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Abstract: Cinnamomum camphora methanolic extract was tested for antifungal activity against three
common, isolated, widespread phytopathogens: Alternaria alternata, Fusarium solani, and Fusarium
oxysporum, which were molecularly identified and assigned accession numbers ON795987, ON795988,
and ON795989, respectively. At 4000 µg/mL, the highest concentration of C. camphora methanolic
extract inhibits the fungal mycelia weight of F. oxysporum, A. alternata, and F. solani by 60, 49, and 24%,
respectively. The presence of several bioactive metabolites in the C. camphora extract could explain its
antifungal activity. The presence of numerous phenolic and flavonoid compounds in the extract was
revealed by HPLC analysis, including catechin and gallic acid, which had the highest concentrations
of 6.21 and 6.98 µg/mL, respectively. Furthermore, osmoprotectants, total amino acids, and glycine
betaine were abundant. Furthermore, total antioxidant activities, as measured by PMA and DPPH,
were significant. The most abundant compound in the extract, according to GC-MS analysis, was
mono(2-ethylhexyl) ester of 1,2-benzene dicarboxylic acid. Based on its in vitro efficacy in inhibiting
mycelial growth weight, the tested extract could be recommended as a safe fungicide instead of a
chemical treatment.

Keywords: Cinnamomum camphora; HPLC; GC-MS; phenolic compounds; flavonoid compounds;
plant extract; antifungal activity

1. Introduction

Global crop yields suffer from many pathogens that affect their productivity and
quality. The major pathogens causing these diseases comprise fungi, viruses, nematodes,
and bacteria [1]. The intensity of underground fungi is significantly higher than that of
aboveground fungi. These soil-borne fungi can endure for extended periods within the soil
due to the production of structures that help them survive, such as sclerotia, melanized
hyphae, oospores, and chlamydospores [2]. A prevalent soil-borne fungus, the Fusarium
species, is responsible for a variety of plant diseases, including Fusarium head blight,
Fusarium root rot, Fusarium crown rot, and others. This fungus can impact a diverse range
of crops, including small grain cereals, maize, various vegetables, bananas, lilies, trees, and
many more, each with its own unique disease pattern, leading to substantial reductions
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in yield [3]. In addition to Fusarium, Alternaria sp. is responsible for severe pre- and post-
harvest crop losses. Alternaria alternata has previously been reported to cause post-harvest
losses at high frequency in tomatoes [4] and produce leaf blight symptoms. Moreover,
Alternaria invades not only vegetables, but is also responsible for the late blight symptom of
nuts, which affects both foliage and fruit and is characterized by the development of large
necrotic spots or lesions that eventually coalesce and consume the entire leaf and defoliate
the tree [5].

There are many ways to control and deal with the rise of plant fungal diseases around
the world. The most common and useful method in agriculture for getting rid of pests
and diseases is to use pesticides [6]. Unfortunately, the widespread use of pesticides in
agriculture to deal with problems before and after harvest has led to dangerous outbreaks
and fungal infections that are resistant to fungicides [7]. In addition, once the pesticide
has been applied, the chemical residue makes its way into groundwater, lakes, and marine
water through various environmental processes, negatively impacting the species living
in those bodies of water [8,9]. Therefore, research is now focused on finding new ways
to reduce the pesticide levels left on the soil. Among these, natural extracts are safer
and cheaper alternatives to replace the widespread use of synthetic chemical antifungal
substances to create a chemical-free environment.

