Recent Applications of Carbon Nanotubes for Separation and Enrichment of Lead Ions
Abstract
:1. Introduction
2. Variations of SPE with CNTs
3. CNTs for Separation and Enrichment of Pb(II)
3.1. Oxidized CNTs
3.2. CNTs Modified with Organic Compounds
3.3. CNTs Decorated with Metal Oxides
3.4. CNTs Wrapped with Polymers
3.5. Other Nanocomposities with CNTs
4. Carbon Nanotube Membranes
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Li, W.K.; Shi, Y.P. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. TrAC Trends Anal. Chem. 2019, 118, 652–665. [Google Scholar] [CrossRef]
- Vesali-Naseh, M.; Naseh, M.R.V.; Ameri, P. Adsorption of Pb(II) ions from aqueous solutions using carbon nanotubes: A systematic review. J. Cleaner Prod. 2021, 291, 125917. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Sinha Ray, S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar]
- Treviño, M.J.S.; Zarazùa, S.; Płotka-Wasylka, J. Nanosorbents as materials for extraction processes of environmental contaminants and others. Molecules 2022, 27, 1067. [Google Scholar] [CrossRef]
- Trivedi, M.; Reecha, K. Recent development and applications of carbon nanotubes. Chem. Sci. Rev. Lett. 2020, 9, 502–510. [Google Scholar]
- Shoukat, R.; Khan, M.I. Carbon nanotubes: A review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst. Technol. 2021, 27, 4183–4192. [Google Scholar] [CrossRef]
- Moghaddam, H.K.; Maraki, M.R.; Rajaei, A. Application of carbon nanotubes (CNT) on the computer science and electrical engineering: A review. Int. J. Reconfig. Embed. Syst. 2020, 9, 61–82. [Google Scholar]
- Rasheed, T.; Hassan, A.A.; Kausar, F.; Sher, F.; Bilal, M.; Iqbal, H.M.N. Carbon nanotubes assisted analytical detection-Sensing/delivery cues for environmental and biomedical monitoring. TrAC Trends Anal. Chem. 2020, 132, 116066. [Google Scholar] [CrossRef]
- Garg, A.; Chalak, H.D.; Belarbi, M.O.; Zenkour, A.M.; Sahoo, R. Estimation of carbon nanotubes and their applications as reinforcing composite materials-An engineering review. Compos. Struct. 2021, 272, 114234. [Google Scholar] [CrossRef]
- Khairy, M.; El-Safty, S.A.; Shenashen, M.A.; Elshehy, E.A. Hierarchical inorganic–organic multi-shell nanospheres for intervention and treatment of lead-contaminated blond. Nanoscale 2013, 5, 7920–7927. [Google Scholar] [CrossRef]
- El-Safty, S.A.; Khairy, M.; Shenashen, M.A.; Elshhehy, E.; Warkocki, W.; Sakai, M. Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants. Nano Res. 2015, 8, 3150–3163. [Google Scholar] [CrossRef]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube-A review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Sheikhpour, M.; Naghinejad, M.; Kasaeian, A.; Lohrasbi, A.; Shahraeini, S.S.; Zomorodbakhsh, S. The applications of carbon nanotubes in the diagnosis and treatment of lung cancer: A critical review. Int. J. Nanomed. 2020, 15, 7063–7078. [Google Scholar] [CrossRef]
- Teixeira-Santos, R.; Gomes, M.; Gomes, L.C.; Mergulhão, F.J. Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: A systematic review. iScience 2021, 24, 102001. [Google Scholar] [CrossRef]
- Salah, L.S.; Ouslimani, N.; Bousba, D.; Huynen, I.; Danlée, Y.; Aksas, H. Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. J. Nanomater. 2021, 2021, 4972770. [Google Scholar] [CrossRef]
- Gacem, A.; Modi, S.; Yadav, V.K.; Islam, S.; Patel, A.; Dawane, V.; Jameel, M.; Inwati, G.K.; Piplode, S.; Solanki, V.S.; et al. Recent advances in methods for synthesis of carbon nanotubes and carbon nanocomposite and their emerging applications: A descriptive review. J. Nanomater. 2022, 2022, 7238602. [Google Scholar] [CrossRef]
