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Abstract: Rational design for a new spiroxindoles, combined with a benzimidazole scaffold to iden-
tify a new murine double minute two (MDM2) inhibitor was synthesized and characterized. The
desired spiroxindoles were achieved via a [3+2] cycloaddition reaction approach which afforded the
cycloadducts with four asymmetric centers separated in an excellent regioselective and diastereoselec-
tive compound. The separated spiroxindoles were subjected to a set of biochemical assays including
an NCI cell panel assay, MTT assay, and MDM2 binding analysis by a microscale thermophoresis
assay. The anticancer reactivity for the tested compounds showed IC50 (µM) in the range between
3.797–6.879 µM, and compound 7d with IC50 = 3.797 ± 0.205 µM was the most active candidate
between the series. The results showed promising results that identified that compound 7a could be
inhibited the MDM2 with KD = 2.38 µM. Compound 7a developed a network of interactions with the
MDM2 receptor studied in silico by molecular docking.

Keywords: spiroxindole; benzimidazole; MDM2

1. Introduction

The MDM2–p53 protein–protein interaction inhibitor is a hot research topic and has
been gaining a lot of attention recently [1–4]. The inhibition of the interaction between the
two proteins, p53, and MDM2, leads to reactivation of the p53 which has many functionali-
ties, including DNA repairing, apoptosis, cell cycle arrest, senescence, metabolic alteration,
and tumor suppresser [5,6]. The mutant p53 protein has been found in approximately 50%
of human cancer cells [7,8]. The dislocation between the MDM2 protein and p53 protein is
a challenge and is important to the development of a new chemotherapeutic agent.

Based on the literature survey, it has been reported so far that more than 20 chemotypes
of molecules have been identified as MDM2–p53 inhibitors such as spirooxindoles [9],
nutlins [10], isoquinoline-1-one [11], chalcone [12], pyrrolin-2-one [13], piperidine [14],
morpholinone [15], imidazolyl indole [16], benzodiazpinedione [17], diketopiperazines [18],
chromenotriazolopyrimidines [19], and other pharmacophores. For this, protein–protein
interaction (PPI) inhibitors have progressed into clinical trials including spirooxindoles
such as APG-115 [20], SAR405838 [21], and other pharmacophores such as RG7388 [22],
HDM201 [23], RG7112 [24], and AMG-232 [25]. Inhibiting the p53–MDM2 interaction is
a promising strategy for cancer treatment, as it can help to restore normal cell growth
and death.
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Protein–protein interaction inhibitors (PPIs) are typically small molecules that are
designed to bind to the p53 and MDM2 proteins and prevent them from interacting.
Several PPIs have been developed and are currently in clinical trials for a variety of cancers.
Common side effects including fatigue, nausea, and anemia were observed.

In between the small molecules reported as promising lead compounds for cancer
research are the spirooxindoles. This scaffold is able to activate the p53 and bind with the
MDM2 domain [26–47]. Spirotryprostatin B is an inspired natural product that exhibits
anticancer reactivity [33] (Figure 1). Gollner A. et al. reported a novel chemically stable spiro
[3H-indole-3, 2′-pyrrolidin]-2 (1H)-one lead compound and orally active inhibitors of the
MDM2–p53 interaction [34]. Benzimidazole scaffold was introduced to many compounds
which showed high efficacy against MDM2, MDMX, and NF-kB inhibitors [40–46]. Our
research group has engaged in this research program for a couple of years and has been
successful in designing and developing several molecules towards PPI [35–39]. Among the
discovered molecules, a new spiroxindole [48], as a rigid structure with a combination of
benzimidazole scaffold, has been discovered as a novel MDM2 protein inhibitor with dual
effects of antimetastatic efficacy. Based on these findings, we have rationally designed and
synthesized a new spirooxindoles-based benzimidazole unit as an MDM2 inhibitor.
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Figure 1. Reported spirooxindoles and benzimidazoles with anticancer activity and our rationally 
designed compound 7a-o [34,36].  

2. Materials and Methods 
2.1. General: 
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used without further purification unless otherwise stated. All melting points were meas-
ured using a Gallenkamp melting point apparatus in open glass capillaries and were un-
corrected. Crude products were purified by column chromatography on silica gel of 100–
200 mesh. IR spectra were measured as KBr pellets using a Nicolet 6700 FT-IR spectropho-
tometer. The NMR spectra were recorded using a Varian Mercury Jeol-400 NMR spec-
trometer. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectroscopy were performed in 

Figure 1. Reported spirooxindoles and benzimidazoles with anticancer activity and our rationally
designed compound 7a-o [34,36].
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2. Materials and Methods
2.1. General

“All chemicals were purchased from Aldrich, Sigma-Aldrich and Fluka, which were
used without further purification unless otherwise stated. All melting points were mea-
sured using a Gallenkamp melting point apparatus in open glass capillaries and were
uncorrected. Crude products were purified by column chromatography on silica gel
of 100–200 mesh. IR spectra were measured as KBr pellets using a Nicolet 6700 FT-IR
spectrophotometer. The NMR spectra were recorded using a Varian Mercury Jeol-400
NMR spectrometer. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectroscopy were
performed in either deuterated dimethylsulfoxide (DMSO-d6) or deuterated chloroform
(CDCl3). Chemical shifts (δ) are reported in terms of ppm and coupling constants J are
given in Hz. Elemental analysis was carried out using an Elmer 2400 Elemental Analyzer
in CHN mode”.

