Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants
Abstract
:1. Introduction
2. Imidazolium Ionic Liquids
2.1. Structures of Imidazolium Ionic Liquids
2.2. Preparation of Imidazolium Ionic Liquids
2.2.1. Conventional Imidazolium Ionic Liquids
2.2.2. Functional Imidazolium Ionic Liquids
3. Extraction of Phytochemicals from Plants by Imidazolium Ionic Liquids
3.1. Flavonoids
3.2. Alkaloids
3.3. Terpenoids
3.4. Quinones
3.5. Polysaccharides
3.6. Phenols
3.7. Glycosides
3.8. Phenylpropanoids
3.9. Organic Acids
3.10. Others
3.11. Factors Affecting the Extraction Results by Imidazolium Ionic Liquids
3.11.1. Effect of the Type of Anions
3.11.2. Effect of the Alkyl Chain Length of Cations
4. Extraction Mechanism
4.1. Extraction Mechanism by Computer Simulation
4.2. Extraction Mechanism by Experiments
4.3. Extraction Mechanism by Computer Simulation Combination with Experiments
5. Recovery Methods and Reuse of Imidazolium Ionic Liquids
5.1. Distillation
5.2. Liquid–Liquid Extraction
5.3. Adsorption
5.4. Membrane Separation
6. Toxicity of Imidazolium Ionic Liquids
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinh, J.A.P. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef] [PubMed]
- Toshiyuki, I.; Masayoshi, W.; Liang, N.H. Ionic Liquids in Energy and Environment. Green Energy Environ. 2019, 4, 93–94. [Google Scholar]
- Dong, K.; Liu, X.M.; Dong, H.F.; Zhang, X.P.; Zhang, S.J. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636–6695. [Google Scholar] [CrossRef] [PubMed]
- Ardakani, E.K.; Kowsari, E.; Ehsani, A.; Ramakrishna, S. Performance of all ionic liquids as the eco-friendly and sustainable compounds in inhibiting corrosion in various media: A comprehensive review. Microchem. J. 2021, 165, 106049. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Xu, F.; Zhang, Y.Q.; Li, C.H.; He, H.Y.; Yang, Z.F.; Li, Z.X. A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chem. 2020, 22, 2534–2542. [Google Scholar] [CrossRef]
- Cagliero, C.; Bicchi, C. Ionic liquids as gas chromatographic stationary phases: How can they change food and natural product analyses? Anal. Bioanal. Chem. 2020, 412, 17–25. [Google Scholar] [CrossRef]
- Wu, J.S.; Xie, P.; Hao, W.B.; Lu, D.; Qi, Y.; Mi, Y.L. Ionic liquids as electrolytes in aluminum electrolysis. Front. Chem. 2022, 10, 1014893. [Google Scholar] [CrossRef]
- Kitazawa, Y.; Ueno, K.; Watanabe, M. Advanced Materials Based on Polymers and Ionic Liquids. Chem. Rec. 2018, 18, 391–409. [Google Scholar] [CrossRef]
- Sohaib, Q.; Muhammad, A.; Younas, M.; Rezakazemi, M. Modeling precombustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures. Sep. Purif. Technol. 2020, 241, 116677. [Google Scholar] [CrossRef]
- Walden, P. Über die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzener Salze. Bull. Acad. Imper. Sci. 1914, 8, 405–422. [Google Scholar]
- Hurley, F.H.; Weir, T.P. Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc. 1951, 98, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.; Osteryoung, R.A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-Butylpyridinium. Chloride J. Am. Chem. Soc. 1979, 101, 323–327. [Google Scholar] [CrossRef]
- Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun. 1992, 13, 965–967. [Google Scholar] [CrossRef]
- Lei, Z.G.; Chen, B.H.; Koo, M.Y.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, D.S.B.; Barreira, J.C.M.; Oliveira, M.B.P.P. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci. Technol. 2016, 50, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Naghdi, T.; Faham, S.; Mahmoudi, T.; Pourreza, N.; Ghavami, R.; Golmohammadi, H. Phytochemicals toward Green (Bio)sensing. ACS Sens. 2020, 5, 3770–3805. [Google Scholar] [CrossRef] [PubMed]
- Ekiert, H.M.; Szopa, A. Biological Activities of Natural Products. Molecules 2020, 25, 5769. [Google Scholar] [CrossRef]
- Islam, S.U.L.; Mohammad, F. Natural colorants in the presence of anchors so-called mordants as promising coloring and antimicrobial agents for textile materials. ACS Sustain. Chem. Eng. 2015, 3, 2361–2375. [Google Scholar] [CrossRef]
- Wei, W.; Lu, R.J.; Tang, S.Y.; Liu, X.Y. Highly cross-linked fluorescent poly (cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J. Mater. Chem. A 2015, 3, 4604–4611. [Google Scholar] [CrossRef]
- Lim, J.R.; Chua, L.S.; Mustaffa, A.A. Ionic liquids as green solvent and their applications in bioactive compounds extraction from plants. Process Biochem. 2022, 122, 292–306. [Google Scholar] [CrossRef]
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.K.; Bi, W.T.; Tian, M.L.; Row, K.H. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J. Chromatogr. B 2012, 904, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.; Zhang, K.A.I. Controllable Homogeneity/Heterogeneity Switch of Imidazolium Ionic Liquids for CO2 Utilization. ChemCatChem 2018, 10, 4610–4616. [Google Scholar] [CrossRef]
- Usuki, T.; Yoshizawa-Fujita, M. Extraction and Isolation of Natural Organic Compounds from Plant Leaves Using Ionic Liquids. Adv. Biochem. Eng. Biotechnol. 2019, 168, 227–240. [Google Scholar] [PubMed]
- Mostofian, B.; Smith, J.C.; Cheng, X.L. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution. Cellulose 2014, 21, 983–997. [Google Scholar] [CrossRef]
- Rongpipi, S.; Ye, D.; Gomez, E.D.; Gomez, E.W. Progress and Opportunities in the Characterization of Cellulose-An Important Regulator of Cell Wall Growth and Mechanics. Front. Plant Sci. 2018, 9, 1894. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.; Gräsvik, J.; Hallett, J.P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013, 15, 550–583. [Google Scholar] [CrossRef] [Green Version]
- Kiyong, A.N.; An, J.H.; Lee, K.Y.; Lim, C.; Suh, Y.G.; Chin, Y.W.; Jung, K. Rapid and Efficient Separation of Decursin and Decursinol Angelate from Angelica gigas Nakai using Ionic Liquid, (BMIm)BF4, Combined with Crystallization. Molecules 2019, 24, 2390. [Google Scholar] [CrossRef] [Green Version]