- Pattanshetti, A.; Pradeep, N.; Chaitra, V.; Uma, V. Synthesis of multi-walled carbon nanotubes (MWCNTs) from plastic waste & analysis of garlic coated gelatin/MWCNTs nanocomposite films as food packaging material. Appl. Sci. 2020, 2, 730. [Google Scholar]
- Egbosiuba, T.C.; Abdulkareem, A.S.; Tijani, J.O.; Ani, J.I.; Krikstolaityte, V.; Srinivasan, M.; Veksha, A.; Lisak, G. Taguchi optimization design of diameter-controlled synthesis of multi walled carbon nanotubes for the adsorption of Pb(II) and Ni(II) from chemical industry wastewater. Chemosphere 2021, 266, 128937. [Google Scholar] [CrossRef]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi1, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef] [Green Version]
- Baghel, P.; Sakhiya, A.K.; Priyanka Kaushal, P. Ultrafast growth of carbon nanotubes using microwave irradiation: Characterization and its potential applications. Heliyon 2022, 8, e10943. [Google Scholar] [CrossRef]
- Kure, N.; Hamidon, N.M.; Azhari, S.; Mamat, N.S.; Yusoff, H.M.; Isa, B.M.; Yunusa, Z. Simple microwave-assisted synthesis of carbon nanotubes using polyethylene as carbon precursor. J. Nanomater. 2017, 2017, 2474267. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Dyachkova, T.P.; Rukhov, A.V.; Tkachev, A.G.; Tugolukov, E.N. Functionalization of carbon nanotubes: Methods, mechanisms and technological realization. Adv. Mater. Technol. 2018, 2, 18–41. [Google Scholar] [CrossRef]
- Aslam, M.M.; Kuo, H.W.; Den, W.; Usman, M.; Sultan, H.; Ashraf, M. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application. Sustainability 2021, 13, 5717. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Chemical functionalization of carbon nanotubes with polymers: A brief overview. Macromol 2021, 1, 64–83. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, H.; Teng, Y.; Xiong, Y.; Chen, Z.; You, L.; Xiao, D. Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications. J. Mater. Chem. B 2021, 9, 9076–9099. [Google Scholar] [CrossRef]
- Aigbe, U.O.; Osibore, O.A. Carbon derived nanomaterials for the sorption of heavy metals from aqueous solution: A review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100578. [Google Scholar] [CrossRef]
- Pyrzynska, K. Nanomaterials in speciation analysis of metals and metalloids. Talanta 2020, 212, 120784. [Google Scholar] [CrossRef]
- Azzouz, A.; Kailasa, S.K.; Lee, S.S.; Rascón, A.J.; Ballesteros, E.; Zhang, M.; Kim, K.H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends Anal. Chem. 2018, 108, 347–369. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Nouri, N.; Khorram, P.; Duman, O.; Sibel, T.; Hassan, S. Overview of nanosorbents used in solid phase extraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Trends Environ. Anal. Chem. 2020, 25, e00081. [Google Scholar] [CrossRef]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, W.S.; Manna, K. Sources and toxicological effects of lead on human health. Indian J. Med. Spec. 2019, 10, 66–71. [Google Scholar]
- Tsaridou, C.; Karabelas, A.J. Drinking water standards and their implementation-A critical assessment. Water 2021, 13, 2918. [Google Scholar] [CrossRef]
- Büyüktiryaki, S.; Keçili, R.; Hussain, C.M. Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. TrAC Trends Anal. Chem. 2020, 127, 115893. [Google Scholar]