Plant extracts are characterized by diverse active compounds, minerals, secondary
metabolites, and antioxidants, which give the extracts their efficacy [10,11]. Natural com-
pounds extracted from various plants have been shown to have broad biological applica-
tions as antifungal, antibacterial, and antiviral agents [11–14]. Cinnamomum camphora (L.) is
a huge tree commonly planted for landscaping and forestation. This tree synthesizes plenty
of compounds known as terpenoids, which prevent herbivore attacks and repel fungal infec-
tions [15]. Due to its antioxidant constituents and antimicrobial activities, C. camphora has
been widely used in the cosmetic and medical industries [16]. Moreover, it is a rich source
of alcohols, ketones, terpenoids, and esters, which may increase the algaecidal functions.
The C. camphora leaf extract has antifungal activity against Choanephora cucurbitarum [8] and
Aspergillus niger [17], antibacterial activity against Pasturella multocida [18], and insecticidal
properties against Drosophila melanogaster, Chaoborus plumicornis, and Pieris rapae [17]. There-
fore, our research endeavors to assess the antifungal properties of a methanolic extract of
C. camphora against three molecularly identified soil-borne phytopathogenic fungi (F. oxys-
porum, A. alternata, and F. solani) isolated from tomato plants. Additionally, total flavonoid,
phenolic, ascorbic acid, amino acids, saponin, tannins, proline, glycine betaine content, total
antioxidant, and DPPH scavenging activities were estimated. Additionally, the chemical
composition of the extract was determined through HPLC and GC-MS analysis.

2. Materials and Methods
2.1. Plant Sampling and Extract Preparation

The leaves of Cinnamomum camphora plants grown in Tanta, Egypt, were picked for
experimental research. The selected leaves were healthy and did not suffer from any
morphological aberrations. Initially, the leaves underwent thorough washing with tap
water to remove any surface dust or contaminants and were left to dry at room temperature
for 10 days or until completely dry. The dried leaves were then ground into a fine powder.
Subsequently, 50 g of the powder was combined with 500 mL of 80% methanol in an
Erlenmeyer flask and agitated on a rotary shaker (100 rpm) at room temperature for a
period of one night. The resulting methanolic leaf extract was filtered through Whatman
No. 1 filter paper. To remove any remaining methanol in the extract, vacuum-assisted
drying was employed. By applying a temperature range of 25–30 ◦C, the residual solvent
can be evaporated. The dried extract was stored in the fridge at 4 ◦C. To use the extract
in the antifungal activity test, it was dissolved in 10% dimethyl sulfoxide (DMSO). We
weighed 0.1, 0.2, 0.3, and 0.4 g of the extract and dissolved each in 1 mL of 10% DMSO.
We then used these stock solutions to prepare the final concentrations in 100 mL of broth
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media in a flask as 1000, 2000, 3000, and 4000 µg/mL of media. The control flask received
1 mL of 10% DMSO (free of extract).

2.2. Fungal Isolates, Culture Media, and Growth Conditions

Three phytopathogenic fungi were obtained from the rhizosphere of squash plants.
The purity of these fungi was verified by growing them on potato dextrose agar (PDA)
medium in 9-cm Petri dishes at 27 ◦C for a week in an incubator. Afterward, the three fungi
were preserved on slants in the refrigerator at 4 ◦C for further investigation.

2.3. Morphological and Molecular Characterization

The three fungal isolates were re-grown on PDA media at 27 ◦C for 7 days, and then the
mycelia and spores were morphologically examined under the light microscope according
to the identification protocols [19,20]. Afterward, the mycelia were harvested for DNA
extraction using the CTAB method described by Wang et al. [21]. The DNA concentration
was measured using a Nanodrop 2000 spectrophotometry device (Thermo Fisher Scientific,
Wilmington, DE, USA) and stored at −20 ◦C in a dilution of 100 ng/µL for use in PCR
amplification. The complete rDNA-ITS (ITS) region was amplified using specific PCR
primers, such as ITS1/ITS4 [22], from all fungal isolates. The PCR amplification conditions
were initial denaturing at 94 ◦C for 5 min; 35 cycles of denaturing (94 ◦C for 30 s each cycle);
annealing at 55 ◦C for 30 s; extension at 72 ◦C for 1 min; and a final extension at 72 ◦C for
10 min. The PCR amplicons were visualized, purified, and sent to the Macrogen company
for Sanger sequencing after being electrophoresed on a 1% agarose gel.