- Reddy, C.S.; Kim, S.C.; Hur, M.; Kim, Y.B.; Park, C.G.; Lee, W.M.; Jang, J.K.; Koo, S.C. Natural Korean Medicine Dang-Gui: Biosynthesis, Effective Extraction and Formulations of Major Active Pyranocoumarins, Their Molecular Action Mechanism in Cancer, and Other Biological Activities. Molecules 2017, 22, 2170. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.W.; Huang, L.Y.; Wu, Y.J.; Yang, L.J. Synergic cloud-point extraction using [C4mim][PF6] and Triton X-114 as extractant combined with HPLC for the determination of rutin and narcissoside in Anoectochilus roxburghii (Wall.) Lindl. and its compound oral liquid. J. Chromatogr. B 2021, 1168, 122589. [Google Scholar] [CrossRef] [PubMed]
- Kraujalis, P.; Venskutonis, P.R.; Ibáñez, E.; Herrero, M. Optimization of rutin isolation from Amaranthus paniculatus leaves by high pressure extraction and fractionation techniques. J. Supercrit. Fluids 2015, 104, 234–242. [Google Scholar] [CrossRef]
- Ćurko, N.; Tomašević, M.; Cvjetko Bubalo, M.; Gracin, L.; Radojčić Redovniković, I.; Kovačević Ganić, K. Extraction of Proanthocyanidins and Anthocyanins from Grape Skin by Using Ionic Liquids. Food Technol. Biotechnol. 2017, 55, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Zuleta-Correa, A.; Chinn, M.S.; Alfaro-Córdoba, M.; Truong, V.D.; Bruno-Bárcena, J.M. Use of unconventional mixed Acetone-Butanol-Ethanol solvents for anthocyanin extraction from Purple-Fleshed sweetpotatoes. Food Chem. 2020, 314, 125959. [Google Scholar] [CrossRef]
- Murador, D.C.; Braga, A.R.C.; Martins, P.L.G.; Mercadante, A.Z.; De Rosso, V.V. Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Res. Int. 2019, 126, 108653. [Google Scholar] [CrossRef]
- De Rosso, V.V.; Mercadante, A.Z. Carotenoid composition of two Brazilian genotypes of acerola (Malpighia punicifolia L.) from two harvests. Food Res. Int. 2005, 38, 1073–1077. [Google Scholar] [CrossRef]
- Hao, J.W.; Liu, J.H.; Zhang, L.; Jing, Y.R.; Ji, Y.B. A Study of the Ionic Liquid-Based Ultrasonic-Assisted Extraction of Isoliquiritigenin from Glycyrrhiza uralensis. BioMed Res. Int. 2020, 2020, 7102046. [Google Scholar] [CrossRef]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Zovko Končić, M. Glycerolic Licorice Extracts as Active Cosmeceutical Ingredients: Extraction Optimization, Chemical Characterization, and Biological Activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Noorhisham, N.A.; Amri, D.; Mohamed, A.H.; Yahaya, N.; Ahmad, N.M.; Mohamad, S.; Kamaruzaman, S.; Osman, H. Characterisation techniques for analysis of imidazolium-based ionic liquids and application in polymer preparation: A review. J. Mol. Liq. 2021, 326, 115340. [Google Scholar] [CrossRef]
- Lévêque, J.M.; Luche, J.L.; Pétrier, C.; Rouxa, R.; Bonrath, W. An improved preparation of ionic liquids by ultrasound. Green Chem. 2002, 4, 357–360. [Google Scholar] [CrossRef]
- Namboodiri, V.V.; Varma, R.S. Solvent-Free Sonochemical Preparation of Ionic Liquids. Org. Lett. 2002, 4, 3161–3163. [Google Scholar] [CrossRef]
- Liu, F.S.; Li, Z.; Yu, S.T.; Cui, X.; Ge, X.P. Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids. J. Hazard. Mater. 2009, 174, 872–875. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Feng, C.Y.; Tian, M.F.; Meng, X.M.; Zhao, C.J. A novel approach for echinacoside and acteoside extraction from Cistanche deserticola Y. C. Ma using an aqueous system containing ionic liquid surfactants. Sustain. Chem. Pharm. 2022, 26, 100644. [Google Scholar] [CrossRef]
- Fan, J.; Cao, J.; Zhang, X.; Huang, J.; Kong, T.; Tong, S.; Tian, Z.; Xie, Y.; Xu, R.; Zhu, J. Optimization of ionic liquid based ultrasonic assisted extraction of puerarin from Radix Puerariae Lobatae by response surface methodology. Food Chem. 2012, 135, 2299–2306. [Google Scholar] [CrossRef]
- Chen, F.L.; Xiao, Y.; Zhang, B.W.; Chang, R.G.; Luo, D.Q.; Yang, L.; Liu, D.M. Magnetically stabilized bed packed with synthesized magnetic silicone loaded with ionic liquid particles for efficient enrichment of flavonoids from tree peony petals. J. Chromatogr. A 2020, 1613, 460671. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.H.; Wu, D.; Chu, H.Y.; Wang, C.Z.; Wei, Y.M. Magnetic mesoporous nanoparticles modified with poly(ionic liquids) with multi-functional groups for enrichment and determination of pyrethroid residues in apples. J. Sep. Sci. 2019, 42, 1896–1904. [Google Scholar] [CrossRef]
- Chen, L.; Huang, X.J. Preparation and application of a poly (ionic liquid)-based molecularly imprinted polymer for multiple monolithic fiber solid-phase microextraction of phenolic acids in fruit juice and beer samples. Analyst 2017, 142, 4039–4047. [Google Scholar] [CrossRef] [PubMed]
- Paschek, D.; Golub, B.; Ludwig, R. Hydrogen bonding in a mixture of protic ionic liquids: A molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2015, 17, 8431–8440. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Z.; Jia, J.; Chen, F.L.; Yang, F.J.; Zu, Y.G.; Yang, L. Development of an Ionic Liquid-Based Microwave-Assisted Method for the Extraction and Determination of Taxifolin in Different Parts of Larix gmelinii. Molecules 2014, 19, 19471–19490. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Z.; Gu, H.Y.; Yang, L. A novel approach for the simultaneous extraction of dihydroquercetin and arabinogalactan from Larix gmelinii by homogenate-ultrasound synergistic technique using the ionic liquid. J. Mol. Liq. 2018, 261, 41–49. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, Z.; Li, Y.L.; Chi, R. Optimization of Ionic liquid-based Microwave-assisted Extraction of Isoflavones from Radix Puerariae by Response Surface Methodology. Sep. Purif. Technol. 2014, 129, 71–79. [Google Scholar] [CrossRef]