- Ghorbani, M.; Aghamohammadhassan, M.; Ghorbani, H.; Ali Zabihi, A. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem. J. 2020, 158, 105250. [Google Scholar]
- Gugushe, A.S.; Mpupa, A.; Nomngongo, P.N. Ultrasound-assisted magnetic solid phase extraction of lead and thallium in complex environmental samples using magnetic multiwalled carbon nanotubes/zeolite nanocomposite. Microchem. J. 2019, 149, 103960. [Google Scholar] [CrossRef]
- Krawczyk, M.; Jeszka-Skowron, M. Multiwalled carbon nanotubes as solid sorbent in dispersive micro solid-phase extraction for the sequential determination of cadmium and lead in water samples. Microchem. J. 2016, 126, 296–301. [Google Scholar] [CrossRef]
- Azorín, C.; Benedé, J.L.; Alberto Chisvert, A. New challenges in sample preparation: Miniaturized stir bar sorptive dispersive microextraction as a high-throughput and feasible approach for low-availability sample preparation. Anal. Chim. Acta 2023, 1238, 340627. [Google Scholar] [CrossRef]
- Song, X.Y.; Chen, J.; Shi, Y.P. Different configurations of carbon nanotubes reinforced solid-phase microextraction techniques and their applications in the environmental analysis. TrAC Trends Anal. Chem. 2017, 96, 263–275. [Google Scholar] [CrossRef]
- ALOthman, Z.A.; Wabaidur, S.M. Application of carbon nanotubes in extraction and chromatographic analysis: A review. Arab. J. Chem. 2019, 12, 633–651. [Google Scholar] [CrossRef]
- Ghaemi, F.; Amiri, A.; Yunus, R. Methods for coating solid-phase microextraction fibers with carbon nanotubes. TrAC Trends Anal. Chem. 2014, 59, 133–143. [Google Scholar]
- Domagała, K.; Borlaf, M.; Traber, J.; Kata, D.; Graule, T. Purification and functionalisation of multi-walled carbon nanotubes. Mater Lett. 2019, 253, 272–275. [Google Scholar] [CrossRef]
- Safo, I.A.; Liu, F.; Xie, K.; Wei Xia, W. Oxidation and stability of multi-walled carbon nanotubes in hydrogen peroxide solution. Mat. Chem. Phys. 2018, 214, 472–481. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Rodríguez, C.; Leiva, E. Enhanced heavy metal removal from acid mine drainage wastewater using double-oxidized multiwalled carbon nanotubes. Molecules 2020, 25, 111. [Google Scholar] [CrossRef] [Green Version]
- Bayazit, S.S.; Inci, I. Adsorption of Pb(II) ions from aqueous solutions by carbon nanotubes oxidized different methods. J. Ind. Eng. Chem. 2013, 19, 2064–2070. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhou, A.L.; Peng, F.; Yu, H.; Chen, L.F. Adsorption characteristic of acidified carbon nanotubes for heavy metalPb(II) in aqueous solution. Mater. Sci. Eng. A 2007, 466, 201–206. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Lin, W.H.; Chang, Y.C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl. Surf. Sci. 2011, 257, 2401–2410. [Google Scholar] [CrossRef]
- Yu, X.Y.; Luo, T.; Zhang, Y.X.; Jia, Y.; Zhu, B.J.; Fu, X.C.; Liu, J.H.; Huang, X.J. Adsorption of lead(II) on O2-plasma-oxidized multiwalled carbon nanotubes: Thermodynamics, kinetics, and desorption. ACS Appl. Mater. Interfaces 2011, 3, 2585–2593. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, W.; Jie, F.; Zhao, Z.; Zhou, K.; Liu, H. The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater. Sci. Rep. 2021, 11, 16878. [Google Scholar] [CrossRef]
