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Abstract: A new method of dispersive liquid-liquid microextraction (DLLME) combined with
graphite furnace atomic absorption spectrometry (GFAAS) was proposed for the determination
of ultra-trace copper. It was based on the reaction of Cu(II) with the laboratory-prepared chelating
agent 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in a HAc-NaAc buffer solu-
tion at pH 5.0 to form stable hydrophobic chelates, which were separated and enriched by DLLME
with chlorobenzene (C6H5Cl) and acetonitrile (CH3CN) as extraction and disperser solvents, respec-
tively. The sedimented phase containing the chelates was then determined with GFAAS. Various
operating variables that may be affected by the extraction process such as the pH of the solution,
the concentration of the chelating agent 5-Br-PADMA, the types and volumes of extraction and dis-
perser solvents, the extraction time, and the centrifugation time were investigated. Under optimum
conditions, the calibration curve was linear in the range from 0.02 ng/mL to 0.16 ng/mL of copper
with a correlation coefficient of r = 0.9961, and the detection limit was 0.01 ng/mL based on 3Sb. The
relative standard deviation for six replicate measurements of 0.05 ng /mL of copper was 3.9%. An
enrichment factor (EF) of 110 was obtained. The method has the advantages of low detection limit,
high sensitivity, simple operation, less consumption of organic solvents, higher enrichment factor, and
environmental friendliness and was applied to the determination of trace copper in environmental
water samples with satisfactory results.

Keywords: dispersive liquid-liquid microextraction; copper; graphite furnace atomic absorption
spectrometry; 2-(5-Bromopyridyazo)-5-dimethylaminoanline; chlorobenzene; water sample

1. Introduction

Copper, one of the essential trace elements for living organisms, plays significant roles
in various biochemical reactions, such as participating in the metabolism of proteins, lipids,
and carbohydrates and in the synthesis and degradation of nucleic acids [1,2]. A deficiency
of copper causes some diseases, such as biochemical disorders and physiological functional
disorders. However, excessive intake can be harmful, leading to vomiting, diarrhea,
irritation of the nose and throat, liver disorder, and even the production of harmful free
hydroxyl radicals that can cause cancer by destroying DNA [3,4]. Copper is a ubiquitous
trace metal and occurs in water, soil and plants. Also, copper pollution in the environment
can occur that may cause toxic effects to living organisms in natural waters or humans for
it has had numerous applications in the industry. Thus, it is clear that the determination
of trace copper is important in the fields of biological and environmental analysis. Due to
the low concentrations of this element found in the environment and the complex matrix,
the direct determination of this metal ion at trace levels is often very difficult. A highly
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sensitive analytical method combined with a preconcentration/separation approach is one
of best ways to solve these problems.

Several sensitive analytical techniques, such as fluorescence [5,6], chemiluminescence
(CL) [5], high-performance liquid chromatography (HPLC) [7], voltammetry [8,9], graphite
furnace atomic absorption spectrometry (GFAAS) [10–12], inductively coupled plasma
atomic emission spectrometry (ICP-AES) [13,14], and inductively coupled plasma mass
spectrometry (ICP-MS) [15,16], are available for the determination of copper at low levels.
GFAAS was employed here for it is an efficient technique with high sensitivity and low
cost, requiring only small volumes of samples. And also the equipment is available in
many laboratories.

The most commonly used methods for the separation and preconcentration of trace
copper are liquid-liquid extraction (LLE) [17,18], solid-phase extraction [19,20], and cloud
point extraction [21,22]. These techniques have their own advantages, but they suffer from
one or more of the following drawbacks: long analysis time, use of large toxic organic
solvents, unacceptable enrichment factors, and production of secondary wastes. To over-
come these problems, the development of liquid-phase microextraction techniques, such
as single-drop microextraction (SDME) [23,24], dispersive liquid-liquid microextraction
(DLLME) [5,10,11], solidified floating organic drop microextraction (SFODME) [25,26], and
supramolecular solvent-based microextraction (SS-ME) [27], have received much attention.
DLLME, a recently introduced liquid-phase microextraction technique, is based on the
employment of a binary solvent system containing a water-immiscible solvent with a
high-density (extractant) and a water-miscible one (disperser) to extract the analyte from
the aqueous sample solution [28,29]. In this extraction method, very large contact area
between the fine droplets of an aqueous sample and an extraction solvent is achieved, and
the corresponding fast mass transfer kinetic results in an extraction equilibrium state to
be quickly reached. DLLME has been widely used for the extraction and preconcentra-
tion of heavy metals [28]. The main advantages of DLLME are very low organic solvent
consumption, low cost, simplicity, rapidity, recovery, and high enrichment factors.