- Gu, H.Y.; Chen, F.L.; Zhang, Q.; Zang, J. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves. J. Chromatogr. B 2016, 1014, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.J.; Yi, Y.J.; Wang, H.Y.; Zhou, W.L.; Wang, C.Y. Extraction, Preconcentration and Isolation of Flavonoids from Apocynum venetum L. Leaves Using Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules 2016, 21, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Sun, C.X.; Yang, J.Q.; Ma, X.K.; Jiang, Y.M.; Qiu, S.L.; Wang, G. Ionic Liquid-Microwave-Based Extraction of Biflavonoids from Selaginella sinensis. Molecules 2019, 24, 2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, S.; Wang, Y.; Gao, S.; Shao, X.; Tang, D. Highly efficient and selective extraction of minor bioactive natural products using pure ionic liquids: Application to prenylated flavonoids in licorice. J. Ind. Eng. Chem. 2019, 80, 352–360. [Google Scholar] [CrossRef]
- Wang, W.; Li, Q.; Liu, Y.; Chen, B. Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface. Ultrason. Sonochem. 2015, 24, 13–18. [Google Scholar] [CrossRef]
- Wang, X.Z.; Li, X.W.; Li, L.J.; Li, M.; Wu, Q.; Liu, Y.; Yang, J.; Jin, Y.R. Green determination of aconitum alkaloids in Aconitum carmichaeli (Fuzi) by an ionic liquid aqueous two-phase system and recovery of the ionic liquid coupled with in situ liquid–liquid microextraction. Anal. Methods. 2016, 8, 6566–6572. [Google Scholar] [CrossRef]
- Wu, N.; Xie, H.H.; Fang, Y.T.; Liu, Y.Y.; Xi, X.J.; Chu, Q.; Dong, G.L.; Lan, T.; Wei, Y. Isolation and purification of alkaloids from lotus leaves by ionic-liquid-modified high-speed countercurrent chromatography. J Sep. Sci. 2018, 41, 571–577. [Google Scholar] [CrossRef]
- Li, L.Q.; Huang, M.Y.; Shao, J.L.; Lin, B.K.; Shen, Q. Rapid Determination of Alkaloids in Macleaya cordata Using Ionic Liquid Extraction Followed by Multiple Reaction Monitoring UPLC−MS/MS Analysis. J. Pharm. Biomed. Anal. 2017, 135, 61–66. [Google Scholar] [CrossRef]
- Li, Q.; Wu, S.G.; Wang, C.Y.; Yi, T.J.; Zhou, W.L.; Wang, H.Y.; Li, F.F.; Tan, Z.J. Ultrasonic-assisted extraction of sinomenine from Sinomenium acutum using magnetic ionic liquids coupled with further purification by reversed micellar extraction. Process Biochem. 2017, 58, 282–288. [Google Scholar] [CrossRef]
- Peng, X.J.; Sui, X.Y.; Li, J.L.; Liu, T.T.; Yang, L. Development of a novel functionality for a highly efficient imidazole-based ionic liquid non-aqueous solvent system for the complete extraction of target alkaloids from Phellodendron amurense Rupr. under ultrasound-assisted conditions. Ind. Crops Prod. 2021, 168, 113596. [Google Scholar] [CrossRef]
- Zhu, S.C.; Shi, M.Z.; Yu, Y.L.; Cao, J. Simultaneous extraction and enrichment of alkaloids from lotus leaf by in-situ cloud point-reinforced ionic liquid assisted mechanochemical extraction technology. Ind. Crops Prod. 2022, 183, 114968. [Google Scholar] [CrossRef]
- Murata, C.; Tran, Q.T.; Onda, S.; Usuki, T. Extraction and isolation of ganoderic acid from Ganoderma lucidum. Tetrahedron Lett. 2016, 57, 5368–5371. [Google Scholar] [CrossRef]
- Chen, F.; Mo, K.L.; Zhang, Q.; Fei, S.M.; Zu, Y.G.; Yang, L. A novel approach for distillation of paeonol and simultaneous extraction of paeoniflorin by microwave irradiation using an ionic liquid solution as the reaction medium. Sep. Purif. Technol. 2017, 183, 73–82. [Google Scholar] [CrossRef]
- Usuki, T.; Munakata, K. Extraction of essential oils from the flowers of Osmanthus fragrans var. aurantiacus using an ionic liquid. Bull. Chem. Soc. Jpn. 2017, 90, 1105–1110. [Google Scholar] [CrossRef]
- Du, K.; Li, J.; Bai, Y.; An, M.R.; Gao, X.M.; Chang, Y.X. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus Corni by ultra-high performance liquid chromatography. Food Chem. 2018, 244, 190–196. [Google Scholar] [CrossRef]
- De Faria, E.L.P.; Gomes, M.V.; Cláudio, A.F.M.; Carmen, S.R.F.; Armando, J.D.S.; Mara, G.F. Extraction and recovery processes for cynaropicrin from Cynara cardunculus L. using aqueous solutions of surface-active ionic liquids. Biophys. Rev. 2018, 10, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Franco-Vega, A.; Lopez-Malo, A.; Palou, E.; Ramírez-Corona, N. Effect of imidazolium ionic liquids as microwave absorption media for the intensification of microwave-assisted extraction of Citrus sinensis peel essential oils. Chem. Eng. Process. 2021, 160, 108277. [Google Scholar] [CrossRef]
- Lu, C.X.; Wang, H.X.; Lv, W.P.; Ma, C.Y.; Xu, P.; Zhu, J.; Xie, J.; Liu, B.; Zhou, Q.L. Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction Combined with UPLC for the Determination of Anthraquinones in Rhubarb. Chromatographia 2011, 74, 139–144. [Google Scholar] [CrossRef]
- Tan, Z.J.; Li, F.F.; Xu, X.L. Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep. Purif. Technol. 2012, 98, 150–157. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Liu, W.; Wang, X.; Bai, A.Y.; Huang, L.Q. Ionic liquid-based ultrahigh pressure extraction of five tanshinones from Salvia miltiorrhiza Bunge. Sep. Purif. Technol. 2013, 110, 86–92. [Google Scholar] [CrossRef]
- Wang, Z.B.; Hua, J.X.; Duc, H.X.; Hea, S.; Li, Q.; Zhang, H.Q. Microwave-assisted ionic liquid homogeneous liquid–liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L. J. Pharm. Biomed. Anal. 2016, 125, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.C.; Niu, Z.Y.; Xu, C.; Yang, L.; Yang, T.J. Protic Ionic Liquids as Efficient Solvents in Microwave-Assisted Extraction of Rhein and Emodin from Rheum palmatum L. Molecules 2019, 24, 2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, K.; Chen, S.; Chen, X.M.; Yao, S.; Wang, X.J.; Song, H.; Zhu, M.H. High effective extraction of selected anthraquinones from Polygonum multiflorum using ionic liquids with ultrasonic assistance. J. Mol. Liq. 2020, 314, 113342. [Google Scholar] [CrossRef]
- Tan, Z.J.; Li, F.F.; Xu, X.L.; Xing, J.M. Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 2012, 286, 389–393. [Google Scholar] [CrossRef]
- Fukaya, Y.; Asai, R.I.; Kadotani, S.; Nokami, T.; Itoh, T. Extraction of Polysaccharides from Japanese Cedar Using Phosphonate-Derived Polar Ionic Liquids Having Functional Groups. Bull. Chem. Soc. Jpn. 2016, 89, 879–886. [Google Scholar] [CrossRef]
- Kou, X.R.; Ke, Y.Q.; Wang, X.Q.; Rahman, M.R.T.; Xie, Y.Z.; Chen, S.W.; Wang, H.X. Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem. 2018, 257, 223–229. [Google Scholar] [CrossRef]