- Oyetade, O.A.; Skelton, A.A.; Nyamori, V.O.; Jonnalagadda, S.B.; Martincigh, B.S. Experimental and DFT studies on the selective adsorption of Pb2+ and Zn2+ from aqueous solution by nitrogen-functionalized multiwalled carbon nanotubes. Sep. Purif. Technol. 2017, 188, 174–187. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Fosso-Kankeu, E.; Ray, S.S. Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite. ACS Omega 2019, 4, 13922–13935. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, S.; Jain, V.; Sharma, N.; Tiwari, S.; Saxena, R. Efficient lead preconcentration using two chemically functionalized carbon nanotubes in hyphenated injection-flame atomic absorption spectrometry system. J. Chromatogr. A 2021, 1638, 461888. [Google Scholar] [CrossRef]
- Farghali, A.A.; Abdel Tawab, H.A.; Abdel Moaty, S.A.; Khaled, R. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J. Nanostruct. Chem. 2017, 7, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.E.; Lee, J.H.; Kalappa, P.; Advani, S.G. Effects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites. Compos. Sci. Technol. 2007, 67, 1027–1034. [Google Scholar] [CrossRef]
- Hosseini, H.; Mohammad Ghaffarzade, M. Surface functionalization of carbon nanotubes via plasma discharge: A review. Inorg. Chem. Commun. 2022, 138, 10927. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Ogawa, D.; Nakamura, K. Nitrogen functionalization of MWCNTs in Ar-N2 dielectric barrier discharge–Gas ratio effect. Mater. Sci Eng. B 2020, 61, 114680. [Google Scholar] [CrossRef]
- Sellaoui, L.; Schnorr, C.E.; Dhaouadi, F.; Taamalli, S.; Louis, F.; El Bakali, A.; Dotto, G.L.; Silva, L.F.O.; Lamine, A.B.; Rtimi, S.; et al. Modeling the adsorption of divalent metallic cations onto multi-walled carbon nanotubes functionalized with COOH. J. Mol. Liq. 2022, 366, 120275. [Google Scholar] [CrossRef]
- Xie, N.; Wang, H.; You, C. Role of oxygen functional groups in Pb2+ adsorption from aqueous solution on carbonaceous surface: A density functional theory study. J. Hazard. Mater. 2021, 405, 124221. [Google Scholar] [CrossRef]
- Navrotskaya, A.G.; Aleksandrova, D.D.; Krivoshapkina, E.F.; Sillanpää, M.; Krivoshapkin, P.V. Hybrid materials based on carbon nanotubes and nanofilters for environmental analysis. Front. Chem. 2020, 8, 546. [Google Scholar] [CrossRef]
- Atif, M.; Afzaal, I.; Naseer, H.; Abrar, M.; Bongiovann, R. Review-Surface modification of carbon nanotubes: A tool to control electrochemical performance. ECS J. Solid State Sci. Technol. 2020, 9, 041009. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Álvarez-Méndez, J.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. Anal. Chim. Acta 2015, 853, 77–94. [Google Scholar] [CrossRef]
- Kamaş, D.; Karatepe, A.; Soylak, M. Vortex-assisted magnetic solid phase extraction of Pb and Cd in some herb samples on magnetic multiwalled carbon nanotubes. Turk. J. Chem. 2021, 45, 210–218. [Google Scholar] [CrossRef]
- Feist, B.; Sitko, R. Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chem. 2018, 249, 38–44. [Google Scholar] [CrossRef]
- Hanbali, G.; Jodeh, S.; Hamed, O.; Bol, R.; Khalaf, B.; Qdemat, A.; Samhan, S.; Dagdag, O. Magnetic multiwalled carbon nanotube decorated with novel functionalities: Synthesis and application as adsorbents for lead removal from aqueous medium. Processes 2020, 8, 986. [Google Scholar] [CrossRef]
- Abdel Salam, E.T.; Abou El-Nour, K.M.; Awad, A.A.; Orabi, A.S. Carbon nanotubes modified with 5,7,-dinitro-8-quinolinol as potentially applicable tool for efficient removal of industrial wastewater pollutants. Arab. J. Chem. 2020, 13, 109–119. [Google Scholar] [CrossRef]
