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Abstract: Patulin (PAT) is a mycotoxin produced in fruits, especially in apples, by diverse fungal
species that can be transferred into industrial apple juice during processing. An accurate, effective,
and selective method has been validated for the quantification of PAT in different commercial apple
juices by combining a modified µ-QuEChERS procedure with high-pressure liquid chromatography
(LC) equipped with a triple quadrupole mass spectrometer (QqQMS). This sample extraction proce-
dure reduced interference from the sugar-rich matrix, and the separation was performed using the
C18 Atlantis T3 column within 10 min. PAT was found by MS with electrospray negative ionization
(ESI−) in the mode of multiple reaction monitoring (MRM). The correlation coefficient (R2 = 0.999)
satisfied the prerequisite of linearity for PAT in the concentration range of 2–50 µg/kg. The limits
of detection (LOD) and quantification (LOQ) of PAT were 0.32 and 1.15 µg/kg, respectively, which
were compliant with the maximum levels settled in Commission Regulation (EC) No. 1881/2006.
The recoveries were within the 92–103% range, at three fortified levels of 2, 20 and 50 µg/kg, with
relative standard deviations lower than 7%. Based on analytical validation, it was confirmed that the
µ-QuEChERS/HPLC-MS/MS method is an enhanced, reliable, and quick approach for determination
of PAT in apple juice. The current approach proposes reduced sample preparation and analysis time.
In addition, it is economical, environmentally friendly, and simpler to implement in comparison to
traditional approaches.

Keywords: mycotoxin; patulin; apple juice; µ-QuEChERS; LC-MS/MS

1. Introduction

Food contamination with toxigenic molds has attracted rising attention, especially
over the past decade. Mycotoxins are secondary metabolites of fungi that are well-known to
contaminate several food products, both at pre-harvest and/or during storage [1]. Patulin
(4-hydroxy-4H-furo[3,2c]pyran-2(6H)-one, PAT) is an acetate-derived tetraketide myco-
toxin generated by numerous molds, particularly Aspergillus, Penicillium and Byssochlamys
species, in several food products (e.g., apples, apricots, grapes, peaches, pears, olives,
cereals). It is the most common mycotoxin detected in apple-derived products (e.g., cider,
compotes, fruit, juice) and other food intended for young children. Exposure to PAT is
correlated with mutagenic and carcinogenic properties in numerous animal species and
causes intestinal injuries, including epithelial cell degeneration, inflammation, ulceration,
and hemorrhage [2–5]. In addition, PAT can attack cellular DNA in bacteria and humans,
which can lead to the progression of tumors and cancer (e.g., esophageal, intestinal) [6].
The biosynthetic pathway of patulin (Figure 1) comprises of several stages as indicated by
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numerous biochemical investigations and by the identification of numerous mutants that
are stopped at various stages in the patulin biosynthetic pathway.
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Figure 1. A possible patulin biosynthetic pathway. Adapted from [7,8].

In view of the accepted harmful consequences caused by PAT and the demand for
regulatory control, monitoring its level in apple-derived products is crucial to assess the
hazard due to human consumption of these products. Since 2003, European regulation
1425/3003 has set a maximum level of 50 µg/kg for fruit juices and derived products,
25 µg/kg for solid apple products and 10 µg/kg for juices and foods intended for infants
and young children [9]. The Joint Food and Agriculture Organization Health Organization
Expert Committee on Food Additives (JECFA) recognizes a temporary maximum tolerable
daily intake (PMTDI) of 0.4 mg/kg body weight/day [10].