- Jiang, W.H.; Chen, P.F.; Tang, J.Y.; Zhao, S.Y.; Qin, Y.T.; Toufouki, S.; Cao, Y.; Yao, S. Hyphenated solvent-free extraction and ionic liquid-involved “sandwich” membranes separation for polysaccharides, phenols and amino acids from bamboo. Ind. Crops Prod. 2022, 187, 115513. [Google Scholar] [CrossRef]
- Li, X.J.; Yu, H.M.; Gao, C.; Zu, Y.G.; Wang, W.; Luo, M.; Gu, C.B.; Zhao, C.J.; Fu, Y.J. Application of ionic liquid-based surfactants in the microwave-assisted extraction for the determination of four main phloroglucinols from Dryopteris fragrans. J. Sep. Sci. 2012, 35, 3600–3608. [Google Scholar] [CrossRef]
- Ahmad, I.; Yanuar, A.; Mulia, K.; Mun’im, A. Optimization of ionic liquid-based microwave-assisted extraction of polyphenolic content from Peperomia pellucida (L) kunth using response surface methodology. Asian Pac. J. Trop. Biomed. 2017, 7, 660–665. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, W.; Zhang, T.H.; Yao, S. Systematic investigation for extraction and separation of polyphenols in tea leaves by magnetic ionic liquids. J. Sci. Food Agric. 2018, 98, 4550–4560. [Google Scholar] [CrossRef]
- Ettoumi, F.E.; Zhang, R.; Belwal, T.; Javed, M.; Luo, Z. Generation and characterization of nanobubbles in ionic liquid for a green extraction of polyphenols from Carya cathayensis Sarg. Food Chem. 2022, 369, 130932. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.L.; Mo, K.; Liu, Z.Z.; Yang, F.J.; Hou, K.X.; Li, S.Y.; Zu, Y.G.; Yang, L. Ionic Liquid-Based Vacuum Microwave-Assisted Extraction Followed by Macroporous Resin Enrichment for the Separation of the Three Glycosides Salicin, Hyperin and Rutin from Populus Bark. Molecules 2014, 19, 9689–9711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.C.; Xu, C.; Li, J.; Zhang, L.; Yang, L.; Zhou, Z.L.; Zhu, Y.H.; Zhao, D. Ionic liquid-based microwave-assisted extraction of verbascoside from Rehmannia root. Ind. Crops Prod. 2018, 124, 59–65. [Google Scholar] [CrossRef]
- Ji, S.; Wang, Y.; Shao, X.; Zhu, C.; Tang, D. Extraction and purification of triterpenoid saponins from licorice by ionic liquid based extraction combined with in situ alkaline aqueous biphasic systems. Sep. Purif. Technol. 2020, 247, 116953. [Google Scholar] [CrossRef]
- Wang, Q.F.; Zhao, Y.Q.; Sun, J.B.; Zhou, J. Simultaneous separation and determination of five monoterpene glycosides in Paeonia suffruticosa flower samples by ultra-high-performance liquid chromatography with a novel reinforced cloud point extraction based on ionic liquid. Microchem. J. 2021, 168, 106457. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.F.; Liu, H.J.; Zhou, Y.W. Enrichment and isolation of syringin and oleuropein from Syringa reticulata subsp. amurensis branch bark ionic liquid extract via macroporous resin adsorption and desorption. Ind. Crops Prod. 2022, 189, 115813. [Google Scholar] [CrossRef]
- Wei, Z.F.; Zu, Y.G.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Pan, Y.Z. Ionic liquids-based microwave-assisted extraction of active components from pigeon pea leaves for quantitative analysis. Sep. Purif. Technol. 2013, 102, 75–81. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Gu, H.Y.; Yang, L. An approach of ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini. J. Chromatogr. A 2015, 1417, 8–20. [Google Scholar] [CrossRef]
- Dong, W.; Yu, S.J.; Deng, Y.W.; Pan, T. Screening of lignan patterns in Schisandra species using ultrasonic assisted temperature switch ionic liquid microextraction followed by UPLC-MS/MS analysis. J. Chromatogr. B 2016, 1008, 45–49. [Google Scholar] [CrossRef]
- Wang, T.; Gu, C.B.; Wang, S.X.; Kou, P.; Jiao, J.; Fu, Y.J. Simultaneous extraction, transformation and purification of psoralen from Fig leaves using pH-dependent ionic liquid solvent based aqueous two-phase system. J. Clean. Prod. 2018, 172, 827–836. [Google Scholar] [CrossRef]
- Sui, X.Y.; Liu, T.T.; Liu, J.C.; Zhang, J.; Zhang, H.L.; Wang, H.Y.; Yang, Y. Ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming for the extraction of psoralen and isopsoralen from Psoralea corylifolia seeds. Ultrason Sonochem. 2020, 69, 105263. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Chen, F.L.; Jia, J.; Liu, Z.Z.; Gu, H.Y.; Yang, L.; Wang, F.; Yang, F.J. Ionic liquid-mediated microwave-assisted simultaneous extraction and distillation of gallic acid, ellagic acid and essential oil from the leaves of Eucalyptus camaldulensis. Sep. Purif. Technol. 2016, 168, 8–18. [Google Scholar] [CrossRef]
- Fang, L.W.; Tian, M.L.; Yan, X.M.; Xiao, W.; Row, K.H. Dual ionic liquid-immobilized silicas for multi-phase extraction of aristolochic acid from plants and herbal medicines. J. Chromatogr. A 2019, 1592, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sukor, N.F.; Jusoh, R.; Kamarudin, N.S.; Halim, N.A.A.; Abdullah, S.B. Synergistic effect of probe sonication and ionic liquid for extraction of phenolic acids from oak galls. Ultrason. Sonochem. 2020, 62, 104876. [Google Scholar] [CrossRef]
- Bhan, M.; Satija, S.; Garg, C.; Dureja, H.; Garg, M. Optimization of ionic liquid-based microwave assisted extraction of a diterpenoid lactone-andrographolide from Andrographis paniculata by response surface methodology. J. Mol. Liq. 2017, 229, 161–166. [Google Scholar] [CrossRef]
- Hou, X.D.; Cheng, Z.T.; Wang, J. Preparative purification of corilagin from Phyllanthus by combining ionic liquid extraction, prep-HPLC, and precipitation. Anal. Methods 2020, 12, 3382–3389. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, G.; Li, N. Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products. Molecules 2018, 23, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyama, R. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur. J. Pharmacol. 2017, 815, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Man, Z.; Mutalib, M.I.A. Dissolution and separation of wood biopolymers using ionic liquids. ChemBioEng Rev. 2015, 2, 257–278. [Google Scholar] [CrossRef]
- de Cássia da Silveira e Sá, R.; Andrade, L.; De Sousa, D. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef]
