxidant and Phytotoxic Microwave-Extracted Essential Oil from Araucaria heterophylla Resin. Separations 2023, 10, 141. https://doi.org/10.3390/separations10020141
Abd-ElGawad AM, Saleh I, El-Razek MHA, Elkarim ASA, El-Amier YA, Mohamed TA, El Gendy AE-NG, Afifi SM, Esatbeyoglu T, Elshamy AI. Chemical Profiling of Significant Antioxidant and Phytotoxic Microwave-Extracted Essential Oil from Araucaria heterophylla Resin. Separations. 2023; 10(2):141. https://doi.org/10.3390/separations10020141
Chicago/Turabian StyleAbd-ElGawad, Ahmed M., Ibrahim Saleh, Mohamed H. Abd El-Razek, Asmaa S. Abd Elkarim, Yasser A. El-Amier, Tarik A. Mohamed, Abd El-Nasser G. El Gendy, Sherif M. Afifi, Tuba Esatbeyoglu, and Abdelsamed I. Elshamy. 2023. "Chemical Profiling of Significant Antioxidant and Phytotoxic Microwave-Extracted Essential Oil from Araucaria heterophylla Resin" Separations 10, no. 2: 141. https://doi.org/10.3390/separations10020141
APA StyleAbd-ElGawad, A. M., Saleh, I., El-Razek, M. H. A., Elkarim, A. S. A., El-Amier, Y. A., Mohamed, T. A., El Gendy, A. E. -N. G., Afifi, S. M., Esatbeyoglu, T., & Elshamy, A. I. (2023). Chemical Profiling of Significant Antioxidant and Phytotoxic Microwave-Extracted Essential Oil from Araucaria heterophylla Resin. Separations, 10(2), 141. https://doi.org/10.3390/separations10020141