- Torkian, L.; Amini, M.M.; Gorji, T.; Sadeghi, O. A simple, rapid and sensitive method based on modified multiwalled carbon nanotubes for preconcentration and determination of lead ions in aqueous media in natural pHs. Arab. J. Chem. 2019, 12, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Zaidi, N.; Ahmad, H.; Kumar, S. Functionalized carbon nanotubes for dispersive solid phase extraction and atomic absorption spectroscopic determination of toxic metals ions. Int. J. Environ. Sci. Technol. 2018, 16, 707–718. [Google Scholar] [CrossRef]
- Al-Faiyz, Y.S.S.; Gouda, M. Multi-walled carbon nanotubes functionalized with hydroxamic acid derivatives for the removal of lead from wastewater: Kinetics, isotherm, and thermodynamic studiem. Polymers 2022, 14, 3870. [Google Scholar] [CrossRef]
- Qu, G.; Zhou, J.; Liang, S.; Li, Y.; Ning, P.; Pan, K.; Ji, W.; Tang, H. Thiol-functionalized multi-walled carbon nanotubes for effective removal of Pb(II) from aqueous solutions. Mat. Chem. Phys. 2022, 278, 125688. [Google Scholar] [CrossRef]
- Kończyk, J.; Żarska, S.; Ciesielski, W. Adsorptive removal of Pb(II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: Kinetic, mechanism, and thermodynamic studies. Colloids Surf. A 2019, 575, 271–282. [Google Scholar] [CrossRef]
- Tawfik, A.S. Insights into carbon nanotube-metal oxide composite: Embedding in membranes. Int. J. Sci. Res. Environ. Sci. Toxicol. 2017, 2, 1–4. [Google Scholar]
- Long, H.; Guo, C.; Wei, G.; Jiang, L.; Yu, Y. Facile synthesis of various carbon nanotube/metal oxide nanocomposites with high quality. Vacuum 2019, 166, 147–150. [Google Scholar] [CrossRef]
- Mallakpour, S.; Elham Khadem, E. Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications. Chem. Eng. J. 2016, 302, 344–367. [Google Scholar] [CrossRef]
- Islam, A.; Chauhan, A.; Javed, H.; Rais, S.; Izhar Ahmad, I. Magnetic carbon nanotubes-silica binary composite for effective Pb(II) sequestration from industrial effluents: Multivariate process optimization. Clean-Soil Air Water 2021, 49, 2000401. [Google Scholar] [CrossRef]
- Navaei Diva, T.N.; Zare, K.; Faleshi, F.; Yousefi, M. Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. J. Nanostruct. Chem. 2017, 7, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.G.; Gong, W.X.; Liu, X.W.; Yao, Y.W.; Gao, B.Y.; Yue, Q.Y. Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep. Purif. Technol. 2007, 58, 17–23. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Horng, J.J. Adsorption behaviour of heavy metal ions by carbon nanotubes grown on microsize Al2O3 particles. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 2007, 14, 77–84. [Google Scholar]
- Zondo, B.Z.; Sadare, O.O.; Simate, G.S.; Moothi, K. Removal of Pb2+ ions from synthetic wastewater using functionalized multiwalled carbon nanotubes decorated with green synthesized iron oxide-gold nanocomposite. Water SA 2022, 48, 304–316. [Google Scholar]
- Egbosiuba, T.C.; Egwunyenga, M.C.; Tijani, J.O.; Mustapha, S.; Abdulkareem, A.; Kovo, A.S.; Krikstolaityte, V.; Veksha, A.; Wagner, M.; Lisak, G. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. J. Hazard. Mater. 2022, 423, 126993. [Google Scholar] [CrossRef]
- Fujigaya, T.; Nakashima, N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 2015, 16, 024802. [Google Scholar] [CrossRef]
- Fujigaya, T. Development of polymer-wrapping methods for functionalization of carbon materials. Polym. J. 2022, 55, 181–191. [Google Scholar] [CrossRef]