To ensure that the levels set by the European Union are respected, the use of an ana-
lytical approach capable of guaranteeing reliable results is of utmost importance, which
is why many laboratories desire to develop robust analytical approaches that are highly
sensitive and specifically enable accurate results for mycotoxins. Achieving accurate re-
sults for mycotoxins is no easy task, because there are several factors that complicate
this type of analysis: for example, the non-uniform distribution of mycotoxins in the con-
taminated lots; the fact that the concentrations of mycotoxins are extremely low; extracts
are accompanied by lipids and interfering pigments, requiring a cleaning phase; and the
varied nature of the samples, requiring different extraction procedures. Typically, myco-
toxins have been detected and quantified by physicochemical and biological techniques.
Different chromatographic techniques (e.g., thin layer, liquid chromatography) beyond
fluoro-densitometry and spectrophotometry have also been used. The biological techniques
include bioassays (e.g., tissue culture, animals, microorganisms) and immunoassays such
as radioimmunoassay (RIA), affinity chromatography and enzyme-linked immunosorbent
assay (ELISA) [11–14]. However, several of these extraction procedures are extremely costly,
time consuming, and involve complex running of sophisticated instrumentation. A few
years ago, Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS), which combined
the extraction and isolation of agrotoxics in food matrices as well as cleaning of extracts,
emerged as a suitable extraction procedure. This extraction procedure provides reliable
results, reduces the number of analytical tests, solvent amounts, and laboratory equipment
used, simplifies the extraction of the analytes, and requires fewer stages of extraction and
cleaning of extracts, without damaging the extent of recovery [1,2]. However, as far as we
know, miniaturization of QuEChERS (µ-QuEChERS) for the extraction of PAT from apple-
derived products has not been reported. This extraction procedure, compared to original
QuEChERS, is economical and environmentally friendly, requires smaller amounts of salt
mixtures and solvents, and produces less waste. Moreover, analytical approaches such as
liquid chromatography (LC) are rarely applied because of lower selectivity and sensitivity
provided by the detectors used, such as ultraviolet light (UV). The potential coupling of
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LC and tandem mass spectrometry (MS/MS) presents numerous benefits, among them
high sensitivity and selectivity. Since the development of sources of ionization operating at
atmospheric pressure (API), such as electrospray ionization (ESI) and atmospheric pressure
chemical ionization (APCI), various robust and reliable instruments have become available.
HPLC-MS/MS allows increased selectivity and sensitivity by providing monitoring of
mycotoxins in a single analysis. This equipment has become an indispensable tool in labora-
tories. Despite the high cost of acquisition and maintenance of equipment, these tools have
several advantages, namely high efficiency analysis, reduced time to method development,
and robustness [15,16]. However, PAT determination requires certain LC-MS/MS condi-
tions due to its superior polarity and small molecular mass, which can result in minimal
recovery and/or low sensitivity of the analysis. Moreover, significant PAT ion suppression
occurs when ESI mode is applied, which can also influence the recovery, precision, and
sensitivity of the method [2].

The main aim of the current research was to avoid the coelution of interfering peaks
by improving an appropriate chromatographic method for PAT determination without
extensive and time-consuming cleanup steps. Thus, to the best of our knowledge, this
is the first report of a quick, precise, reliable, and high-throughput µ-QuEChERS-based
extraction procedure combined with HPLC-MS/MS for determination of PAT in apple
juices. The proposed analytical method was adequately validated in terms of linearity,
accuracy, precision, sensitivity, and selectivity and effectively employed for the analysis of
different commercial apple juices to demonstrate its feasibility.

2. Materials and Methods
2.1. Chemicals and Reagents

Patulin analytical standard with a purity of 98% was obtained from Sigma Aldrich
(Madrid, Spain). Acetonitrile (MeCN, LC-MS grade), methanol (MeOH, LC-MS grade),
and acetic acid (analytical grade) were acquired from Fisher Scientific (HPLC grade).
Magnesium sulphate anhydrous (MgSO4), sodium chloride (NaCl), sodium citrate tribasic
dihydrate (C6H5Na3O7·2H2O), disodium hydrogen citrate sesquihydrate (C6H6Na2O7·1.5
H2O), and ammonium acetate (C2H4O2·NH3) were obtained from Fluka (Saint Louis,
MO, USA). Ultrapure water (18.2 MΩ/cm, Milli-Q Plus system, Millipore Bedford, MA,
USA) was used in all experiments. Samples extracts were filtered through a 0.22 µm
polytetrafluoroethylene (PTFE) filter membrane purchased from Via Athena, (Lisbon,
Portugal) and injected into the HPLC-MS/MS system.

2.2. Samples

A total of 30 apple juices were acquired in different local markets in Madeira Island
(32◦39′00.7′′ N 16◦54′29.2′′ W), from July to August 2022.

2.3. Standard Solutions

The PAT standard stock solution was prepared by dissolving 0.1 mg of patulin in
20 mL of MeCN (5 mg/kg), and this solution was diluted, using a mixture of water and
MeCN (H2O:MeCN, 9:1 v/v), to a concentration of 200 µg/kg. The stock and intermediate
solutions were stored at −20 ◦C with no exposure to sunlight. The PAT standard series
were prepared at concentrations of 2 to 50 µg/kg by diluting the PAT intermediate solution
in H2O:MeCN, (9:1 v/v) to build the calibration curve.