The purpose of the present study is to combine DLLME with GFAAS to develop
a new method for the determination of trace copper in water samples. The DLLME-
GFAAS combination is feasible and favorable for two reasons. First, DLLME involves
preconcentration in a small volume of solvent and GFAAS only requires a few microliters
of sample to carry out the determination. Secord, DLLME is an efficient separation and
preconcentration approach and GFAAS is a highly sensitive technique. In the developed
system, a laboratory-prepared 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-
PADMA) [30], which can react with Cu(II) to form a stable hydrophobic chelate and was
found to be a good chromogenic reagent for spectrophotometric determination of copper,
was used as the chelating agent. The structure of the copper chelate is shown in Scheme 1.
The main parameters including the type and volume of extraction and disperser solvents,
the concentration of the chelating reagent, the pH of the solution, and the extraction
time were investigated and optimized. Under optimized conditions, the detection limit
was 0.01 ng/mL for copper. The method was successfully applied to the analysis of real
environmental water samples. The method was successfully applied to trace determination
of copper in real environmental water samples and spiked samples with satisfactory results.
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2. Experimental Section
2.1. Apparatus

The measurements of Cu were performed with a PinAAcle 900 T atomic absorption
spectrophotometer (Perkin Elmer, Waltham, MA, USA) with a graphite furnace atomizer,
a Zeeman effects background correction, and an autosampler. A Lumina copper hollow
cathode lamp (Perkin Elmer, Waltham, MA, USA), operated at a current of 15 mA and a
wavelength of 324.7 nm with a spectral bandwidth of 0.7 nm, was employed as a radiation
source. THGA end capes graphite tubes (Perkin Elmer, Waltham, MA, USA) were also
used. Argon of 99.999% purity (Xi’an Tenglong Chemical Co., Ltd., Xi’an, China) was
used as a purge and protective gas. All measurements were carried out in the integrated
absorbance (peak area) mode. The optimum operating parameters for GFAAS are given in
Table 1. A PHS-3C-01 pH lab meter furnished with a combined glass electrode (Shanghai
San-Xin Instrumentation Inc., Shanghai, China) was used for pH measurements. IKA
Vortex-3 (IKA Works, Guangzhou, China) was employed for mixing the reagents during
the extraction operation. Phase separation was conducted with a TD4A centrifuge (Hunan
Kaida Scientific Instruments Co., Ltd., Changsha, China).

Table 1. Temperature program of graphite furnace for Cu determination.

Stage Temperature
(◦C)

Ramp Time
(s)

Hold Time
(s)

Argon Flow Rate
(mL/min)

Drying 110 1 30 250
Drying 130 15 30 250
Ashing 800 10 20 250

Atomization 2000 0 5 0
Cleaning 2500 1 3 250

2.2. Reagents and Solutions

Ultrapure water (≤0.055 µS/cm) obtained from a Milli-Q water purification system
(Millipore, Billerica, MA, USA) was employed to prepare all aqueous solutions. The highest
purity or at least analytical reagent grade was used throughout the experiments. All the
glass vessels used in the experiments were previously decontaminated in 10% nitric acid for
at least 24 h, and rinsed with double deionized water prior to use. Afterwards, they were
rinsed with ultrapure water at least three times before use. Stock standard solution of Cu
(1000 µg/mL) was purchased from Gubiao Testing & Certification Co., Ltd. (Beijing, China).
Working solutions at various concentrations were obtained by appropriate stepwise dilution
of the stock standard solution. The 5-Br-PADAM (laboratory-synthesized [30]) solution
(5 × 10−4 mol/L) was prepared by dissolving appropriate amounts of 5-Br-PADAM in
ethanol. A buffer solution of pH 5.0 was obtained by mixing appropriate ratios of a
0.25 mol/L NaAc and 0.25 mol/L HAc and corrected by a pH meter.