2.4. Antifungal Activity

The mycelial weight of the fungal mat was used to evaluate the antifungal activity of C.
camphora extract. The final concentrations of C. camphora extract (1000, 2000, 3000, and 4000
µg/mL) in potato broth media were made as illustrated in Section 2.1. Each flask of broth
medium was inoculated with 0.5 cm of the fungal disc and shaken for a week on an orbital
shaker (100 rpm) at 27 ± 2 ◦C before being filtered. The fungal mats were weighed and
compared to the control to find out the reduction in growth, thereby estimating the most
effective concentration for decreasing fungal growth. The inhibition of fungal growth in
the experiment was calculated as the percentage of inhibition of mycelial growth compared
to the control. All the tests were repeated three times.

Mycelial growth inhibition (MGI %) = [(D0 − Dt)/D0] × 100

where D0 and Dt are the control and treatment fungi growth weights, respectively.

2.5. Phytochemical Analysis of Camphor Extracts

The number of active compounds and antioxidants in camphor methanolic extract
was determined. Flavonoids, phenolics, and ascorbate were assayed as previously de-
scribed [23,24]. Saponin was estimated quantitatively by the method described by Hiai
et al. [25]. Tannin content was determined by Broadhurst et al. [26]. Proline, glycine betaine,
and total amino acids were also investigated [27–29]. The camphor methanolic extract’s
antioxidant capacity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
phosphomolybdate assay (PMA) methods described previously [30,31].

2.6. HPLC Conditions for Phenolic and Flavonoid Compounds

The presence of phenolic and flavonoid compounds in the methanolic extract of
C. camphora was determined by using a set of standard compounds, including gallic acid,
catechol, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, p-coumaric acid,
ellagic acid, ferulic acid, caffeic acid, benzoic acid, salicylic acid, cinnamic acid, o-coumaric
acid, rutin, quercetin, myricetin, apigenin, naringenin, and kaempferol. To identify the
phenolic compounds, an Agilent 1260 Infinity HPLC Series was utilized, which included
a Quaternary pump and a Zorbax Eclipse Plus C18 column (100 mm × 4.6 mm i.d.).



Separations 2023, 10, 189 4 of 15

The extract was injected into a volume of 25 µL, and the separation was performed at a
temperature of 30 ◦C with a gradient elution consisting of (A) HPLC-grade water containing
0.2% H3PO4 (v/v), (B) methanol, and (C) acetonitrile at a flow rate of 1 mL/min. A variable-
wavelength detector was used to detect the compounds at 284 nm.

To quantify flavonoid compounds, a Knauer HPLC Smart Line equipped with a binary
pump and a Zorbax Eclipse Plus C18 column (150 mm × 4.6 mm i.d.) was used. The
separation process involved an eluent containing methanol and water with 0.5% H3PO4 in
a 50:50 ratio and a flow rate of 0.7 mL/min. The extract was injected into a volume of 25 µL,
and a UV detector was set at 273 nm. Data integration was carried out using ClarityChrom®

Version 7.2.0 (Knauer Wissenschaftliche Geräte GmbH, Berlin, Germany) [32,33].

2.7. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

The chemical composition of the methanolic extract of C. camphora was studied using a
Trace GC Ultra ISQ mass spectrometer from Thermo Scientific in Waltham, Massachusetts,
USA. The analysis was performed using a direct capillary column, TraceGOLD TG–5MS,
with specifications of 30 m × 0.25 mm × 0.25 µm film thickness. The extract was dissolved
in high-quality methanol suitable for spectroscopy. The temperature of the column oven
was initially set to 50 ◦C and increased at a rate of 5 ◦C/min to reach 230 ◦C, where it was
maintained for 2 min before being increased to the final temperature of 290 ◦C and held for
another 2 min. The injector and MS transfer line temperatures were kept at 250 and 260 ◦C,
respectively. Using helium as a carrier gas, a 1 µL sample was injected at 250 ◦C, split at
a 1:30 ratio. The mass spectrometer was operated in the electron ionization (EI) mode at
200 ◦C and 70 eV, with a scan range of 40–1000 m/z [34]. The components were identified
by comparing the mass spectra and retention times to the data in the Wiley and NIST MS
library databases [35,36].