2.4. µ-QuEChERS Extraction

For µ-QuEChERS extraction, 100 mg of sample was added to a 10 mL polypropylene
centrifuge tube, and 1 mL of MeCN with 1% acetic acid was added and homogenized in
a vortex for 1 min (Figure 2). The salting-out process was performed by adding 0.65 g of
the partitioning salt mixture composed of 0.40 g MgSO4, 0.10 g NaCl, 0.10 g C6H5Na3O7
2H2O, and 0.05 g C6H6Na2O7 1.5 H2O. The tube was shaken for 15 s, then submitted to
ultrasound agitation for 3 min and centrifugation at 5000 rpm for 5 min. The supernatants
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were collected, filtered through PTFE, and inserted in vials for subsequent analysis by
HPLC-MS/MS.
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2.5. Method Validation

The µ-QuEChERS/HPLC-MS/MS approach was fully validated in terms of linearity,
matrix effect, selectivity, limit of detection (LOD), limit of quantification (LOQ), precision
(expressed as relative standard deviation, % RSD), and accuracy (as recovery percentage).
The linearity was evaluated by building a calibration curve for seven concentrations, of 2, 5,
10, 20, 30, 40 and 50 µg/kg. The matrix effect for PAT in apple juice was assessed using this
calibration curve through the ratio between the slope of the standard in solvent (H2O:MeCN,
9:1 v/v), and those obtained by spiking apple juice (standard addition method). Student’s
t-test was used to check if a matrix effect existed. There was a matrix effect if the calculated
value of t was greater than the theoretical value of t. The LOD and the LOQ were determined
utilizing the variability of peak area, injecting the analyte numerous times at the lowest
calibration point.

The accuracy, expressed as recovery percentage (%), was measured through the anal-
ysis of fortified apple juice with three levels of PAT concentration: 2 µg/kg (low level),
20 µg/kg (medium level), and 50 µg/kg (high level). The recovery should be between
70–120%, and the % RSD less than or equal to 20%. The precision was calculated in terms
of repeatability (intra-day) and reproducibility (inter-day), using the same concentration
levels used in the accuracy analyses. For repeatability (expressed as % RSD), six replicates
(n = 6) of the entire technique were carried out on the same day. The reproducibility (also
expressed as RSD %) was calculated by the analysis of three replicates of a sample, which
were performed in triplicate over three different days (n = 9). Based on the validation guide-
lines, the RSD values for these precision parameters should be lower than 20%. Selectivity
was evaluated by the lack of interfering chromatographic peaks at the retention time (RT)
of the PAT.

2.6. High Performance Liquid Chromatography Tandem Mass Spectrometry

Liquid chromatography was carried out on a Waters Alliance 2695 system comprising
a quaternary, low-pressure mixing pump, on-line vacuum degasser, autosampler and
column compartment. The PAT separation was reached on a silica-based reversed-phase
C18 Atlantis T3 (150 mm × 2.1 mm, 5 µm) analytical capillary column, kept at 30 ◦C. A
binary mobile phase with a gradient program was employed, mixing solvent A (H2O:MeCN
(9:1 v/v) with 5 mM ammonium acetate) and solvent B (H2O:MeCN (1:9 v/v)) with 5 mM
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ammonium acetate) as follows: 100% A (0 min), 100% B (15–20 min), 100% A (20–25 min).
The elution was obtained at a flow rate of 300 µL/min in the gradient mode, and the
injection volume was 20 µL. Prior to the following injection, the system was re-equilibrated
for 5 min with the initial. Mass spectrometry analysis was carried out on a Micromass
Quattro Micro triple-quadrupole equipped with a heated electrospray ionization (ESI)
source, which was running in the negative ion mode. Microsoft Windows NT (v 4.1)-based
MassLynx software was used in the data acquisition, data processing and instrument
control. The mass spectra were attained over the mass range 50 to 500 m/z. The ionization
source working parameters were: capillary voltage, 2.9 kV; cone gas flow rate, 80 L/h;
cone voltage, 30 V; collision energy, 19 eV; desolvation gas flow rate, 650 L/h; desolvation
temperature, 350 ◦C; and source temperature, 140 ◦C. Argon (99% purity) and nitrogen
(>99% purity) with argon were employed as collision (product ion scan, MS/MS) and
nebulizing gases, respectively. Flow injection of PAT was used to improve the multiple
reaction monitoring (MRM) conditions. A dwell time of at least 20 ms was used for each
MRM transition. The following MRM transitions were monitored: 152.9 > 108.9 (quantifier)
and 152.9 > 80.9 (qualifier). The criteria employed to check the identification of PAT were
as follows: (1) a signal for each of the two specific MRM transitions of the analyte had to be
identical in the sample and in the standard; (2) the peak ratio of the confirmation transition
against quantification; (3) the relative retention time of the analyte in both sample and
standard solution should have a maximum difference of 0.1 min.