- Shao, D.; Chen, C.; Wang, X. Application of polyaniline and multiwalled carbon nanotubes magnetic composites for removal of Pb(II). Chem. Eng. J. 2012, 185, 144–150. [Google Scholar] [CrossRef]
- Kanthapazham, R.; Ayyavu, C.; Mahendiradas, D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrolle nanocomposite. Desalination Water Treat. 2016, 57, 16871–16885. [Google Scholar]
- Bankole, M.T.; Abdulkareem, A.S.; Mohammed, I.A.; Ochigbo, S.S.; Tijani, I.O.; Abubakre, O.K.; Roos, W.D. Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci. Rep. 2019, 9, 4475. [Google Scholar] [CrossRef] [Green Version]
- Dehghania, Z.; Dadfarniaa, S.; Shabania, A.M.H.; Ehrampoushb, M.H. Magnetic multi-walled carbon nanotubes modified with polythiophene as a sorbent for simultaneous solid phase microextraction of lead and cadmium from water and food samples. Anal. Bioanal. Chem. Res. 2020, 7, 509–523. [Google Scholar]
- Alizadeh, B.; Ghorbani, M.; Salehi, M.A. Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb(II) from aqueous solution. J. Mol. Liq. 2016, 220, 142–149. [Google Scholar] [CrossRef]
- Jamshidian, M.; Sadeghalvad, B.; Ghasemi, I. Fabrication of polyethersulfone/functionalized MWCNTs nanocomposite and investigation its efficiency as an adsorbent of Pb(II) Ions. Arab. J. Sci. Eng. 2021, 46, 6259–6273. [Google Scholar] [CrossRef]
- Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm. 2010, 394, 122–142. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Ihsanullah; Baig, N.; Osman, A.M. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Sep. Purif. Technol. 2018, 191, 400–423. [Google Scholar] [CrossRef]
- Guo, D.; Huang, S.; Zhu, Y. The adsorption of heavy metal ions by poly(amidoamine) dendrimer-functionalized nano- materials: A Review. Nanomaterials 2022, 12, 1831. [Google Scholar] [CrossRef]
- Hayati, B.; Malekia, A.; Najafib, F.; Shivaraju, R.R.; Puttaiahc, H.; Marzband, N.; Gordon McKay, G. PPI/CNT nanocomposite for novel high capacity removal of the toxic heavy metals, Hg, Pb and Ni from water. Desalination Water Treat. 2020, 198, 190–199. [Google Scholar] [CrossRef]
- Hayati, B.; Maleki, A.; Najafi, F.; Daraei, H.; Gharibi, F.; McKay, G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J. Hazard. Mater. 2017, 336, 146–157. [Google Scholar] [CrossRef]
- Loiola, A.R.; Bessa, R.A.; Oliveira, C.P.; Freitas, A.D.L.; Soares, S.A.; Bohn, F.; Pergher, S.B.C. Magnetic zeolite composites: Classification, synthesis routes, and technological applications. J. Magn. Magn. Mater. 2022, 560, 1169651. [Google Scholar] [CrossRef]
- Kim, I.J.; Zhao, W.; Park, J.G.; Meng, Z. Carbon nanotube filter for heavy metal ion adsorption. Ceram. Int. 2021, 47, 33280–33285. [Google Scholar] [CrossRef]
- Barrejón, M.; Prato, M. Carbon nanotube membranes in water treatment applications. Adv. Mater. Interfaces 2022, 9, 2101260. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Mousavi, S.M.; Hashemi, S.A.; Lai, C.W. Water cleaning adsorptive membranes for efficient removal of heavy metals and metalloids. Water 2022, 14, 2718. [Google Scholar] [CrossRef]
- Rizzuto, C.; Pugliese, G.; Bahattab, M.A.; Aljlil, S.A.; Drioli, E.; Tocci, E. Multiwalled carbon nanotube membranes for water purification. Sep. Purif. Technol. 2018, 193, 378. [Google Scholar] [CrossRef]
- Jue, M.L.; Buchsbaum, S.F.; Chen, C.; Park, S.J.; Meshot, E.R.; Wu, K.J.J.; Fornasiero, F. Ultra-permeable single-walled carbon nanotube membranes with exceptional performance at scale. Adv. Sci. 2020, 7, 2001670. [Google Scholar] [CrossRef]
