Yield and Chemical Composition of Ginger Essential Oils as Affected by Inter-Varietal Variation and Drying Treatments of Rhizome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Extraction of Essential Oils
2.3. Physical Analysis of Essential Oils
2.4. GC-MS Analysis of Essential Oils
2.5. Identification of Compounds
2.6. Statistical/Cluster Analysis
3. Results and Discussion
3.1. Yield and Physical Analysis
3.2. GC-MS Analysis of Ginger Essential Oils
3.2.1. Fresh Ginger
3.2.2. Oven-Dried Ginger
Sr. # | Compounds | RI | %Composition | Identification Mode | ||
---|---|---|---|---|---|---|
Fresh | Oven-Dried | Sun-Dried | ||||
Monoterpene hydrocarbons | ||||||
1 | α-Pinene | 934 | ND | 0.33 ± 0.03 | ND | a, b, c |
2 | Norbornane | 937 | ND | 1.57 ± 0.01 | ND | a, b, c |
3 | Camphene | 947 | 1.81 ± 0.02 | 5.85 ± 0.02 | ND | a, b, c |
4 | α-Fenchene | 957 | ND | ND | 0.86 ± 0.03 | a, b, c |
5 | β-Pinene | 973 | ND | 0.48 ± 0.03 | ND | a, b, c |
6 | 3-Carene | 1007.2 | 8.63 ± 0.05 | 3.94 ± 0.03 | 13.5 ± 0.04 | a, b, c |
7 | m-Cymene | 1012 | 1.11 ± 0.01 | 0.40 ± 0.07 | ND | c |
8 | o-Cymene | 1032 | ND | ND | 5.58 ± 0.04 | a |
9 | Thujone | 1124 | ND | 1.88 ± 0.01 | ND | a, b, c |
10 | Menthone | 1150 | 0.83 ± 0.03 | ND | ND | a, b, c |
11 | β-Myrcene | 1173 | ND | 1.85 ± 0.05 | ND | a, b, c |
12 | 2-Bornene | 1508 | ND | 3.31 ± 0.01 | ND | a, b, c |
13 | Acorenone 1 | 1632 | ND | 0.71 ± 0.04 | 4.14 ± 0.06 | c |
14 | Geranyl-α-terpinene | 2001 | ND | ND | 2.10 ± 0.05 | a, b, c |
Sesquiterpene hydrocarbons | ||||||
15 | Longipinene | 1350 | ND | 1.10 ± 0.04 | ND | a, b, c |
16 | α-Copaene | 1375 | ND | 0.41 ± 0.03 | ND | a, b, c |
17 | β-Elemene | 1388 | ND | 0.95 ± 0.01 | ND | a, b, c |
18 | β-Ylangene | 1416 | ND | 0.40 ± 0.03 | ND | a |
19 | Caryophyllene | 1419 | ND | ND | 18.89 ± 0.03 | a |
20 | Cis-thujopsene | 1433 | ND | 1.86 ± 0.03 | ND | a, b, c |
21 | γ-Elemene | 1449 | ND | 1.51 ± 0.03 | ND | a, b, c |
22 | α-Patchoulene | 1451 | ND | 1.60 ± 0.07 | ND | a, b, c |
23 | Alloaromadendrene | 1459 | ND | 0.44 ± 0.07 | ND | a, b, c |
24 | Ar-Curcumene | 1471 | 15.57 ± 0.07 | ND | ND | a |
25 | γ-Himachalene | 1471 | ND | ND | 3.94 ± 0.08 | b |
26 | α-Curcumene | 1471 | ND | 9.44 ± 0.05 | ND | a, b, c |
27 | γ-Muurolene | 1473 | 0.92 ± 0.01 | 4.22 ± 0.08 | 2.81 ± 0.03 | a, b, c |
28 | α-Zingiberene | 1482 | ND | 1.84 ± 0.06 | ND | a, b, c |
29 | Valencene | 1483 | ND | 0.50 ± 0.03 | ND | c |
30 | Epi-Bicyclosesquiphellandrene | 1488 | ND | 0.44 ± 0.03 | ND | a, b, c |
31 | α-Farnesene | 1496 | ND | 4.36 ± 0.01 | ND | a |
32 | β-Bisabolene | 1499 | 5.96 ± 0.03 | 3.66 ± 0.02 | 1.18 ± 0.01 | a, b, c |
33 | β-Curcumene | 1512 | 1.55 ± 0.05 | 2.24 ± 0.03 | ND | a, b, c |
34 | β-Sesquiphellandrene | 1513 | 7.30 ± 0.04 | ND | ND | a, b, c |
35 | α-Cadinene | 1526 | 1.38 ± 0.04 | ND | ND | a, b, c |
Oxygenated monoterpene hydrocarbon | ||||||
36 | Eucalyptol | 1025 | 9.06 ± 0.01 | ND | ND | a |
37 | Linalool | 1086 | 2.08 ± 0.05 | 1.30 ± 0.04 | ND | a, b, c |
38 | Sabinol, trans | 1130 | ND | ND | 6.44 ± 0.01 | a, b, c |