2.3. Dispersive Liquid-Liquid Microextraction Procedure

At first, 5 mL of the standard or sample solution containing copper was placed in a
10 mL screw-cap centrifuge tube. A total of 1.0 mL of pH 5.0 acetate buffer solution and
100 µL of 5.0 × 10−4 mol/L 5-Br-PADAM ethanol solution as the chelating agent were
added into the solution and shaken well. Then, 40 µL of chlorobenzene as the extraction
solvent and 500 µL of acetonitrile as the dispersive solvent were injected into the above
solution by syringe, and the mixture was shaken by using a vortex shaker (speed scale 4)
for 3 min to accelerate the formation of a cloudy solution. After that, the mixture was
centrifuged for 5 min at 3500 rpm. As a result, the dispersed fine droplets of chlorobenzene
were sedimented at the bottom of the centrifuge tube. After centrifugation, 20 µL of the
sediment phase at the bottom of the centrifuge tube was injected into the GFAAS using an
autosampler for the determination of copper.
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2.4. Preparation of Real Samples

The water samples were provided by Xi’an Hydrographic Bureau, Xi’an, Shaanxi
Province China. All water samples were filtered through a 0.45 µm membrane filter to
remove any suspended particles and then acidified with dilute nitric acid and stored in
glass bottles at 5 ◦C. It was analyzed for determination of Cu(II) according to the above
microextraction procedure.

3. Results and Discussion
3.1. Type and Volume of Extractor Solvent

It is crucial to select an appropriate extraction solvent in DLLME. The extraction
solvent has to fulfill the following requirements: high capability to extract the analytes,
higher density than water, and low solubility in water. For this purpose, different ex-
tracting solvents such as carbon tetrachloride (CCl4), 1,2-dichloroethane (C2H4Cl2), tetra-
chloroethane (C2H2Cl4), tetrachloroethene (C2Cl4), chlorobenzene (C6H5Cl), and bro-
mobenzene (C6H5Br), with respective densities of 1.590, 1.260, 1.553, 1.630, 1.280 and
1.494 g/mL, were tested as the extraction solvents for the extraction of Cu(II)-5-Br-PADAM
by the proposed method. The extractions were carried out by using 40 µL of different
extraction solvents and 500 µL of acetonitrile (CH3CN) as the disperser solvent. Three
replicate tests were carried out under the same conditions for each of these solvents.

It was found that a stable cloudy solution was formed when each of CCl4, C2H2Cl4,
C6H5Cl, and C6H5Br was employed, while an unstable cloudy solution was formed and
the sediment phase at the bottom of the centrifuge tube after centrifugation was difficult to
remove by microsyringe when each of C2H4Cl2 and C2Cl4 was used. In addition, it can
be seen in Figure 1 that the maximum absorbance was obtained by using C6H5Cl as the
extraction solvent. Therefore, C6H5Cl, with the highest extraction efficiency, was selected
as the best solvent for further experiments.
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Figure 1. Effect of extraction solvent type on the extraction efficiency of Cu(II). Extraction conditions:
5.00 mL water sample, pH = 5.0, 100 µL 5 × 10−4 mol/L 5-Br-PADMA, 500 µL CH3CN, 40 µL
extraction solvent, and 0.5 ng Cu.

The volume of extraction solvent is an essential factor that affects the extraction
efficiency in the DLLME procedure. In order to evaluate the optimal volume of extraction
solvent, the influence of the volume of C6H5Cl on the extraction efficiency of Cu(II) was
studied in the range of 20–70 µL with the same DLLME procedures. Figure 2 illustrates
the variations of the extraction efficiency versus the volume of the extraction solvent. As
can be seen, the absorbance of Cu(II) increased with the increase in C6H5Cl volume from
20 µL to 40 µL and then decreased with a further increase in C6H5Cl volume. The initial
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absorbance increase is due to the enhancement of the dissolving capacity of copper chelate.
However, when the volume of C6H5Cl is higher than 40 µL, the absorbance begins to
decrease significantly with increasing volume of C6H5Cl because of the sample dilution.
Therefore, 40 µL of C6H5Cl solution was employed for the subsequent experiments.
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Figure 2. Effect of C6H5Cl volume on the extraction efficiency of Cu(II). Extraction conditions: 5.00 mL
water sample, pH = 5.0, 100 µL 5× 10−4 mol/L 5-Br-PADMA, 500 µL CH3CN, and 0.5 ng Cu.