3. Results and Discussions

The parameters of HPLC and MS/MS were meticulously optimized to meet better
analytical requirements for the detection and identification of PAT in a short chromato-
graphic run time. For HPLC optimization, several mixtures of mobile phase solvents were
considered, namely H2O, MeCN, MeOH, ammonium acetate, and acetic acid. The data
obtained demonstrated that the solvent mixture consisting of MeCN was advantageous
for the ionization procedure, which led to an increase in the detected signal (peak area)
with improved resolution equated to MeOH. This result agrees with those of other prior
studies [16–18]. Regarding MS optimization, a standard solution of PAT at a concentration
level of 2 µg/kg was injected in negative ESI mode, and the data obtained showed a better
signal intensity compared to that obtained in positive ESI mode. Patulin was ionized to the
deprotonated molecular ion [M-H]− at m/z 153, which was chosen as the precursor ion due
to its superior intensity. As can be seen in Figure 3, two predominant and characteristic frag-
ment ions were observed at m/z 109 and m/z 81, which corresponded to [M-H-CO2]− and
[C5H5O]−, respectively. This fragmentation pathway agrees with previously conducted
studies [16].
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In sum, the identification procedure for patulin in apple juice was performed using the
retention time (RT = 7.37 min) and two transitions, m/z 152.9 > 108.9 and m/z 152.9 > 80.9,
with the most intense transition m/z, 152.9 > 108.9, used as quantifier, while the other was
employed as qualifier peak for the positive assessment.

3.1. Method Validation

The µ-QuEChERS/HPLC-MS/MS method was fully validated for the following ana-
lytical parameters: linearity, matrix effect, selectivity, LOD, LOQ, accuracy, and precision.
The results obtained in the method validation are shown in Table 1.

Table 1. Linearity, sensitivity, accuracy, and precision of patulin analysis using µ-QuEChERS/HPLC-
MS/MS method.

Linear Range
(µg/kg)

Correlation
Coefficient (R2)

LOD (µg/kg) a LOQ (µg/kg) b
Accuracy c Precision c (%RSD)

Recovery (% ± SD) Intra-Day Inter-Day

2–50 0.999 0.32 1.15
LL 98 ± 8 3.78 5.10
ML 92 ± 4 4.58 6.85
HL 103 ± 1 2.67 4.73

a LOD: limit of detection; b LOQ: limit of quantification; c Accuracy and precision were obtained by spiking apple juice
at three concentration levels: low level (LL, 2 µg/kg), medium level (ML, 20 µg/kg) and high level (HL, 50 µg/kg).

The linearity of the calibration curve established in the range of 2 to 50 µg/kg was
obtained by least-squares linear regression analysis of the data, giving an exceptional
correlation coefficient (R2) value of 0.999. Regarding the matrix effect, the calculated t value
(1.42) was lower than the tabulated t value (2.57), indicating that the matrix had no influence
and the MS/MS detector used in the current method was sensitive and selective. For this
reason, it was chosen as in earlier investigations, not including a stable isotope-labeled
internal standard of PAT [19,20].