2.8. Statistical Tests

A randomized design was used in the experiments, and the results were analyzed
using analysis of variance with the aid of “CoSTAT” software. The results are presented as
mean ± SD and are considered statistically significant if p ≤ 0.05.

3. Results
3.1. Isolation Trails and Identification

From the rhizosphere samples, the isolation trails led to three isolates of fungi, which
were found to be Alternaria alternata, Fusarium solani, and F. oxysporum. Their sequences were
deposited into the GenBank database under the accession numbers (ON795987, ON795988,
and ON795989), respectively.

3.2. Effect of Plant Extracts on the Fungal Mat Weight

The obtained results in Table 1 revealed a gradual decrease in the fungal mat weight by
increasing the concentration of methanolic camphor extract; the most effective concentration
giving the least fungal mat weight was (4000 µg/mL), where the mycelia growth inhibition
(MGI) reached 24, 49, and 60% in F. solani, A. alternata, and F. oxysporum, respectively,
compared to the untreated control.
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Table 1. The effect of different concentrations of Cinnamomum camphora methanolic extract on fungal
growth weight in broth media.

Concentration
(µg/mL)

Weight of Fungal Mat (g)

F. solani Inhibition % A. alternata Inhibition % F. oxysporum Inhibition %

Control (10%
DMSO) 3.38 ± 0.2 a 0.00 4.12 ± 0.12 a 0.00 1.37 ± 0.1 a 0.00

1000 3.27 ± 0.1 ab 3.25 3.65 ± 0.14 b 11.41 1.20 ± 0.1 a 12.41
2000 3.22 ± 0.2 ab 4.73 2.95 ± 0.3 c 28.40 0.81 ± 0.1 b 40.88
3000 3.05 ± 0.2 b 9.76 2.33 ± 0.1 d 43.45 0.66 ± 0.1 bc 51.82
4000 2.56 ± 0.1 c 24.26 2.09 ± 0.2 d 49.27 0.55 ± 0.1 c 59.85

LSD 0.05 0.24 ** 0.33 ** 0.18 **

** The values with the same letters in each column are not significantly different from each other.

3.3. Phytochemical Screening of C. camphora Methanolic Extract

The results presented in Table 2 revealed that C. camphora methanolic extract comprises
high levels of antioxidant compounds such as ascorbate and flavonoids. In addition to
its antioxidant content, C. camphora is considered a rich source of saponin and tannins as
secondary metabolites. Moreover, osmoprotectants, total amino acids, and glycine betaine
were present in a noteworthy amount. Additionally, total antioxidant activities, estimated
on the basis of PMA and DPPH, were also present to a considerable extent.

Table 2. Screening of some active components of methanolic Cinnamomum camphora extract.

Classification Tested Parameters Concentration (mg/g DM)

Antioxidants
Flavonoids 48.0 ± 2.3

Phenols 22.7 ± 1.1
Ascorbic acid 46.6 ± 1.9

Secondary metabolites Saponin 12.0 ± 0.9
Tannins 16.5 ± 0.6

Osmo-regulatory molecules
Proline 2.6 ± 0.4

Glycine betaine (GB) 16.0 ± 1.2
Total amino acids 37.4 ± 3.4

Antioxidant activity
Total antioxidant activity

(PMA) 22.0 ± 2.1

DPPH scavenging activity % 13.7 ± 1.6

3.4. HPLC Analysis

The HPLC fingerprints of detected polyphenolic (phenolic and flavonoid) compounds
in C. camphora are presented in Table 3 and Figure 1. The identified phenolic compounds
were syringic acid, p-coumaric acid, caffeic acid, ferulic acid, gallic acid, benzoic acid, ellagic
acid, iso-ferulic acid, and catechol (Table 3). On the other hand, the detected flavonoid
compounds were naringin, quercetin, hesperidin, catechin, 7-OH flavone, and apigenin
(Table 3). Among the fifteen polyphenolic compounds, ferulic acid was the main compound
detected at a retention time (RT) of 7 min with a concentration of 7.22 µg/mL. The gallic
acid and catechin compounds showed relatively high concentrations of 6.98 and 6.21
µg/mL, respectively (Table 3). The other compounds, such as 7-OH flavone, apigenin,
naringin, and quercetin, were detected with moderated concentrations of 4.36, 3.98, 3.78,
and 2.46, respectively. The three compounds (ellagic acid, catechol, and benzoic acid) were
identified at low concentrations (2.11, 1.65, and 1.55 µg/mL, respectively), while the two
compounds (p-coumaric acid and iso-ferulic acid) showed the lowest concentrations (0.98
and 0.87 µg/mL, respectively).
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Table 3. The level of phenolic and flavonoid compounds (concentration, µg/mL) present in the
methanolic extract of Cinnamomum camphora was determined using high-performance liquid chro-
matography (HPLC).