3.2. Effect of Disperser Solvent and Its Volume

The type of disperser solvent is another essential factor that affects the extraction
efficiency in DLLME. The dispersive solvent should be miscible with both the aqueous
phase (sample solution) and the organic phase (extraction solvent), and it can significantly
decrease the interfacial tension between water and the extracting solvent and thus make the
droplet size smaller. Therefore, methanol (CH3OH), ethanol (C2H5OH), acetone (C3H6O),
and acetonitrile (C2H3N), which possess these abilities, were examined as potential disper-
sive solvents. The influence of the abovementioned solvents on the extraction efficiency
of Cu(II) was studied using 500 µL of each solvent together with 40 µL of C6H5Cl as the
extraction solvent. As can be seen in Figure 3, the highest absorbance signal response of
Cu(II) was obtained when C2H3N was used as the disperser solvent. Hence, C2H3N was
selected as a disperser solvent for subsequent experiments.
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The effect of the volume of disperser solvent CH3CN on the extraction efficiency of
Cu(II) was also investigated in the range of 100~700 µL of CH3CN together with 40 µL of
C6H5Cl. As shown in Figure 4, the highest absorbance signal of Cu(II) was attainable using
500 µL of CH3CN. At a lower volume, CH3CN could not disperse C6H5Cl effectively and
the cloudy solution was not formed completely. Reversely, at a higher CH3CN volume,
the solubility of the copper chelate in water increased with the increase in the volume of
CH3CN. Therefore, 500 µL of acetonitrile was selected as the optimum disperser volume.
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3.3. Effect of the Amount of the Chelating Agent 5-Br-PADAM

A laboratory-synthesized [30] chelating agent 2-(5-bromo-2-pyridylazo)-5-dimethylam
inoaniline (5-Br-PADMA) was selected to form a hydrophobic chelate with Cu(II) because
5-Br-PADMA was found to be a good chromogenic reagent for spectrophotometric determi-
nation of copper,. The effect of the amount of 5-Br-PADAM on the extraction efficiency of
Cu(II) was evaluated in the range of 70–120 µL. As can be seen in Figure 5, the absorbance
of Cu(II) was increased with the increasing amount of 5-Br-PADAM up to the maximum
value at a volume of 100 µL of 5-Br-PADAM. However, a further increase in 5-Br-PADAT
volume resulted in a decrease in the analytical signal of Cu(II) due to the extraction of
excess 5-Br-PADAM, which in turn decreased the limited capacity of the organic solvent for
the quantitative extraction of the Cu(II)-5-Br-PADAM chelate. Hence, 100 µL of 5.0 × 10−4

5-Br-PADAM solution was employed for subsequent experiments.

3.4. Influence of pH of Test Solution

In the experiment, 5-Br-PADAM was chosen as the chelating agent. As shown in
Scheme 1, 5-Br-PADAM molecule contains three nitrogen atoms including two amino group
nitrogen atoms and a ring nitrogen atom, and its copper chelate also has uncoordinated
nitrogen atoms, which can combine with protons. Therefore, the pH value of the test
solution affects not only the formation but also the hydrophobicity of the Cu(II)-5-Br-
PADMA chelate and is one of the most important factors. The influence of pH on the
DLLME extraction of Cu(II) was studied in the pH range of 3.0–6.5. As shown in Figure 6,
the high absorbance of Cu(II) was observed at pH 5.0. Hence, a pH of 5.0 was employed
for the subsequent experiments.
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Figure 6. Effect of pH on the extraction efficiency of Cu(II). Extraction conditions: 5.00 mL water
sample, 100 µL 5 × 10−4 mol/L 5-Br-PADMA, 40 µL C6H5Cl, 500 µL CH3CN, and 0.5 ng Cu.

3.5. The Influence of Extraction and Centrifugation Time

Extraction time is an important parameter affecting the extraction efficiency in DLLME.
It is defined as the time interval between the beginning of shaking the mixture using
a vortex shaker after injection of the extraction and disperser solvent and the start of
centrifugation. The effect of extraction time was evaluated in the range of 1–10 min
with constant experimental conditions. The obtained results showed that the absorbance
signal of Cu(II) remained constant after the extraction time exceeded 3 min. Therefore, an
extraction time of 3 min was chosen for all measurements.

Centrifugation time was evaluated in the range of 1–10 min at a rate of 3500 rpm.
The results obtained showed that when centrifugation time was over 5 min, the complete
separation of the two immiscible phases was achieved. Therefore, a 5 min centrifugation
time at 3500 rpm was employed in all further experiments.

3.6. Effects of Interfering Ions

The GFAAS method is highly selective, but some species may interfere with the
extraction step and affect the extraction efficiency of copper. In the experiments, the
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influences of foreign ions commonly coexisting ions in natural water samples on recoveries
of copper were investigated by analyzing 5 mL of solutions containing 0.1 ng/mL of Cu(II)
and various concomitant ions according to the recommended procedure. A given species
was considered to interfere if it resulted in a ±5% variation in the absorbance signal. The
results obtained are summarized in Table 2. The above results indicated the excellent
selectivity of this method for the determination of trace copper.