- Sarkar, A.; Pandey, S. Solvatochromic absorbance probe behavior and preferential solvation in aqueous 1-Butyl-3-methylimidazolium tetrafluoroborate. J. Chem. Eng. Data 2006, 51, 2051–2055. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids. Polymers 2020, 12, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.C.; Li, X.J.; Song, L.F.; Li, J.; Zhang, L. Effective extraction of quinine and gramine from water by hydrophobic ionic liquids: The role of anion. Chem. Eng. Res. Des. 2017, 119, 58–65. [Google Scholar] [CrossRef]
- Li, X.; Guo, R.; Zhang, X.; Li, X. Extraction of glabridin using imidazolium-based ionic liquids. Sep. Purif. Technol. 2012, 88, 146–150. [Google Scholar] [CrossRef]
- Guo, Z.; Lue, B.M.; Thomasen, K.; Meyer, A.S.; Xu, X.B. Predictions of flavonoid solubility in ionic liquids by COSMO-RS experimental verification, structural elucidation, and solvation characterization. Green Chem. 2007, 9, 1362–1373. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L.; Ding, J.; Welton, T.; Armstrong, D.W. Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 2002, 124, 14247–14254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, Z.L.; Zou, L.; Chi, R. Imidazolium-based ionic liquids with inorganic anions in the extraction of salidroside and tyrosol from Rhodiola: The role of cations and anions on the extraction mechanism. J. Mol. Liq. 2019, 275, 136–145. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, G.; Peng, G.; Li, J.; Chen, J. Application of Ionic Liquid-Based Ultrasound-Assisted Extraction of Five Phenolic Compounds from Fig (Ficus carica L.) for HPLC-UV. Food Anal. Method 2014, 8, 1673–1681. [Google Scholar] [CrossRef]
- Xu, H.L.; Li, X.Q.; Hao, Y.Y.; Zhao, X.B.; Cheng, Y.; Zhang, J.L. Highly selective separation of acteoside from Cistanche tubulosa using an ionic liquid based aqueous two–phase system. J. Mol. Liq. 2021, 333, 115982. [Google Scholar] [CrossRef]
- Shen, Q.; Zhu, T.; Wu, C.; Xu, Y.J.; Li, C.M. Ultrasonic-assisted extraction of zeaxanthin from Lycium barbarum L. with composite solvent containing ionic liquid: Experimental and theoretical research. J. Mol. Liq. 2022, 347, 118265. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.Z.; Xu, R.; Huang, M.D.; Zeng, H. Application of ionic liquids in the microwave-assisted extraction of podophyllotoxin from Chinese herbal medicine. Analyst 2011, 136, 2294–2305. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, M.G.; Svinyarov, I. Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. II. Kinetics, modeling and mechanism of glaucine extraction from Glaucium flavum Cr. (Papaveraceae). Sep. Purif. Technol. 2013, 103, 279–288. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, S.H.; Chen, J.; Zhang, L.W. Application of ionic liquid-based microwave-assisted extraction of flavonoids from Scutellaria baicalensis Georgi. J. Chromatogr. B 2015, 1002, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Sui, X.Y.; Li, L.; Zhang, J.; Liang, X.; Li, W.J.; Zhang, H.L.; Fu, S. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves. Anal. Chim. Acta 2016, 903, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Wang, Y.J.; Su, Z.Y.; He, D.D.; Du, Y.; Guo, M.Z.; Yang, D.Z.; Tang, D.Q. Ionic liquids-ultrasound based efficient extraction of flavonoid glycosides and triterpenoid saponins from licorice. RSC Adv. 2018, 8, 13989–13996. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.T.; Cao, Y.; Qin, Y.T.; Zhao, S.Y.; Toufouki, S.; Yao, S. Triphase dynamic extraction system involved with ionic liquid and deep eutectic solvent for various bioactive constituents from Tartary buckwheat simultaneously. Food Chem. 2023, 405, 134955. [Google Scholar] [CrossRef]
- Shi, G.L.; Lin, L.F.; Liu, Y.L.; Chen, G.S.; Fu, S.; Luo, Y.T.; Yang, A.H.; Zhou, Y.Y.; Wu, Y.Q.; Li, H. Multi-objective optimization and extraction mechanism understanding of ionic liquid assisted in extracting essential oil from Forsythiae fructus. Alex. Eng. J. 2022, 61, 6897–6906. [Google Scholar] [CrossRef]
- Luo, Z.D.; Tian, M.F.; Ahmad, N.; Qiu, W.; Zhang, Y.; Li, C.Y.; Zhao, C.J. A switchable temperature-responsive ionic liquid-based surfactant-free microemulsion for extraction and separation of hydrophilic and lipophilic compounds from Camptotheca acuminata and extraction mechanism. Colloids Surf. B 2022, 222, 113067. [Google Scholar] [CrossRef]
- Jiao, J.; Gai, Q.Y.; Fu, Y.J.; Zu, Y.G.; Luo, M.; Zhao, C.J.; Li, C.Y. Microwave-assisted ionic liquids treatment followed by hydro-distillation for the efficient isolation of essential oil from Fructus forsythiae seed. Sep. Purif. Technol. 2013, 107, 228–237. [Google Scholar] [CrossRef]
- Wang, L.L.; Bai, M.G.; Qin, Y.C.; Liu, B.T.; Wang, Y.B.; Zhou, Y.F. Application of Ionic Liquid-Based Ultrasonic-Assisted Extraction of Flavonoids from Bamboo Leaves. Molecules 2018, 23, 2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.H.; Zu, Y.G.; Yang, L.; Li, J. Two solid-phase recycling method for basic ionic liquid [C4mim]Ac by macroporous resin and ion exchange resin from Schisandra chinensis fruits extract. J. Chromatogr. B 2015, 976–977, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shi, J.; Murthy Konda, N.V.S.N.; Campos, D.; Liu, D.; Nemser, S.; Shamshina, J.; Dutta, T.; Berton, P.; Gurau, G.; et al. Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnol. Biofuels. 2017, 10, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan Mai, N.; Ahn, K.; Koo, Y.M. Methods for recovery of ionic liquids—A review. Process Biochem. 2014, 49, 872–881. [Google Scholar]
- Zhou, J.J.; Sui, H.; Jia, Z.D.; Yang, Z.Q.; He, L.; Li, X.G. Recovery and purification of ionic liquids from solutions: A review. RSC Adv. 2018, 8, 32832–32864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtczuk, M.K.; Caeiro, N.; Rodríguez, H.; Rodil, E.; Soto, A. Recovery of the ionic liquids [C2mim][OAc] or [C2mim][SCN] by distillation from their binary mixtures with methanol or ethanol. Sep. Purif. Technol. 2020, 248, 117103. [Google Scholar] [CrossRef]