39 | Isopulegol | 1148 | ND | ND | 0.92 ± 0.04 | a, b, c |
40 | Citronellal | 1153 | ND | 0.98 ± 0.04 | ND | a, b, c |
41 | Citral | 1165 | ND | 4.96 ± 0.03 | ND | a, b, c |
42 | α-Terpineol | 1175 | ND | 1.94 ± 0.03 | ND | a, b, c |
43 | p-Cymen-7-ol | 1270 | 1.43 ± 0.01 | ND | ND | c, a |
44 | Isobornyl acetate | 1271 | ND | 2.12 ± 0.06 | ND | b |
45 | Bornyl acetate | 1283 | 2.27 ± 0.04 | ND | ND | b |
46 | Geranyl acetate | 1361 | ND | 1.44 ± 0.04 | ND | a, b, c |
47 | Citronellyl butyrate | 1529 | 4.02 ± 0.04 | ND | ND | a, b, c |
Oxygenated sesquiterpenes hydrocarbons | ||||||
48 | Elemol | 1536 | ND | 3.55 ± 0.03 | ND | a, b, c |
49 | Nerolidol 2 | 1550 | ND | 1.50 ± 0.07 | ND | c |
50 | Nerolidol | 1550 | 14.32 ± 0.04 | ND | ND | a, b, c |
51 | Caryophyllene oxide | 1570 | ND | 0.30 ± 0.07 | 2.19 ± 0.04 | a, b, c |
52 | Globulol | 1578 | ND | ND | 1.45 ± 0.03 | a, b, c |
53 | Ledol | 1582 | 1.19 ± 0.04 | 4.67 ± 0.04 | ND | a, b, c |
54 | Cedrol | 1597 | ND | ND | 15 ± 0.03 | a, b, c |
55 | γ-Eudesmol | 1616 | ND | 1.17 ± 0.03 | ND | a, b, c |
56 | τ-Cadinol | 1640 | ND | 0.56 ± 0.05 | ND | a, b, c |
57 | α-Bisabolol | 1668 | ND | ND | 1.02 ± 0.06 | a |
58 | Alloaromadendrene oxide | 1672 | ND | ND | 1.31 ± 0.05 | c |
59 | Farnesol | 1691 | 1.83 ± 0.04 | ND | ND | a, b, c |
60 | β-Santalol | 1703 | ND | ND | 5.23 ± 0.05 | a, b, c |
61 | Trans-Z-alpha-Bisabolene epoxide | 1820 | ND | 0.82 ± 0.05 | ND | a, b, c |
Oxygenated Diterpenes | ||||||
62 | Trans-geranylgeraniol | 2201 | 1.35 ± 0.02 | ND | ND | a, b, c |
Total | 84.90 | 80.6 | 86.56 |
3.2.3. Sun-Dried Ginger
Sr. # | Compounds | RI | %Composition | Identification Mode | ||
---|---|---|---|---|---|---|
Fresh | Oven-Dried | Sun-Dried | ||||
Monoterpene Hydrocarbons | ||||||
1 | α-pinene | 934.6 | ND | 8.87 ± 0.07 | 3.31 ± 0.04 | a, b, c |
2 | Camphene | 947 | 7.68 ± 0.03 | 0.92 ± 0.04 | 0.43 ± 0.03 | a, b, c |
3 | 2-Norpinene | 948 | ND | ND | 1.74 ± 0.05 | b |
4 | β-Pinene | 973 | 1.50 ± 0.03 | ND | ND | a, b, c |
5 | 2-Carene | 1002 | ND | 1.91 ± 0.03 | ND | a, b, c |
6 | 3-Carene | 1007.2 | 3.79 ± 0.03 | 2.19 ± 0.03 | 0.38 ± 0.04 | a, b, c |
7 | p-Cymene | 1015 | ND | 1.11 ± 0.07 | ND | a, b, c |
8 | 4-Carene | 1017 | ND | ND | 2.14 ± 0.05 | a, b, c |
9 | Limonene | 1023 | 8.58 ± 0.04 | 16.11 ± 0.06 | 12.12 ± 0.06 | a, b, c |
10 | o-Cymene | 1032 | ND | 1.27 ± 0.03 | ND | a, b, c |
11 | γ-Terpinene | 1050 | ND | ND | 0.46 ± 0.02 | a, b, c |
12 | Camphor | 1125 | 0.36 ± 0.02 | ND | ND | c |
Sesquiterpene hydrocarbons | ||||||
13 | α-Phellandrene | 999 | 0.68 ± 0.05 | ND | 1.95 ± 0.02 | a, b, c |
14 | α-Longipinene | 1350 | ND | 1.07 ± 0.05 | ND | a, b, c |
15 | Longicyclene | 1371 | 4.98 ± 0.04 | ND | ND | a, b, c |
16 | α-Copaene | 1375 | 0.86 ± 0.04 | ND | 6.03 ± 0.03 | a |
17 | β-Elemene | 1388 | 1.53 ± 0.04 | 1.71 ± 0.05 | 0.86 ± 0.05 | a |
18 | Longifolene | 1404 | 0.45 ± 0.04 | 5.96 ± 0.05 | b | |
19 | α-Gurjunene | 1405 | 1.53 ± 0.05 | b | ||
20 | Cedrene | 1410 | ND | 3.77 ± 0.03 | ND | a, b, c |