- Arrora, B.; Attri, P. Carbon nanotubes (CNTs): A potential nanomaterial for water puriffiication. J. Compos. Sci. 2020, 4, 1. [Google Scholar] [CrossRef]
- Rashed, A.O.; Merenda, A.; Kondo, T.; Lima, M.; Razal, J.; Kong, L.; Huynh, C.; Dum, L.F. Carbon nanotube membranes-Strategies and challenges towards scalable manufacturing and practical separation applications. Sep. Purif. Technol. 2021, 257, 117929. [Google Scholar] [CrossRef]
- Ma, L.; Dong, X.; Chen, M.; Zhu, L.; Wang, C.; Yang, F.; Dong, Y. Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: A Review. Membranes 2017, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Baratta, M.; Tursi, A.; Curcio, M.; Cirillo, G.; Nicoletta, F.P.; De Filpo, G. GO-SWCNT buckypapers as an enhanced technology for water decontamination from lead. Molecules 2022, 27, 4044. [Google Scholar] [CrossRef]
- Alshahrani, A.; Alharbi, A.; Alnasser, S.; Almihdar, M.; Alsuhybani, M.; AlOtaibi, B. Enhanced heavy metals removal by a novel carbon nanotubes buckypaper membrane containing a mixture of two biopolymers: Chitosan and i-carrageenan. Sep. Purif. Technol. 2021, 276, 119300. [Google Scholar] [CrossRef]
- Sarno, M.; Cirillo, C.; Troisi, A.; Ciambelli, P. Pb removal on carbon nanotubes membrane decorated by ZnO nanoparticles. Chem. Eng. Trans. 2017, 60, 277–282. [Google Scholar]
- Musielak, M.; Gagor, A.; Zawisza, B.; Talik, E.; Rafal Sitko, R. Graphene oxide/carbon nanotube membranes for highly efficient removal of metal ions from water. ACS Appl. Mater. Interfaces 2019, 11, 28582–28590. [Google Scholar] [CrossRef]
- Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013, 42, 5682–5689. [Google Scholar] [CrossRef]
- Lasheen, M.R.; El-Sherif, I.Y.; Sabry, D.Y.; El-Wakee, S.T.; El-Shahat, M.F. Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: Equilibrium, isotherms, and kinetics. Desalination Water Treat. 2015, 53, 3521–3530. [Google Scholar] [CrossRef]
- Sitko, R.; Musielak, M.; Zawisza, B.; Talik, E.; Gagor, A. graphene oxide/cellulose membranes in adsorption of divalent metal ions. RSC Adv. 2016, 6, 96595–96605. [Google Scholar] [CrossRef]
- Musielak, M.; Kocot, K.; Zawisza, B.; Talik, E.; Margui, E.; Queralt, I.; Walczak, B.; Sitko, R. Ultratrace determination of metal ions using graphene oxide/carbon nanotubes loaded cellulose membranes and total-reflection X-ray fluorescence spectrometry: A green chemistry approach. Spectrochim. Acta Part A 2021, 177, 106069. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Romero, V.; de la Calle, I.; Lavilla, I.; Bendicho, C. Graphene-based nanocomposites in analytical extraction processes. TrAC Trends Anal. Chem. 2021, 142, 116303. [Google Scholar] [CrossRef]
- Kam, C.S.; Leung, T.L.; Liu, F.; Djusic, B.; Xie, M.H.; Chan, W.K.; Zhou, W.K.; Shih, K. Lead removal from water-dependence on the form of carbon and surface functionalization. RSC Adv. 2018, 8, 18355–183362. [Google Scholar] [CrossRef] [Green Version]
- Andersson, C.H.; Grennberg, H. Reproducibility and efficiency of carbon nanotube end-group generation and functionalization. Eur. J. Org. Chem. 2009, 26, 4421–4428. [Google Scholar] [CrossRef]
- Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J.Occup. Health 2017, 59, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Spaolonzi, M.P.; Duarte, E.D.V.; Oliveira, M.G.; Costa, H.P.S.; Ribeiro, M.C.; Silva, T.I.; Silva, M.C.G.; Vieira, M.G.A. Green-functionalized carbon nanotubes as adsorbents for the removal of emerging contaminants from aqueous media. J. Clean. Prod. 2022, 373, 133961. [Google Scholar] [CrossRef]