- Wang, J.F.; Luo, J.Q.; Zhang, X.P.; Wan, Y.H. Concentration of ionic liquids by nanofiltration for recycling: Filtration behavior and modeling. Sep. Purif. Technol. 2016, 165, 18–26. [Google Scholar] [CrossRef]
- Luo, Y.J.; Huang, X.X.; Yao, S.; Peng, L.C.; Li, F.L.; Song, H. Synthesis of a New Imidazole Amino Acid Ionic Liquid Polymer and Selective Adsorption Performance for Tea Polyphenols. Polymers 2020, 12, 2171. [Google Scholar] [CrossRef]
- Ran, H.Y.; Wang, J.X.; Abdeltawab, A.A.; Chen, X.C.; Yu, G.R.; Yu, Y.H. Synthesis of polymeric ionic liquids material and application in CO2 adsorption. J. Energy Chem. 2017, 26, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Shirini, F.; Khaligh, N.G. 1,3-Disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable ionic liquid catalyst for the N-Boc protection of amines. J. Mol. Liq. 2013, 177, 386–393. [Google Scholar] [CrossRef]
- Khaligh, N.G. Synthesis of coumarins via Pechmann reaction catalyzed by 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable acidic ionic liquid. Catal. Sci. Technol. 2012, 2, 1633–1636. [Google Scholar] [CrossRef]
- De Souza Mesquita, L.M.; Ventura, S.P.M.; Braga, A.R.C.; Pisani, L.P.; Rosso, V.V.D. Ionic liquid-high performance extractive approach to recover carotenoids from Bactris gasipaes fruits. Green Chem. 2019, 21, 2380–2391. [Google Scholar] [CrossRef]
- Yuan, B.; Guan, J.; Peng, J.; Zhu, G.Z.; Jiang, J.H. Green hydrolysis of corncob cellulose into 5-hydroxymethylfurfural using hydrophobic imidazole ionic liquids with a recyclable, magnetic metalloporphyrin catalyst. Chem. Eng. J. 2017, 330, 109–119. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic Liquids Toxicity—Benefits and Threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef] [PubMed]
- Amde, M.; Liu, J.F.; Pang, L. Environmental Application, Fate, Effects and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015, 49, 12611–12627. [Google Scholar] [CrossRef] [PubMed]
- Lata, A.; Ndzi, M.; Stepnowski, P. Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem. 2010, 12, 60–64. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Zhu, L.; Wang, J.; Zhou, T. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna. Environ. Pollut. 2017, 229, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Miao, X.Q.; Zhang, L.F.; Wang, J.J. Immunotoxicity of 1-methyl-3-octylimidazolium bromide on brocarded carp (Cyprinus carpio L.). Ecotoxicol. Environ. Saf. 2012, 75, 180–186. [Google Scholar] [CrossRef]
- Yu, M.; Liu, C.H.; Zhao, H.H.; Yang, Y.J.; Sun, J.H. The effects of 1-hexyl-3-methylimidazolium bromide on embryonic development and reproduction in Daphnia magna. Ecotoxicol. Environ. Saf. 2020, 190, 110137. [Google Scholar] [CrossRef]
- Diaz, E.; Monsalvo, V.M.; Lopez, J.; Mena, I.F.; Palomar, J.; Rodriguez, J.J.; Mohedano, A.F. Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays. Ecotoxicol. Environ. Saf. 2018, 162, 29–34. [Google Scholar] [CrossRef]
- Bakshi, K.; Mitra, S.; Sharma, V.K.; Jayadev, M.S.K.; Sakai, V.G.; Mukhopadhyay, R.; Gupta, A.; Ghosh, S.K. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane. BBA Biomembr. 2020, 1862, 183103. [Google Scholar] [CrossRef]
- Teresa Garcia, M.; Gathergood, N.; Scammells, P.J. Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem. 2005, 7, 9–14. [Google Scholar] [CrossRef]
- Radosevic, K.; Cvjetko, M.; Kopjar, N.; Novak, R.; Dumic, J.; Srcek, V.G. In vitro cytotoxicity assessment of imidazolium ionic liquids: Biological effects in fish Channel Catfish Ovary (CCO) cell line. Ecotoxicol. Environ. Saf. 2013, 92, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko Bubalo, M.; Hanousek, K.; Radošević, K.; Srček, V.G.; Jakovljević, T.; Redovniković, I.R. Imidiazolium based ionic liquids: Effects of different anions and alkyl chains lengths on the barley seedlings. Ecotoxicol. Environ. Saf. 2014, 101, 116–123. [Google Scholar] [CrossRef]
- Mester, P.; Robben, C.; Witte, A.K.; Kalb, R.; Monika, E.S.; Peter, R.; Tom, G. FTIR Spectroscopy Suggests a Revised Mode of Action for the Cationic Side-Chain Effect of Ionic Liquids. ACS Comb. Sci. 2019, 21, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Leitch, A.C.; Abdelghany, T.M.; Probert, P.M.; Dunn, M.P.; Meyer, S.K.; Palmer, J.M.; Wright, M.C. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects. Food Chem. Toxicol. 2020, 136, 111069. [Google Scholar] [CrossRef]
- Shao, Y.T.; Wang, J.; Du, Z.K.; Li, B.; Zhu, L.S.; Wang, J.H. Toxicity of 1-alkyl-3-methyl imidazolium nitrate ionic liquids to earthworms: The effects of carbon chains of different lengths. Chemosphere 2018, 206, 302–309. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Wang, J.H.; Du, Z.K.; Li, B.; Juhasz, A.; Tan, M.Y.; Zhu, L.S.; Wang, J. Toxicity Evaluation of Three Imidazolium-based ionic liquids ([C(6)mim]R) on Vicia faba Seedlings Using an integrated biomarker response (IBR) index. Chemosphere 2020, 240, 124919. [Google Scholar] [CrossRef]
- Yang, F.X.; Wang, X.P.; Tan, H.Z.; Liu, Z.G. Improvement the viscosity of imidazolium-based ionic liquid using organic solvents for biofuels. J. Mol. Liq. 2017, 248, 626–633. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A.S.F. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Hackl, K.; Muhlbauer, A.; Ontiveros, J.F.; Marinkovic, S.; Estrine, B.; Kunz, W.; Nardello-Rataj, V. Carnitine Alkyl Ester Bromides as Novel Biosourced Ionic Liquids, Cationic Hydrotropes and Surfactants. J. Colloid Interface Sci. 2018, 511, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Foulet, A.; Ben Ghanem, O.; Harbawi, M.E.; Lévêque, J.M.; Mutalib, M.I.A.; Yin, C.Y. Understanding the physical properties, toxicities and anti-microbial activities of choline-amino acid-based salts: Low-toxic variants of ionic liquids. J. Mol. Liq. 2016, 221, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.M.; Silva, S.S.; Reis, R.L. Biocompatible ionic liquids: Fundamental behaviours and applications. Chem. Soc. Rev. 2019, 48, 4317–4335. [Google Scholar] [CrossRef] [PubMed]
Plants | Extraction Solvents | Extraction Results | Ref. |