Table 2. Tolerance limits of foreign ions on DLLME of Cu.

Interfering
Ions Added as

Tolerance
Ratio

(Cion/CCu)

Interfering
Ions Added as

Tolerance
Ratio

(Cion/CCu)

Na+ NaNO3 2 × 105 Fe3+ Fe(NO3)3 1 × 105

K+ KNO3 2 × 105 Al3+ Al(NO3)3 1 × 105

Mg2+ Mg(NO3)2 2 × 105 Zr(IV) Zr(IV)(NO3)4 1 × 105

Ca2+ Ca(NO3)2 2 × 105 F− KF 1 × 105

Sr2+ Sr(NO3)2 2 × 105 Mn2+ Mn(NO3)2 5 × 104

Ba2+ Ba(NO3)2 2 × 105 Bi(III) Bi(NO3)3 5 × 104

Zn2+ Zn(NO3)2 2 × 105 Hg2+ Hg(NO3)2 4 × 104

Cd2+ Cd(NO3)2 2 × 105 Mo(VI) Na2MoO4 1 × 104

Pb2+ Pb(NO3)2 2 × 105 W(VI) Na2WO4 4 × 103

Cr3+ Cr(NO3)3 2 × 105 Co2+ Co(NO3)2 4 × 103

NH4
+ NH4NO3 2 × 105 La3+ La(NO3)3 4 × 103

Cl− NaCl 2 × 105 As(III) Na3AsO3 4 × 103

SO4
2− Na2SO4 2 × 105 Sn(IV) SnCl4 1 × 103

Ni2+ Ni(NO3)2 1 × 105 Ce(IV) Ce(SO4)2 5 × 102

3.7. Analytical Figures of Merit

Under the optimized conditions, quantitative characteristics of the proposed method,
namely linear range (LR), detection limit (LOD), relative standard deviation (RSD), and
enrichment factor (EF), were evaluated. The calibration graph was linear over the range
of 0.02–0.16 ng/mL copper. The equation of the extraction calibration curve was A =
1.0457 C (ng/mL) + 0.2008, where A is the absorbance and C is the copper concentration,
and the regression coefficient was 0.9961. The detection limit, calculated as the ratio of
three times the standard deviation of the blank signal and the slope of the calibration
curve, was 0.01 ng/mL (LOD, 3σ). Additionally, the equation for the direct determination
calibration was A = 0.0095 C (mg/L) + 0.0033 with a regression coefficient of 0.9999. The
enrichment factor (EF), calculated as the slope ratio of two calibration curves with and
without preconcentration, was 110 for the 5.0 mL sample solution.

The proposed method was compared with those reported previously involving copper
preconcentration by DLLME in terms of LR, LOD, RSD, EF, sample consumption, and
instruments employed (Table 3).

As can be seen in Table 3, the proposed DLLME method has low limit of detection
(0.01 ng/mL for Cu), high enrichment factor (110 for Cu) and low sample consumption
(5.00 mL). In addition, it has short extraction procedure (3 min). These characteristics are
of key interest for the routine laboratories in the trace analysis of copper ions. Therefore,
DLLME combined with GFAAS is simple and sensitive for the extraction and determination of
trace metals.

3.8. Analysis of Real Samples

The proposed method was validated by the extraction and determination of copper in
different real water samples. For this purpose, 5 mL of each sample was preconcentrated
via DLLME method after chelating with 5-Br-PADAM. The results are shown in Table 4. As
could be seen, these results indicated the accuracy and applicability of this method to the
analysis of these samples.
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Table 3. Comparison of the proposed method with previously reported DLLME methods.

Ligand Method Extraction
Solvent

Disperser
Solvent

Sample
Consumption

Enrichment
Factor

LOD
(ng·mL−1) Ref.

HCDTC SP C2Cl4 Acetone 10 mL 92 0.3 [31]
BPDC FO-LADS CHCl3 C2H5OH 10 mL 160 0.34 [32]
PAN FAAS CCl4 C2H5OH 15 mL 60 0.06 [33]
PAN FAAS 1-Undecanol C2H5OH 10 mL 33 0.16 [34]
PAN FAAS 1-Decanol C2H5OH 10 mL 30 6.6 [35]

HBDAP FAAS CCl4 Acetone 10 mL 20 0.75 [36]
Salophen FAAS CHCl3 Acetone 10 mL 49 0.6 [37]
Ph-SEMS FAAS CCl4 Acetone 10 mL 20 0.69 [38]
NEMMP FAAS CHCl3 C3H7OH 8 mL 104 0.51 [39]