Phenolic Compounds Flavonoid Compounds

Compound * RT µg/mL Compound RT µg/mL

Syringic acid 2.8 1.08 Naringin 3.8 3.78
p-coumaric acid 3.5 0.98 Quercetin 5.0 2.46

Caffeic acid 4.8 1.11 Hesperidin 7.0 1.25
Ferulic acid 7.0 7.22 Catechin 7.8 6.21
Gallic acid 8.9 6.98 7-OH flavone 8.9 4.36

Benzoic acid 10.0 1.55 Apigenin 10.0 3.98
Ellagic acid 11.0 2.11

Iso-Ferulic acid 12.0 0.87
Catechol 13.0 1.65

* RT = retention time (minutes).
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2 = p-coumaric acid, 3 = caffeic acid, 4 = ferulic acid, 5 = gallic acid, 6 = benzoic acid, 7 = ellagic
acid, 8 = iso-ferulic acid, and 9 = catechol acid; (b) λ = 273 nm, the peaks represent the following
flavonoid compounds: 1 = naringenin, 2 = quercetin, 3 = hesperidin, 4 = catechin, 5 = 7-OH flavone
and 6 = apigenin.

3.5. GC-MS Analysis of the C. camphora Methanolic Extract

A GC-MS analysis was performed to identify the main secondary metabolites in the
extract. Table 4 lists the 14 chemical components that have been found with their retention
time (RT), molecular formula, and chemical structure. The most abundant compound
detected at an RT of 23.267 min was 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester,
with the molecular formula of C16H22O4. The second highest compound was 2-Butenamide,
2-ethyl-3-methyl-N-phenyl, detected at a RT of 10.595 min with a molecular weight of
C13H17NO. The third abundant compound was 1H-Cycloprop[e]azulen-7-ol, decahydro-
1,1,7-trimethyl-4-methylene- have a molecular formula of C15H24O and was observed
at a RT of 12.971 min. On the other hand, 9,19-Cyclolanostan-3-ol, acetate, (3.beta.)-;
Bicyclo(3.1.1)heptane-2,3-diol, 2,6,6-trimethyl, and 7-Methyl-Z-tetradecen-1-ol acetate were
detected at RT of 14.115, 10.547, and 12.211 min, respectively, with a very similar moderate
ratio (Table 4). The other compounds, such as 2-Cyclohexen-1-one,4-hydroxy-3-methyl-6-(1-
methylethyl)-;7-Oxabicyclo[4.1.0]heptan-2-one,3-methyl-6-(1-methylethyl); trans-Z-alpha-
Bisaboleneepoxide;2 Oxabicyclo[2.2.2]octan-6-ol, 1,3,3-trimethyl-; 5-Hexenal, 4-(acetyloxy)-
4-methyl-; Ledol and Caryophyllene oxide, were detected at different RTs with low-level
ratios (Table 4). The andrographolide compound, detected at a RT of 14.859 min with a
molecular formula of C20H30O5, showed the lowest ratio among the identified compounds
(Table 4).
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Table 4. Phytochemical components identified in the Cinnamomum camphora extract by GC-MS.