---|---|---|---|
Angelica gigas Nakai (A. gigas) | [Bmim][BF4] | Decursin’s yield was 43.32 mg/g, decursinol angelate’s yield was 17.87 mg/g | [29] |
Angelica gigas Nakai (AGN) | 60% EtOH | Decursin’s yield was 29.80 mg/g, decursinol angelate’s yield was 13.55 mg/g | [30] |
Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) | [C4mim][PF6] | Rutin’s enrichment factor was 32, the extraction efficiency was 71.8% | [31] |
Amaranth (Amaranthus spp.) | Water and ethanol | Rutin’s yields extracted from amaranth were 35.3 mg/kg (defatted seeds) and 41.1 mg/kg (non-defatted seeds) | [32] |
Grape | [C4mim][Br] | Anthocyanin’s yield was 15.9 ± 0.1 mg/g | [33] |
Purple-fleshed sweet potato (PSP) | 80% Methanol | Anthocyanin’s yield was 245.3 mg/100 g | [34] |
Orange | [Bmim][Cl] | Carotenoid’s yield was 32.08 ± 2.05 μg/g | [35] |
Acerola | Acetone | Carotenoid’s yield was 7.88 ± 0.59 μg/g | [36] |
Glycyrrhiza uralensis | [Bmim][Br] | Isoliquiritigenin’s yield was 0.665 mg/g | [37] |
Licorice (Glycyrrhiza glabra) | Glycerol/water mixtures | Isoliquiritigenin’s yield was 6.23 ± 0.16 µg/mL | [38] |
Ionic Liquid | Structure | Ionic Liquid | Structure |
---|---|---|---|
[Emim][Cl] ([C2mim][Cl]) | [Bmim][Cl] ([C4mim][Cl]) | ||
[Hmim][Cl] ([C6mim][Cl]) | [Omim][Cl] ([C8mim][Cl]) | ||
[Emim][Br] ([C2mim][Br]) | [Bmim][Br] ([C4mim][Br]) | ||
[Hmim][Br] ([C6mim][Br]) | [Omim][Br] ([C8mim][Br]) | ||
[Demim][Br] ([C10mim][Br]) | [Domim][Br] ([C12mim][Br]) | ||
[Emim][BF4] ([C2mim][BF4]) | [Bmim][BF4] ([C4mim][BF4]) | ||
[Hmim][BF4] ([C6mim][BF4]) | [Omim][BF4] ([C8mim][BF4]) | ||
[Bmim][PF6] ([C4mim][PF6]) | [Hmim][PF6] ([C6mim][PF6]) | ||
[Omim][PF6] ([C8mim][PF6]) | [Demim][PF6] ([C10mim][PF6]) | ||
[Bmim][Tf2N] ([C4mim][Tf2N]) | [Hmim][Tf2N] ([C6mim][Tf2N]) | ||
[Emim][Ac] ([C2mim][Ac]) | [Bmim][Ac] ([C4mim][Ac]) |
Category | Bioactive Compounds | Plants | Ionic Liquids | Methods * | Ref. |
---|---|---|---|---|---|
Flavonoids | Taxifolin | Larix gmelinii | [C4mim][Br] | MAE | [49] |
Dihydroquercetin | Larix gmelinii | [C2mim][Br] | Homogenate-ultrasound synergistic technique | [50] | |
Isoflavones | Radix Puerariae | [Bmim][Br] | MAE | [51] | |
Rutin, hyperoside, hesperidin | Sorbus tianschanica | [C6mim][BF4] | MAE | [52] | |
Flavonoids | Apocynum venetum L. | [C4mim][N(CN)2] | UAE | [53] | |
Amentoflavone, hinokiflavone | Selaginella sinensis | [C6mim][BF4] | MAE | [54] | |
Isoangustone A, licoisoflavanone, licoricidin, glabridin | Licorice | [C8mim][BF4] | UAE | [55] | |
Alkaloids | Berberine, palmatine, jatrorrhizine | Phellodendron amurense Rupr. | [Bmim][Br] | UAE | [56] |
Aconitum alkaloids | Aconitum carmichaeli (Fuzi) | [C6mim][Br] | Aqueous two-phase system | [57] | |
Pronuciferine, N-nornuciferine, nuciferine, roemerine | Lotus | [C4mim][BF4] | Aqueous two-phase system | [58] | |
Protopine, allocryptopine, sanguinarine, chelerythrine, dihydrochelerythrine, dihydrosanguinarine | Macleaya cordata | [C6mim][BF4] | UAE | [59] | |
Sinomenine | Sinomenium acutum | [C2OHmim]FeCl4 | UAE | [60] | |
Berberine, palmatine, jatrorrhizine, magnoflorine, phellodendrine | Phellodendron amurense Rupr | [C4mim][OAc] | UAE | [61] | |
Liensinine, isoliensinine, neferine, O-demethyl nuciferine, nuciferine | Lotus | [C12mim][Br] | Ionic-liquid-assisted mechanochemical extraction | [62] | |
Terpenoids | Ganoderic acid | Ganoderma lucidum | [C4mim][Cl] | - | [63] |
Paeoniflorin | Paeonia suffruticosa Andr. | [C4mim][Br] | MAE | [64] | |
Ionone, linalool oxide pyranoid, linalool oxide furanoid | Osmanthus fragrans var. aurantiacus | [C2mim][(MeO)(H)PO2] | Maceration | [65] | |
Morroniside, sweroside, loganin, cornuside | Fructus Corni | [Domim][HSO4] | Maceration | [66] | |
Cynaropicrin | Cynara cardunculus L. | 1-alkyl-3-methylimidazolium chloride | - | [67] | |
Limonene, β-pinene, 1r-α-pinene, limonene oxide, linalool, β-citral, (R)-(+)-citronellal, eremophilene, geranial, α-citral | Citrus sinensis | [C2mim][OAc], [C4mim][Cl] | MAE | [68] | |
Quinones | Physcion, chrysophanol, emodin, rhein, aloe–emodin | Rhubarb | [Bmim][Br] | UMAE | [69] |
Physcion, chrysophanol, emodin, rhein, aloe–emodin | Aloe vera L. | [C4mim][BF4] | Aqueous two-phase system | [70] | |
Miltirone, tanshinone IIA, cryptotanshinone | Salvia miltiorrhiza Bunge | [C8mim][PF6] | Ultrahigh-pressure-assisted extraction | [71] | |
Physcion, chrysophanol, emodin, aloe–emodin | Rheum palmatum L. | [C8mim][BF4] | MAE | [72] | |
Rhein and emodin | Rheum palmatum L. | [BHim][MeSO3] | MAE | [73] | |
Physcion, chrysophanol, emodin, rhein, aloe–emodin | Polygonum multiflorum | [C4Bmi][p-TSA] | UAE | [74] | |
Polysaccharides | Aloe polysaccharides | Aloe vera L. | [Bmim][BF4] | Aqueous two-phase system | [75] |
Polysaccharides | Japanese Cedar | 1-(3-methoxypropyl)-3-methyl imidazolium ethyl ethylphosphonate | - | [76] | |
Ginger polysaccharides | Ginger (Zingiber officinale Roscoe) | [C4mim][BF4] | UAE | [77] | |
Arabinogalactan | Larix gmelinii | [C2mim][Br] | Homogenate-ultrasound synergistic technique | [50] | |
Bamboo polysaccharides | Bamboo | [Bmim][PF6] | UMAE | [78] | |
Phenols | Aspidinol, aspidin PB, dryofragin, aspidin BB | Dryopteris fragrans. | [C8mim][Br] | MAE | [79] |
Polyphenolics | Peperomia pellucida (L.) Kunth (P. Pellucida) | [Bmim][BF4] | MAE | [80] | |
Catechins | Camellia sinensis (Linn.) O. Kuntze | [C3mim]FeCl4 | UAE | [81] | |
Polyphenols | Carya cathayensis Sarg | [C4C1im][BF4] | UAE | [82] | |
Glycosides | Glycosides salicin, hyperin | Populus | [C4mim][BF4] | MAE | [83] |
Verbascoside | Rehmannia | [Bemim][Cl] | MAE | [84] | |
Triterpenoid saponins, glycyrrhizin | Licorice | [C4mim][BF4] | UAE | [85] | |
Oxypaeoniflorin, albiflorin, paeonin, paeoniflorin, benzoylpaeoniflorin | Paeonia suffruticosa (P. suffruticosa) | [C8mim][Br] | - | [86] | |
Syringin, oleuropein | Syringa reticulata subsp. amurensis | [C4mim][Br] | UAE | [87] | |
Phenylpropanoids | Cajanol | Cajanus cajan (L.) Millsp (Pigeon pea) | [C4mim][Br] | MAE | [88] |
Coumarins | Cortex fraxini | [C4mim][Br] | UMAE | [89] | |