21 | β-bourbonene | 1411 | 0.30 ± 0.03 | ND | ND | a, b, c |
22 | α-Cedrene | 1415 | 3.27 ± 0.07 | ND | 5.42 ± 0.05 | a, b, c |
23 | β-Ylangene | 1416 | 0.70 ± 0.05 | ND | ND | a, b, c |
24 | β-Sesquiphellandrene | 1417 | 9.48 ± 0.03 | ND | 1.60 ± 0.02 | a, b, c |
25 | α-Cedrene | 1433 | ND | 1.22 ± 0.03 | ND | a, b, c |
26 | Cis-thujopsene | 1433 | 2.53 ± 0.05 | 3.50 ± 0.05 | 4.54 ± 0.03 | a, b, c |
27 | β-Gurjunene | 1435 | 0.87 ± 0.08 | ND | ND | a, b, c |
28 | Aromadendrene | 1439 | ND | 1.16 ± 0.03 | ND | a, b, c |
29 | γ-Elemene | 1449 | 1.84 ± 0.01 | ND | 1.33 ± 0.02 | a, b, c |
30 | β-Farnesene | 1449 | 0.97 ± 0.02 | ND | 1.04 ± 0.03 | a, b, c |
31 | Alloaromadendrene | 1459 | ND | 1.06 ± 0.03 | 7.82 ± 0.03 | a, b, c |
32 | γ-Muurolene | 1473 | ND | ND | 6.27 ± 0.02 | a, b, c |
33 | α-Curcumene | 1480 | 8.69 ± 0.05 | 1.70 ± 0.03 | 5.69 ± 0.07 | a, b, c |
34 | Zingiberene | 1490 | 0.42 ± 0.08 | ND | ND | a, b, c |
35 | Valencene | 1491 | ND | ND | 0.49 ± 0.09 | a, b, c |
36 | α-Farnesene | 1496 | 5.68 ± 0.05 | 0.94 ± 0.05 | ND | b |
37 | α-Bulnesene | 1500.1 | ND | 0.94 ± 0.09 | ND | b |
38 | β-Curcumene | 1503 | ND | 0.63 ± 0.04 | ND | a, b, c |
39 | δ-Cadinene | 1513 | 0.39 ± 0.03 | ND | ND | a, b, c |
Oxygenated monoterpene hydrocarbons | ||||||
40 | Linalool | 1086 | 0.79 ± 0.04 | ND | ND | a, b, c |
41 | Isoborneol | 1147 | 4.31 ± 0.05 | ND | 2.97 ± 0.03 | a, b, c |
42 | α-Terpineol | 1175 | 1.45 ± 0.06 | ND | ND | a, b, c |
43 | Cis-Carveol | 1206 | ND | ND | 0.41 ± 0.04 | a, b, c |
44 | Citronellal | 1212 | 1.19 ± 0.04 | ND | ND | a, b, c |
45 | Geraniol | 1238 | 0.85 ± 0.04 | ND | ND | a, b, c |
46 | Citral | 1244 | 5.43 ± 0.06 | ND | ND | a, b, c |
47 | Bornyl acetate | 1270 | 2.82 ± 0.05 | ND | 1.42 ± 0.04 | a |
48 | Isobornyl acetate | 1271 | 0.59 ± 0.06 | ND | 3.43 ± 0.04 | a, b, c |
49 | Citronellyl acetate | 1335 | 0.51 ± 0.04 | ND | ND | a, b, c |
50 | Geranyl acetate | 1361 | 1.89 ± 0.05 | ND | ND | a, b, c |
51 | Citronellyl isobutyrate | 1488 | ND | 0.92 ± 0.05 | ND | a, b, c |
Oxygenated sesquiterpene hydrocarbons | ||||||
52 | Caryophyllene oxide | 1570 | ND | 1.61 ± 0.02 | 3.99 ± 0.01 | a, b, c |
53 | Ledol | 1582 | 0.96 ± 0.03 | ND | ND | a, b, c |
54 | Isoaromadendrene epoxide | 1590 | ND | 3.47 ± 0.03 | 3.19 ± 0.04 | a, b, c |
55 | Longiborneol | 1592 | ND | 1.10 ± 0.05 | ND | a, b, c |
56 | β-Eudesmol | 1649 | 2.53 ± 0.03 | ND | ND | a, b, c |
57 | α-Bisabolol | 1668 | ND | ND | 1.21 ± 0.03 | a, b, c |
58 | Isolongifolol | 1695 | ND | 6.35 ± 0.03 | ND | a, b, c |
59 | β-Santalol | 1720 | ND | 1.19 ± 0.03 | ND | c |
Oxygenated Diterpenes | ||||||
60 | Phytol | 2112 | ND | 3.52 ± 0.03 | ND | a, b, c |
61 | Trans-Geranylgeraniol | 2201 | ND | 0.49 ± 0.04 | ND | a, b, c |
Others | ||||||
62 | 3,4-Dimethylanisole | 1147 | 0.51 ± 0.03 | ND | ND | a, b, c |
Total | 89.38 | 70.26 | 86.6 |
3.3. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdo, M.T.; Gad, H.A.; El-Ahmady, S.H.; Al-Azizi, M.M. Quality Assessment methods for Ginger (Zingiber officinale): A review. Arch. Pharm. Sci. Ain Shams Univ. 2018, 2, 78–96. [Google Scholar] [CrossRef]