The sensitivity of the µ-QuEChERS/HPLC-MS/MS method was determined based on
LOD and LOQ following the EU Commission Decision 2002/657/EC as the minimum PAT
concentration (2 µg/kg) to produce chromatogram peaks with signal-to-noise ratios of 3/1
and 10/1, respectively [21]. The LOD and LOQ of PAT were 0.32 and 1.15 µg/kg, respec-
tively (Table 1). The LOD and LOQ obtained in the current study were lower than those
reported by others [1,19,22]. Moreover, the LOD and LOQ obtained were quite similar to
those reported by Gab-Allah et al. [16]. The selectivity of the µ-QuEChERS/HPLC-MS/MS
method was established through the analysis of both blank and fortified apple juice based
on checking the typical MRM transitions at particular elution times of PAT. The analysis of
HPLC-MS/MS chromatograms obtained from blank and fortified apple juice demonstrated
the lack of interference peaks in the RT of PAT. Accuracy and precision were assessed
at three different concentration levels, 2 µg/kg (LL), 20 µg/kg (ML) and 50 µg/kg (HL).
Accuracy was expressed as the mean recovery achieved by comparing six samples (n = 6)
fortified with the corresponding values of their modeled samples. As can be observed
in Table 1, suitable results were achieved, since the mean recoveries ranged from 92 to
103%, which is consistent with the range 87 to 107% obtained in previous studies using the
same detection method (MS/MS) [16,19]. Regarding intra-day and inter-day precision at
the three concentration levels, the RSD values ranged from 2.67 to 4.58 and from 4.73 to
6.85%, respectively. The RSD values were lower than 20%, and based on the guidelines [21],
confirmed that the µ-QuEChERS/HPLC-MS/MS method is precise.

Table 2 reports analytical approaches developed to quantify PAT in apple juice and
related products [1,2,16,19,20,23,24]. Gab-Allah et al. [16] developed a feasible alternative
isotope dilution as an extraction procedure utilizing simple and reliable sample preparation
steps and a clean-up process using molecularly imprinted polymer-solid-phase extraction
(MIP-SPE). The method showed an LOD of 0.33 µg/kg, an LOQ of 1.10 µg/kg, and accuracy
ranging from 98 to 102%, with RSD for inter-day and intra-day precision of lower than
3%. This method was effectively used for the accurate determination of patulin in apple
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products. Taşpınar and collaborators [20] proposed a green and inexpensive air-assisted
natural deep eutectic solvent-based solidified homogeneous liquid phase microextraction
(AA-NADES-SH-LPME) procedure followed by spectrophotometric determination. In this
study, 2 mL of sample solution was transferred in a 15 mL tube, and then 5.1 mg/L of
Zn(II) solution was added to provide the complexation of patulin. Finally, the patulin was
extracted using 410 µL of NADES-3. This procedure showed higher LOD (3.5 µg/kg) and
LOQ (10 µg/kg) compared to those obtained in this study and the previous one [16,19],
and recoveries ranging from 94 to 104%, with RSD for inter-day and intra-day precision of
lower than 6%. The spectrophotometric determination used by Taşpınar and collaborators
could be a possible explanation for the highest LOD and LOQ [20]. A report in the literature
proved that the selection of HPLC-MS/MS was suitable for PAT determination, since it
provides more sensitivity and selectivity that other analytical approaches [19]. The method
was effectively used for the extraction, identification, and quantification of PAT in dried
fruits (apple, fig, prune). Sadok et al. [2] and Shinde et al. [1] validated a robust and
sensitive method based on QuEChERS combined with HPLC-MS/MS for rapid testing of
patulin in red-pigment fruits and apple juices, respectively. For both studies, 10 g of sample
was placed in a 50 mL polypropylene centrifuge tube and extracted with 10 mL ethyl
acetate. However, Sadok et al. [2] added QuEChERS salt (4 g MgSO4, 1 g NaCl, 1 g sodium
citrate, 0.5 g sodium hydrogen citrate sesquihydrate) and did not perform any clean-up
process, whereas Shinde et al. [1] used 10 g of sodium sulphate and performed a dispersive
solid phase extraction (dSPE) cleanup step. Both methods showed good performance in
the determination of PAT in apples, with recoveries ranging from 90 to 109%, and lower
LODs and LOQs, which demonstrated the feasibility of the proposed methods.

Table 2. Reported analytical approaches for patulin quantification in apple juice.

Sample Amount Extraction Procedure Analytical Method LOD (µg/kg) LOQ (µg/kg) Rec (%) Ref

1 g LLE (10 mL MeCN) LC-MS/MS 0.5 4 87–100 [19]

1 g LLE (2 mL ethyl acetate) LC-PDA 6 18 55–97 [24]

0.5 g ID-MIP-SPE (10 mL H2O:AcA
(99:1 v/v) LC-MS/MS 0.33 1.10 98–102 [16]

5 g - LC-MS/MS 0.5 2 94–98 [23]

2 mL AA-NADES-SH-LPME (410
µL NADES solvent) UV-Vis 3.5 10 94–104 [20]

10 g QuEChERS (10 mL
ethyl acetate) UHPLC-MS/MS - 0.65–3.01 96–109 [2]

10 g QuEChERS-dSPE (10 mL
ethyl acetate) LC-MS/MS - 5 90–95 [1]