Lignans | Schisandra | [C4mim][BF4] | UAE | [90] | |
Psoralen | Ficus carica L. | [Bmim]Br–citric acid mixture | Aqueous two-phase system | [91] | |
Psoralen and isopsoralen | Psoralea corylifolia | [C10mim][Br] | UAE | [92] | |
Organic acids | Gallic acid, ellagic acid | Eucalyptus camaldulensis | [C4mim][BF4] | MAE | [93] |
Aristolochic acid | Pinellia Tenore | IM-BIM@Sil (imidazolium chloride–butylimidazolium chloride immobilized silica) | - | [94] | |
Gallic acid, malic acid, ellagic acid, tannic acid, chlorogenic acid, quercetin | Oak galls (Quercus sp.) | [Bmim][Tf2N] | Ultrasonic-probe-assisted extraction | [95] | |
Others | Diterpenoid lactone-andrographolide | Andrographis paniculata | [Bmim][Cl] | MAE | [96] |
Carotenoids | Orange | [Bmim][Cl] | UAE | [35] | |
Corilagin | Phyllanthus | [Bmim][Br] | - | [97] |
Types of Ionic Liquids | Reused Times | Ref. |
---|---|---|
(ViIm)2C6(L-Pro)2 | 4 | [128] |
P[VEIm][Br], P[VEIm][BF4], P[VEIm][PF6], | 4 | [129] |
[C12mim][BF4] | 4 | [43] |
DSIMHS (include 1,3-Disulfonic acid imidazolium hydrogen sulfate) | 4 | [130] |
[C2mim][OAc] | 5 | [123] |
[Msim][HSO4] | 5 | [131] |
[C4mim][BF4] | 10 | [132] |
[Momim][PF6] | 14 | [133] |
Ionic Liquids | Affected Organisms/System | Toxicity Estimated Parameters | Observations | Ref. |
---|---|---|---|---|
[Emim], [Bmim], [Hmim], [Omim], [Dmim] with [Cl] | Oocystis submarina, C. vulgaris, Cyclotella meneghiniana, Geitlerinema amphibium | Growth inhibition [I%] under different salinities [PSU] (8, 16, 24, 32) | The toxicity of ILs was impacted by rising salinity. Algal growth was less inhibited at higher salinities. | [136] |
[Cnmim][NO3] (n = 2, 4, 6, 8, 10, 12) | C. vulgaris, Daphnia magna. | The 50% effect concentration (EC50), EC50 (mg L−1) 24, 48, 72, 96 h | The toxicity of the studied ILs in test organisms enhanced with alkyl chain length improved. | [137] |
[C8mim][Br] | Brocarded carp (Cyprinus carpio L.) | The determination of 50 percent lethal concentration (LC50) | After 7 days of [C8mim][Br] treatment, 300 mg L−1 of [C8mim][Br] caused some damage to brocaded carp. | [138] |
[C6mim][Br] | Daphnia magna (D. magna) | Survival rate (%), malformation rate of offspring | The results showed that [C6mim][Br] could lead to the abnormal development and reproduction of Daphnia magna. | [139] |
[Bmim], [Hmim], [Omim], [Dmim] with [Cl]; [Bmim], [Hmim], [Omim], [Dmim] with [BF4]; [Bmim], [Hmim], [Omim], [Dmim] with [Tf2N] | Vibrio fischeri (Photobacterium phosphoreum) | The EC50 values | The findings indicated that toxicity enhanced with improving n-alkyl chain length; the ecotoxicity measured by respiration inhibition tests followed the order [Tf2N]−> [Cl]−> [BF4]−. | [140] |
[Emim], [Bmim], [Dmim] with [BF4]; [Emim], [Bmim], [Dmim] with [Cl] | Mammalian cells | The number of viable cells (mammalian cells were dealt with the ILs, and surviving cells were recorded 48 h posttreatment) | The cycle and death of cells indicated that the effect is strongly dependent on the hydrophobic strength of ionic liquids. | [141] |
1-butyl-3-methylimidazolium series and 1-(propoxycarbonyl) methyl-3-methylimidazole series | D. magna, Photobacterium phosphoreum | The EC50 values (µM) 24 h; The IC50 values (µM) 24 h | In two bioassays, the analyzed dialkylimidazolium ionic liquids were more toxic than conventional organic solvents. | [142] |
[Cnmim], n = 4, 5, 7, 10 with [BF4], [PF6], [Br], [Tf2N]. | The fish CCO cell line | The EC50 values (mM) 72h | The results demonstrated a relationship between anion type, alkyl chain length, and the cytotoxicity of the ionic liquids in CCO cells; the EC50 values indicated imidazolium ionic liquids have moderate-to-high toxicity. | [143] |
[C4mim][BF4], [C4mim][CH3CO2], [C4mim][Br], [C7mim][Br], [C10mim][Br] | Barley (Hordeum vulgare) | Germination inhibition, shoot-height and root-length inhibition, and EC50 values | The inhibitory effect was decided by the concentration and chemical structure of ionic liquids and the toxic order of them was [C10mim][Br] > [C7mim][Br] > [C4mim][Br] > [C4mim][CH3CO2] > [C4mim][BF4]. | [144] |
[Cnmim][Cl] (n = 2, 4, 6, 8 and 10) | Escherichia coli (EPEC), Staphylococcus aureus (MRSA) | Mortality and minimal bactericidal concentration (MBC) | There is no proof that ILs with side chains shorter than 16 interact with the cell membrane. It appeared that ILs with side-chain lengths below 16 affect bacterial cellular proteins. | [145] |
1 octyl 3 methylimidazolium (M8OI) | Soils | The M8OI toxicity database in cultured mammalian cells, in experimental animal studies, and in environmental impact model indicators | It has the potential to cause an autoimmune liver disease | [146] |
([Cnmim][NO3] (n = 4, 6, 8, 10, and 12) | Earthworms (Eisenia fetida) | Reactive oxygen species (ROS) levels after 14 and 28 days of exposure | The toxicity of tested imidazolium ionic liquids was [C10mim][NO3] < [C12mim][NO3] < [C4mim][ NO3] < [C6mim][ NO3] < [C8mim][NO3]. | [147] |
[C6mim][Br], [C6mim][NO3], [C6mim][PF4] | Vicia faba | The EC50 values | The toxic of the three ionic liquids was [C6mim][NO3] < [C6mim][Br] < [C6mim][BF4]. | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Liang, C.; Majeed, Z.; Tian, M.; Zhao, C.; Luo, M.; Li, C. Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants. Separations 2023, 10, 151. https://doi.org/10.3390/separations10030151
Gong J, Liang C, Majeed Z, Tian M, Zhao C, Luo M, Li C. Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants. Separations. 2023; 10(3):151. https://doi.org/10.3390/separations10030151
Chicago/Turabian StyleGong, Jiahui, Chunyu Liang, Zahid Majeed, Mengfei Tian, Chunjian Zhao, Meng Luo, and Chunying Li. 2023. "Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants" Separations 10, no. 3: 151. https://doi.org/10.3390/separations10030151
APA StyleGong, J., Liang, C., Majeed, Z., Tian, M., Zhao, C., Luo, M., & Li, C. (2023). Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants. Separations, 10(3), 151. https://doi.org/10.3390/separations10030151