- Riaz, H.; Begum, A.; Raza, S.A.; Khan, Z.M.-U.; Yousaf, H.; Tariq, A. Antimicrobial property and phytochemical study of ginger found in local area of Punjab, Pakistan. Int. Curr. Pharm. J. 2015, 4, 405–409. [Google Scholar] [CrossRef]
- El-Ghorab, A.H.; Nauman, M.; Anjum, F.M.; Hussain, S.; Nadeem, M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 2010, 58, 8231–8237. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, O.B.; Akomolafe, S.F.; Akinyemi, F.T. Food value of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria. Int. Sch. Res. Not. 2013, 2013, 359727. [Google Scholar] [CrossRef]
- Lua, P.L.; Salihah, N.; Mazlan, N. Effects of inhaled ginger aromatherapy on chemotherapy-induced nausea and vomiting and health-related quality of life in women with breast cancer. Complement. Ther. Med. 2015, 23, 396–404. [Google Scholar] [CrossRef]
- Mahboubi, M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clin. Phytosci. 2019, 5, 6. [Google Scholar] [CrossRef]
- Cheng, X.-L.; Liu, Q.; Peng, Y.-B.; Qi, L.-W.; Li, P. Steamed ginger (Zingiber officinale): Changed chemical profile and increased anticancer potential. Food Chem. 2011, 129, 1785–1792. [Google Scholar] [CrossRef]
- Jiang, H.; Xie, Z.; Koo, H.J.; McLaughlin, S.P.; Timmermann, B.N.; Gang, D.R. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 2006, 67, 1673–1685. [Google Scholar] [CrossRef]
- Sritoomma, N.; Moyle, W.; Cooke, M.; O’Dwyer, S. The effectiveness of Swedish massage with aromatic ginger oil in treating chronic low back pain in older adults: A randomized controlled trial. Complement. Ther. Med. 2014, 22, 26–33. [Google Scholar] [CrossRef]
- Banerjee, S.; Mullick, H.; Banerjee, J.; Ghosh, A. Zingiber officinale: ‘A natural gold’. Int. J. Pharm. Bio. Sci. 2011, 2, 283–294. [Google Scholar]
- Singh, P.; Srivastava, S.; Singh, V.; Sharma, P.; Singh, D. Ginger (Zingiber officinale): A Nobel herbal remedy. Review article. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4065–4077. [Google Scholar]
- Kizhakkayil, J.; Sasikumar, B. Diversity, characterization and utilization of ginger: A review. Plant Genet. Resour. 2011, 9, 464. [Google Scholar] [CrossRef]
- Nation Master. Ginger Net Production. Available online: https://www.nationmaster.com/nmx/ranking/ginger-net-production (accessed on 10 December 2020).
- TrendEconomy. Annual International Trade Statistics by Country 2019. Available online: https://trendeconomy.com/data/h2/Pakistan/0910 (accessed on 27 October 2020).
- Setzer, W.N.; Duong, L.; Poudel, A.; Mentreddy, S.R. Variation in the chemical composition of five varieties of Curcuma longa rhizome essential oils cultivated in North Alabama. Foods 2021, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.; Pokharel, B.; Maharjan, S.; Adhikari, S. Chemical constituents and biological activities of ginger rhizomes from three different regions of Nepal. J. Nutr. Diet Probiotics 2018, 1, 180005. [Google Scholar]