0.1 g µ-QuEChERS (1 mL MeCN) LC-MS/MS 0.32 1.15 92–103 This work

LLE—liquid–liquid extraction; ID-MIP-SPE—isotope dilution—molecularly imprinted polymer—solid phase
extraction; AcA—acetic acid; AA-NADES-SH-LPME—air-assisted natural deep eutectic solvent-based solidi-
fied homogeneous liquid phase microextraction; QuEChERS—quick, easy, cheap, effective, rugged and safe;
µ-QuEChERS—micro-quick, easy, cheap, effective rugged and safe; LOD—limit of detection; LOQ—limit of quan-
tification; LC-MS/MS—high performance liquid chromatography with tandem mass spectrometry; LC-MS/MS—
liquid chromatography with tandem mass spectrometry; UHPLC-MS/MS—ultra high performance liquid chro-
matography with tandem mass spectrometry; LC-PDA—high performance liquid chromatography with photodi-
ode array detection; rec.—recovery; UV-Vis—ultraviolet-visible.

In sum, the extraction procedure proposed in the current study did not present re-
markable advantages in terms of LOD, LOQ and accuracy since the data obtained were
quite similar to those reported in previous studies, as discussed above. Nevertheless,
µ-QuEChERS/HPLC-MS/MS, compared to the extraction procedures reported in Table 2,
showed several benefits, such as reduced sample amounts, washing steps, and harmful
chemicals during experimental procedures. In addition, µ-QuEChERS is economical and
does not require trained personnel to conduct the analysis.

Overall, the suggested analytical approach based on µ-QuEChERS following with
LC-MS/MS analysis was demonstrated to be a quick, cost-effective, and high-throughput
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strategy for the extraction, identification and quantification of PAT in apple juices, re-
vealing exceptional performance in terms of linearity, sensitivity, matrix effect, accuracy,
and precision.

3.2. Quantification of Patulin in Apple Juice

The validated µ-QuEChERS/LC-MS/MS method was finally used for the quantifica-
tion of PAT in apple juice to show its applicability. Table 3 summarizes the results for the
incidence of PAT in the examined apple juice samples.

Table 3. Concentration (µg/kg) of patulin in apple juices investigated.

Number of Samples 30

Incidence a (%) 10 (3 of 30)

Concentration range (µg/kg) 1.94–7.15

Mean ± SD (µg/kg) 4.38 ± 0.09
a % Incidence = (number of samples containing patulin/total number of samples) × 100.

Patulin was detected in 3 (10%) of the 30 analyzed apple juice samples, with an
average concentration of 4.38 ± 0.09 µg/kg. In addition, PAT was not detected in 20 (67%)
of the analyzed apple juices, whereas in 23% of the remaining apple juices, the PAT levels
were detected at concentrations lower than LOD (1.15 µg/kg) (Table S1 in Supplementary
Material). The results compare with other studies on apple juices collected in Korea and
Brazil, where PAT was undetected or detected in levels lower than the LOD value [16,19].
For all apple juices investigated, the concentration of PAT was lower than the maximum
allowable limit set by the EU for fruit juice and derived products (50 µg/kg); consequently,
there was no risk to consumers through ingestion of these apple juices.

4. Conclusions

The µ-QuEChERS/LC-MS/MS method is a suitable analytical approach to determine
PAT in apple juices, as it is simple, fast, requires low amounts of solvent and produces a
minimal amount of waste compared to classical extraction procedures. The data obtained
for linearity (R2 = 0.999), sensitivity (LOD = 0.32 µg/kg, LOQ = 1.15 µg/kg), accuracy
(92–103%), selectivity, and precision (% RSD < 7%) proved that the µ-QuEChERS/LC-
MS/MS method is efficient in quantifying PAT in apple juices. Moreover, the validated
analytical method was applied to 30 samples of apple juices, and none of the samples
surpassed the legal European limit of 50 µg/kg; for this reason, there was no risk to
consumers from ingestion of these juices.

The results obtained in this study confirmed that the analytical approach is appropriate
for the purpose intended and that the risk of PAT occurrence in apple juices, as expected, is
practically null. Considering the benefits of the suggested analytical approach, in addition
to the low LODs and LOQs achieved, it could be employed in supervision programs and
regular monitoring of PAT in apple juices, as well as derived products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations10030149/s1, Table S1. Patulin concentration (µg/kg)
in apple juices investigated.
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