Retention Time m/z Area Height Name Molecular Formula Class Chemical Structure

10.475 43.00 18,660 8351 2-Oxabicyclo[2.2.2]octan-6-ol,
1,3,3-trimethyl- (1,8-Cineole) C10H18O2 monoterpene
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23.267 149.00 437,984 83,389 1,2-Benzenedicarboxylic acid,
mono(2-ethylhexyl) ester C16H22O4 phthalate esters
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4. Discussion

Cinnamomum camphora (L.) is an evergreen species widely distributed and cultivated
in many tropical and subtropical areas, including Southeast and East Asia. It plays a crucial
role in protecting the environment and has a volatile essential oil, camphor, which has been
reported to have antibacterial properties [37,38]. The extracts from C. camphora have been
traditionally used for herbal medicine and furniture in China. They are more commonly
used as essential oils, obtained from the trunk, leaves, and twigs by steam distillation or
various solvents [39]. The C. camphora extracts have been shown to kill pathogenic bacteria
and can be used as a flavoring or preservative for food. It can also stop bacteria from
growing and kill insects [40,41]. C. camphora extracts contain several active ingredients,
including camphor, α-terpineol, linalool, eucalyptol, and safrole [42]. Additionally, the C.
camphora tree’s essential oils derived from its different parts have been reported by several
authors to be effective against pathogenic fungi, bacteria, algae, and insects [17,43,44].
Our work concluded that the methanolic extract of C. camphora showed potential bio-
fungicide against the growth of F. solani, A. alternata, and F. oxysporum, which could be
considered a prospective antifungal extract with a good number of antioxidants and
secondary metabolites. It is believed that several types of compounds, including terpenoids,
alkaloids, flavones, glycosides, saponins, quinines, coumarins, stilbenes, esters, phenols,
aldehydes, alcohols, steroids, and organic acids, contribute to antimicrobial activity.

HPLC analysis results revealed the presence of antimicrobial compounds—naringenin,
catechin, 7-OH flavone, apigenin, ferulic, benzoic acid, gallic acid, and catechol. Several
researchers noticed that C. camphora extracts contained several phenolics that exhibited
antimicrobial, antifungal, anticandidal, and antioxidant activities, such as gallic acid,
naringenin, and its derivatives, and ferulic acid, offering protection against oxidative
stress [14,45–49]. Research has shown that phenolic compounds play a role in the durability
of natural wood, and resin acids inhibit fungi growth [50]. In the same regard, the results
obtained in this work are in accord with those of Al-Huqail et al. [14], who found several
active compounds in acacia extract, such as benzoic acid, o-coumaric acid, naringenin,
quercetin, and kaempferol that showed significant inhibition of P. chrysogenum mycelial
growth. Additionally, our results align with those in previous work by Yakefu et al. [51],
who affirmed the potential values for C. camphora developing as an algaecide. Additionally,
Tomazoni et al. [52] discovered that treatment with the extract of Eucalyptus staigeriana, E.
globulus, and C. camphora resulted in inhibition of Alternaria mycelial growth and spore
germination in vitro and a decrease in early blight symptoms in plants in vivo. Further-
more, our study aligns with that of Manilal and Idhayadhulla [53], who found natural
plant extracts like Prosopis juliflora, Ricinus communis, and Carica papaya, respectively, and
Polyalthia longifolia is effective in controlling Alternaria solani [54].

The potent antimicrobial activity of C. camphora extract is believed to be related to
its secondary metabolites and phytochemicals, which can impact the membrane integrity,
hyphae initiation, and cell cycle of microbes causing structural and functional alterations,
swelling, and increased permeability [55,56].