- Huang, T.-C.; Chung, C.-C.; Wang, H.-Y.; Law, C.-L.; Chen, H.-H. Formation of 6-Shogaol of Ginger Oil Under Different Drying Conditions. Dry. Technol. 2011, 29, 1884–1889. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Rehydration of air-dried shiitake mushroom (Lentinus edodes) caps comparison of conventional and vacuum water immersion processes. LWT Food Sci. Technol. 2011, 44, 480–488. [Google Scholar] [CrossRef]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Ozdemir, N.; Ozgen, Y.; Kiralan, M.; Bayrak, A.; Arslan, N.; Ramadan, M.F. Effect of different dryingmethods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. J. Food Meas. Charact. 2018, 12, 820–825. [Google Scholar] [CrossRef]
- Calín-Sánchez, A.; Figiel, A.; Lech, K.; Szumny, A.; Carbonell-Barrachina, A. Effects of drying methods on the composition of thyme (Thymus vulgaris L.) essential oil. Dry Technol. 2013, 31, 224–235. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Gonzalez Vinas, M.A.; Cabezudo, M.D. Influence of drying on the flavor quality of spearmint (Mentha spicata L.). J. Agric. Food Chem. 2003, 51, 1265–1269. [Google Scholar] [CrossRef]
- Calvo-Irabien, L.M.; Yam-Puc, J.A.; Dzib, G.; Escalante-Erosa, F.; Peña-Rodriguez, L.M. Effect of postharvest drying on the composition of mexican oregano (Lippia graveolens) essential oil. J. Herbs Spices Med. Plants 2009, 15, 281–287. [Google Scholar] [CrossRef]
- Hordofa, T.S.; Tolossa, T.T. Cultivation and postharvest handling practices affecting yield and quality of major spices crops in Ethiopia: A review. Cogent Food Agric. 2020, 6, 1788896. [Google Scholar] [CrossRef]
- Jayashree, E.; Visvanathan, R.; Zachariah, J. Quality of dry ginger (Zingiber officinale) by different drying methods. J. Food Sci. Technol. 2014, 51, 3190–3198. [Google Scholar]
- Mohammed, H.H.; Laftah, W.A.; Ibrahim, A.N.; Yunus, M.A.C. Extraction of essential oil from Zingiber officinale and statistical optimization of process parameters. RSC Adv. 2022, 12, 4843–4851. [Google Scholar] [CrossRef] [PubMed]
- Kamal, G.; Anwar, F.; Hussain, A.; Sarri, N.; Ashraf, M.Y. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J. 2011, 18, 1275. [Google Scholar]
- Kubra, I.R.; Rao, L.J. Effect of microwave drying on the phytochemical composition of volatiles of ginger. Int. J. Food Sci. Technol. 2012, 47, 53–60. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef]
- Koroch, A.; Ranarivelo, L.; Behra, O.; Juliani, H.R.; Simon, J.E. Quality attributes of ginger and cinnamon essential oils from Madagascar. In Issues in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2007; pp. 338–341. [Google Scholar]
- Antonious, G.F.; Kochhar, T.S. Zingiberene curcumene in wild tomato. J. Environ. Sci. Health Part B 2003, 38, 489–500. [Google Scholar] [CrossRef]
- Nampoothiri, S.V.; Venugopalan, V.; Joy, B.; Sreekumar, M.; Menon, A.N. Comparison of essential oil composition of three ginger cultivars from sub Himalayan region. Asian Pac. J. Trop. Biomed. 2012, 2, S1347–S1350. [Google Scholar] [CrossRef]