- Laux, P.; Riebeling, C.; Booth, A.M.; Brain, J.D.; Brunner, J.; Cerrillo, C.; Creutzenberg, O.; Estrela-Lopis, I.; Lucha, A. Challenges in characterizing the environment al fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environ. Sci. Nano 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
Conditions for CNTs Oxidation | Sorption Conditions | qmax (mg/g) | Ref. | |
---|---|---|---|---|
pH | Time | |||
HNO3, refluxed at 140 °C for 2 h | 5 | 20 min | 59 | [52] |
H2SO4 + HNO3 (3:1), refluxed at 75 °C for 6 h | 6 | 60 min | 215 | [53] |
H2SO4 + HNO3 (1:3), refluxed at 80 °C for 12 h | 5 | 5 h | 20.7 | [54] |
H2SO4 + HNO3 (1:3), refluxed at 80 °C for 8 h | 6 | 60 min | 27.0 | [55] |
H2SO4 + HNO3 (1:3), ultrasonicated for 3 h | 5 | 5 h | 30.3 | [56] |
H2O2 + HNO3, ultrasonicated at 25 °C for 3 h | 9 | 10 h | 166 | [57] |
Sorbent | Sample Matrix | pH | Contact Time | Eluent | EF or PF * | qmax (mg/g) | Detection (LOD) | Ref. |
---|---|---|---|---|---|---|---|---|
MWCNT-Fe3O4@zeolite | Industrial effluents | 8.3 | 20 min | 1.8 M HNO3 | 90 | 37.8 | ICP OES (0.023 µg/L) | [38] |
CNTs modified with ttpy | Wastewater | 4.5 | 24 h | 0.1 M HCl | - | 36.2 | ICP OES | [45] |
MoS2/SH-MWCNTs | Mine water | 6 | 60 min | - | - | 90 | ICP OES | [52] |
CNTs modified with phenylenediamine | Wastewater | 5 | 2 min | 0.5 M HNO3 | 94 * | 35.1 | FAAS (1.2 µg/L) | [55] |
MWCNT-Fe3O4 impregnated with PAN | Herbs | 5.5 | 1 min | 3 M HNO3 in 10% acetone | 10 | - | FAAS (17 µg/L) | [65] |
Oxidized MWCNT impregnated with batophenantroline | Rice | 9 | 15 min | 0.5 M HNO3 | 200 | - | FAAS (0.25 µg/L) | [66] |
MWCNTs modified with hydrazine | Waters | 8 | 30 min | 0.1 M HCl | 9.09 | FAAS | [67] | |
CNTs modified with 5,7-dinitro-8-quinolinol | Industrial wastewater | 4 | 1.5 h | = | - | 333.3 | FAAS | [68] |
CNTs modified with pyridine group | Tap, river, sea water | 7 | Flow rate up to 24 mL/min | 1 M thiourea in 0.1 M HCl | - | 179 | FAAS (2 µg/L) | [69] |
MWCNTs with hydroxamic acids | Standard solutions | 8 | 50 min | - | - | 489–512 | - | [71] |
MWCNTs-thiol | 5 | 144.9 | [72] | |||||
NiO/CNT nanocomposite | Standard solutions | 7 | 10 min | - | - | 24.6 | FAAS | [78] |
CNTs wrapped with polyhydroxylbutyrate | Electroplating wastewaters | 5.6 | 10 min | - | - | 227.3 | FAAS | [87] |
MWCNTs coated with polythiophene | Water, black tea, rice, milk | 6 | 3 min | 0.5 M HNO3 | 200 | 117 | FAAS (0.54 µg/L) | [88] |
CNTs-PPI dendrimer | Standard solutions | 7 | 15 min | - | - | 1750 | ICP OES | [94] |
CNTs- polyamidoamine dendrimer | Standard solutions | 7 | - | - | 4870 | ICP OES | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrzynska, K. Recent Applications of Carbon Nanotubes for Separation and Enrichment of Lead Ions. Separations 2023, 10, 152. https://doi.org/10.3390/separations10030152
Pyrzynska K. Recent Applications of Carbon Nanotubes for Separation and Enrichment of Lead Ions. Separations. 2023; 10(3):152. https://doi.org/10.3390/separations10030152
Chicago/Turabian StylePyrzynska, Krystyna. 2023. "Recent Applications of Carbon Nanotubes for Separation and Enrichment of Lead Ions" Separations 10, no. 3: 152. https://doi.org/10.3390/separations10030152
APA StylePyrzynska, K. (2023). Recent Applications of Carbon Nanotubes for Separation and Enrichment of Lead Ions. Separations, 10(3), 152. https://doi.org/10.3390/separations10030152