GC-MS analysis of the methanolic leaf extract of C. camphora identified various com-
pounds. The most abundant compound found in the extract was 1,2-benzenedicarboxylic
acid, mono (2-ethylhexyl) ester, belonging to the class of phthalate esters, has been pre-
viously reported for its biological properties, including cytotoxicity, antioxidant, anti-
inflammatory, antimicrobial, and antiviral activities [57–59]. The same compound was
noticed to be the major component (58.05%) in a study conducted by Ali et al. [60], who
noticed that it may potentially contribute to the antifungal activity of the methanolic root ex-
tract of Chenopodium album. On the other hand, different compounds detected in our GC-MS
analysis had potential activities, such as the detected compound 1H-Cycloprop[e]azulen-7-
ol, decahydro-1,1,7-trimethyl-4-methylene-, which is called spathulenol and is used as a
scent in foods. According to Sousa et al. [61], the primary component of Eugenia calycina
essential leaf oil, spathulenol (21.36%), has demonstrated antimicrobial activity against
the anaerobic bacteria Prevotella nigrescens and Porphyromonas gingivalis, with a minimum
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inhibitory concentration (MIC) of 100 µg/mL. Similarly, Tan et al. [62] reported that spathu-
lenol (23.8%) and caryophyllene (14.9%), the primary components of Salvia cilicica essential
oil, exhibited antimicrobial activity against Mycobacterium tuberculosis, Microsporum gypseum,
Trichophyton mentagrophytes, and Candida spp.

In our study, the detected compound, 7-methyl-Z-tetradecen-1-ol acetate, has previ-
ously been reported in GC-MS analysis of Mentha viridis and Urospermum picroides methano-
lic leaf extracts, and proved to possess anticancer, anti-inflammatory, and hepatopro-
tective activities [63,64]. According to Arora and Kumar [65], a compound known as
9.19-cyclolanostan-3-ol,24-methylene-(3.beta) can be used as an anti-HIV agent for the pre-
vention of HIV. Additionally, the GC-MS results confirmed the existence of the compound
2-Oxabicyclo[2.2.2]octan-6-ol, 1,3,3-trimethyl-, also known as eucalyptol or 1,8-cineole.
Many researchers have shown that 1,8-cineole has strong antimicrobial properties against
various pathogens and spoilage organisms, as 1,8-cineole exhibited high inhibitory ac-
tivity against C. albicans and Proetus vulgaris, with MIC values of 31.3 and 62.5 µg/mL,
respectively [66–68]. The synergistic effect of 1,8-cineole combined with other molecules
in essential oils, such as limonene, α-pinene, P-cymene, and terpineol-4-ol, could reveal
strong antimicrobial activities [69,70].

Beta-caryophyllene (BCP) is a natural plant compound that belongs to the bicyclic
sesquiterpene family. In its natural state, BCP is primarily found as a trans-caryophyllene
((E)-BCP), along with small quantities of its isomers such as iso-caryophyllene (Z)-β-
caryophyllene, α-humulene (α-caryophyllene), and its oxidation derivative known as
β-caryophyllene oxide (BCPO). Our results showed that the extract possessed BCPO,
which has been studied in recent years because it has potent biological activities. BCPO,
whether used in its pure form or as a component of plant essential oils, has been shown
to have anti-inflammatory, antioxidant, antiviral, anticarcinogenic, and analgesic proper-
ties [71–74]. While various plant species’ antibacterial and antifungal properties have been
widely studied, the specific mechanisms behind these properties have not been thoroughly
explored. This study highlights the need for more trials to support the in vitro research
studies of the camphor extract. Further research is required to determine the extract’s
chemical nature and mechanisms of action, which will provide accurate and reproducible
discoveries that could be used as eco-friendly alternative molecules to treat plant diseases
caused by microbial pathogens.

5. Conclusions

Cinnamomum camphora methanolic extract was investigated for antifungal efficacy
against three common, isolated, extensive phytopathogens: Alternaria alternata, Fusarium
solani, and Fusarium oxysporum. C. camphora methanolic extract suppresses F. oxysporum, A.
alternata, and F. solani fungal mycelia weight by 60, 49, and 24% at 4000 µg/mL. C. camphora
extract may be antifungal due to its bioactive metabolites. HPLC examination indicated
several phenolic and flavonoid components in the extract, including catechin and gallic acid,
which had the highest amounts of 6.21 and 6.98 µg/mL, respectively. Glycine betaine, total
amino acids, and osmoprotectants were plentiful. PMA and DPPH showed considerable
total antioxidant activity. Mono(2-ethylhexyl) ester of 1,2-benzene dicarboxylic acid was
the most abundant chemical in the extract’s GC-MS study. The tested extract may be a safe
alternative to chemical fungicides because it inhibits mycelial growth weight in vitro.
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