- Toure, A.; Xiaoming, Z. Gas chromatographic analysis of volatile components of Guinean and Chinese ginger oils (Zingiber officinale) extracted by steam distillation. J. Agron. 2007, 6, 350–355. [Google Scholar] [CrossRef]
- Variyar, P.S.; Gholap, A.; Thomas, P. Effect of γ-irradiation on the volatile oil constituents of fresh ginger (Zingiber officinale) rhizome. Food Res. Int. 1997, 30, 41–43. [Google Scholar] [CrossRef]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Saed, Z.J.; Mohammed, T.T.; Farhan, S. Effect of ginger and celery seeds as feed additives on reproductive performance of broiler breeder males. Plant Arch. 2018, 18, 1823–1829. [Google Scholar]
- Şener, N.; Özkınalı, S.; Gür, M.; Güney, K.; Özkan, O.E.; Khalifa, M.M. Determination of antimicrobial activity and chemical composition of pimento & ginger essential oil. Indian J. Pharm. Educ. Res. 2017, 51, s230–s233. [Google Scholar]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control. 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Mattje, L.G.B.; Tormen, L.; Bombardelli, M.C.M.; Corazza, M.L.; Bainy, E.M. Ginger essential oil and supercritical extract as natural antioxidants in tilapia fish burger. J. Food Process. Preserv. 2019, 43, e13942. [Google Scholar] [CrossRef]
- Hazim, I.; Abd, K.Y.; Abachi, F.T. Newly formulated extract of Zingiber officinale as reducing agent for Silver nitrate Nanoparticals. Pharma. Innov. J. 2020, 9, 232–238. [Google Scholar]
- Sa-Nguanpuag, K.; Kanlayanarat, S.; Srilaong, V.; Tanprasert, K.; Techavuthiporn, C. Ginger (Zingiber officinale) oil as an antimicrobial agent for minimally processed produce: A case study in shredded green papaya. Int. J. Agric. Biol. 2011, 13, 895–901. [Google Scholar]
- Ibáñez, M.D.; Blázquez, M.A. Ginger and turmeric essential oils for weed control and food crop protection. Plants 2019, 8, 59. [Google Scholar] [CrossRef]
- Sun, W.-M.; Ma, Y.-N.; Yin, Y.-J.; Chen, C.-J.; Xu, F.-R.; Dong, X.; Cheng, Y.-X. Effects of Essential Oils from Zingiberaceae Plants on Root-Rot Disease of Panax notoginseng. Molecules 2018, 23, 1021. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, A.; Konakchiev, A.; Damyanova, S.; Stoilova, I.; Suu, P.T. Composition and Antimicrobial Activity of Ginger Essential Oil from Vietnam. J. Essent. Oil Bear. Plants 2006, 9, 93–98. [Google Scholar] [CrossRef]
- da Silva Moura, E.; Faroni, L.R.D.A.; Zanuncio, J.C.; Heleno, F.F.; Prates, L.H.F. Insecticidal activity of Vanillosmopsis arborea essential oil and of its major constituent α-bisabolol against Callosobruchus maculatus (Coleoptera: Chrysomelidae). Sci. Rep. 2019, 9, 3723. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Raj, K.J.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Preparation, characterization, and antimicrobial activity of chitosan/gum arabic/polyethylene glycol composite films incorporated with black pepper essential oil and ginger essential oil as potential packaging and wound dressing materials. Adv. Compos. Hybrid Mater. 2020, 3, 485–497. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Wang, F.; Wang, L.-X. Preparation and properties of ginger essential oil β-cyclodextrin/chitosan inclusion complexes. Coatings 2018, 8, 305. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche-Ksouri, W.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef]
- Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Chen, J.; Zhang, H.; Timmermann, B.N. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharmaNutrition 2016, 4, 123–131. [Google Scholar] [CrossRef]
- Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007, 11, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Mangprayool, T.; Kupittayanant, S.; Chudapongse, N. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action. Fitoterapia 2013, 89, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y. Cytotoxicity evaluation of essential oil and its component from Zingiber officinale Roscoe. Toxicol. Res. 2016, 32, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Sharma, R.; Kale, R.K.; Rao, A.R. Influence of certain essential oils on carcinogen-metabolizing enzymes and acid-soluble sulfhydryls in mouse liver. Nutr. Cancer 1994, 21, 263–269. [Google Scholar] [CrossRef] [PubMed]
Variety | Treatment | Yield (g 100 g−1) | Density (g/cm3) (25 °C) | Refractive Index (25 °C) |
---|---|---|---|---|
Thailand variety | Fresh | 0.04 ± 0.02 | 0.873 ± 0.03 | 1.4885 ± 0.03 |
Oven-dried | 0.09 ± 0.03 | 0.880 ± 0.05 | 1.4881 ± 0.03 | |
Sun-Dried | 0.2 ± 0.02 | 0.877 ± 0.03 | 1.4888 ± 0.04 | |
Chinese variety | Fresh | 0.09 ± 0.04 | 0.871 ± 0.04 | 1.4884 ± 0.04 |
Oven-dried | 0.14 ± 0.03 | 0.875 ± 0.02 | 1.4910 ± 0.03 | |
Sun-Dried | 0.15 ± 0.04 | 0.880 ± 0.02 | 1.4885 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, G.M.; Nazi, N.; Sabir, A.; Saqib, M.; Zhang, X.; Jiang, B.; Khan, J.; Noreen, A.; Uddin, J.; Murtaza, S. Yield and Chemical Composition of Ginger Essential Oils as Affected by Inter-Varietal Variation and Drying Treatments of Rhizome. Separations 2023, 10, 186. https://doi.org/10.3390/separations10030186
Kamal GM, Nazi N, Sabir A, Saqib M, Zhang X, Jiang B, Khan J, Noreen A, Uddin J, Murtaza S. Yield and Chemical Composition of Ginger Essential Oils as Affected by Inter-Varietal Variation and Drying Treatments of Rhizome. Separations. 2023; 10(3):186. https://doi.org/10.3390/separations10030186
Chicago/Turabian StyleKamal, Ghulam Mustafa, Nafia Nazi, Asma Sabir, Muhammad Saqib, Xu Zhang, Bin Jiang, Jallat Khan, Ayesha Noreen, Jalal Uddin, and Shahzad Murtaza. 2023. "Yield and Chemical Composition of Ginger Essential Oils as Affected by Inter-Varietal Variation and Drying Treatments of Rhizome" Separations 10, no. 3: 186. https://doi.org/10.3390/separations10030186
APA StyleKamal, G. M., Nazi, N., Sabir, A., Saqib, M., Zhang, X., Jiang, B., Khan, J., Noreen, A., Uddin, J., & Murtaza, S. (2023). Yield and Chemical Composition of Ginger Essential Oils as Affected by Inter-Varietal Variation and Drying Treatments of Rhizome. Separations, 10(3), 186. https://doi.org/10.3390/separations10030186