5-Br-PADAP FAAS CHCl3 Acetone 15 mL 120 1.4 [40]
1N2N FAAS CHCl3 C2H5OH 10.5 mL 70 0.95 [41]
p-SA FAAS Toluene CH3OH 10 mL - 0.12 [42]

Curcumin FAAS [bmim] [PF6] Ultrasonic bath 25 mL 135 0.19 [43]
Hematoxylin HPLL CCl4 CH3OH 10 mL 327 0.0483 [7]

SDDTC GFAAS 1,1,2,2-TCE Air 6 mL 95 0.02 [11]
SDDTC GFAAS 1,1,2,2-C2H2Cl4 CO2 5 mL 150 0.0062 [10]

- ETAAS Nitric acid CH3OH 5 g - 0.52 ng/g [44]
DEHPA ANN-BA Xylene Acetonitrile 10 mL - 0.08 [45]

TTA ICP-OES [C6mim] [Tf2N] C2H5OH 30 mL 91 0.1 [13]

5-Br-PADMA GFAAS C6H5Cl CH3CN 5 mL 110 0.01 This
work

HCDTC: (4-hydroxy-2-oxo-2H-chromen-3-yl)methyl pyrrolidine-1-carbodithioate; BPDC: 4-
benzylpiperidineditiocarbamate potassium salt; PAN: 1-(2-Pyridylazo)-2-naphthol; HBDAP: N,N′-bis-(2-hydroxy-
5-bromobenzyl)-2-hy-droxy-1,3-diiminopropane; Salophen: N,N′-bis (salycilidene)-1,2-phenylenediamine;
Ph-SEMS: 4-phenyl-3-thiosemicarbazide; NEMMP: 2-[(E)-(naphthalen-2-ylimino)methyl]phenol; 5-Br-PADAP:
2-(5-Bromo-2-pyridylazo)-5-(diethyl amino) phenol; 1N2N: 1-nitroso-2-naphthol; p-SA: p-Sulfonatocalix
(4) arene; SDDTC: Sodium diethyldithi-Ocarbamate; DEHPA: Di-2-ethylhexyl phosphoric acid; TTA: 1-(2-
thenoyl)-3,3,3-trifluoracetone; 1,1,2,2-TCE: 1,1,2,2-tet-rachloroethane; FOLADS: fiber opticlinear array detection
spectrophotometry; ANN-BA: Artificial neural networks coupled bees algorithm.

Table 4. Determination results of cobalt in environmental water samples.

Sample Added
(ng/mL)

Found **
(ng/mL) Recovery (%)

Shanshui River water a - 0.028 ± 0.005 -
0.05 0.080 ± 0.004 101.8

Jing River water b - 0.070 ± 0.004 -
0.05 0.119 ± 0.03 99.7

Jing River water c - 0.038 ± 0.005 -
0.05 0.086 ± 0.003 96.9

Wei River water d - 0.056 ± 0.004 -
0.05 0.108 ± 0.002 102.3

a Collected from the mouth of Shanshui River (Bin County, Xianyang, Shaanxi Province, China) to Jing River.
b Collected from Jing River (Jing Village, Xinbo Town, Bin County, Xianyang, Shaanxi Province, China). c Collected
from Jing River (Gaoling Distric, Xi’an, Shaanxi Province, China) to Wei River. d Collected from Wei River
(Xianyang, Shaanxi Province, China). ** Mean ± standard deviation (n = 3).

The accuracy of the method was also verified by the analysis of samples spiked with
known amounts of copper ions. The relative recoveries at the spiking level of 0.05 ng/mL
were between 96.9% and 102.3%, which indicates that the matrix of these real samples had
little effect on the microextraction efficiency.

4. Conclusions

In the present study, a new method for the determination of ultra-trace copper by
combining DLLME with GFAAS using the laboratory-synthesized reagent 5-Br-PADAM
was proposed. The combination is favorable because DLLME is simple, rapid, convenient,
and requires less organic solvent consumption, and GFAAS is not only highly sensitive but
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also suitable for the analysis of low volumes of the sedimented phase after DLLME. The
proposed method offers several advantages such as simplicity, high enrichment factor, and
much lower limit of detection over those reported methods in the literatures. Especially,
sample preparation time and consumption of toxic organic solvents are minimized in this
method without affecting the sensitivity of the method. Hence, it seems possible to extend this
method to extract the other analytes in various samples by varying the extraction conditions.
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