2.2. Synthesis of Spirooxindole Analogues (7a-o) General Procedure)

Chalcone derivative 4a-o (0.5 mmol), octahydroindole-2-carboxylic acid 6 (84.62 mg,
0.5 mmol), and 5-chlorisatin 5 (90.79 mg, 0.5 mmol) were mixed in 20 mL MeOH then,
heated up at 60–65 ◦C for 2–3 h. After the reaction was completed, as monitored by TLC,
the crude material was subjected to column chromatography using ethylacetate/n-hexane
(2: 6), yielding spiro compounds in pure form.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(4-chlorophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,
9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo [1,2-a]indol]-2-one (7a).

Pale yellow solid; yield (80%); m.p.:176–178 ◦C; IR (KBr, cm−1): 3434 (NH), 3277 (NH),
3093 (CH), 2929 (CH),1729 (CO), 1682 (CO); 1H-NMR (DMSO-d6, 400 MHz): δ 12.98 (1H, s,
NH), 10.17 (1H, s, NH), 7.73 (1H, s, Ph-H) 7.45 (2H, d, J = 8.0 Hz, Ph-H), 7.42–7.26 (6H, m,
Ph-H), 7.08 (1H, d, J = 8.0 Hz, Ph-H), 6.44 (1H, d, J = 8.0 Hz, Ph-H), 5.29 (1H, d, J = 11.9 Hz,
CHCO), 4.00 (2H, m, CHN, CHPh), 3.23 (1H, d, J = 3.7 Hz), 2.16–2.08 (1H, m), 2.06–1.98
(1H, m), 1.55–0.70 (10H, m, aliphatic CH); Anal. for C32H28Cl2N4O2; calcd: C, 67.25; H,
4.94; N, 9.80 Exper.: C, 66.89; H, 5.03; N, 10.04.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(4-(trifluoromethyl)phenyl)-1’,2’,4a’,
5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7b).

Pale yellow solid; yield (32%); m.p.:125–127 ◦C; IR (KBr, cm−1): 3429 (NH), 3282 (NH),
3099 (CH), 2927 (CH),1724 (CO), 1686 (CO); 1H-NMR (DMSO-d6, 400 MHz): δ 12.98 (1H, s,
NH), 10.20 (1H, s, NH), 7.75 (1H, d, J = 8 Hz, Ph-H), 7.68 (4H, m, Ph-H), 7.48–7.20 (4H, m,
Ph-H), 7.09 (1H, d, J = 8.8 Hz, Ph-H), 6.43 (1H, d, J = 8.3 Hz, Ph-H), 5.34 (1H, d, J = 11.7 Hz,
CHCO), 4.11 (1H, m, CHN), 3.46 (1H, m, CHPh), 2.10 (2 H, d, J = 12.9Hz), 1.58–0.67 (10 H,
m, aliphatic C-H); Anal. for C33H28ClF3N4O2; calcd: C, 65.51; H, 4.66; N, 9.26 Exper.: C,
66.09; H, 4.77; N, 9.14.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(p-tolyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,
9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7c).

Yellow solid; yield (41%); m.p.:163–165
◦C; IR (KBr, cm−1): 3649 (NH), 3277 (NH),

3087(CH), 2926 (CH),1727 (CO), 1690 (CO); 1H-NMR (DMSO-d6, 400 MHz): δ 12.98 (1H,
s, NH), 10.18 (1H, s, NH), 7.76 (1H, d, J = 8.0 Hz, Ph-H), 7.40 (1H, d, J = 2.2 Hz, Ph-H),
7.35–7.26 (5H, m, Ph-H), 7.10–7.06 (3H, d, J = 8.0 Hz, Ph-H), 6.44 (1H, d, J = 8 Hz, Ph-
H), 5.34 (1H, d, J = 12.4 Hz, CHCO), 4.11–4.00 (1H, m, CHN), 3.96–3.86 (1H, m, CHPh),
2.20 (3H, s, CH3), 2.11 (2 H, d, J = 8.0Hz), 1.56–0.72 (10H, m, aliphatic C-H); 13C-NMR
(DMSO-d6, 100 MHz): δ = 189.91, 180.05, 148.02, 143.07, 141.62, 136.60, 136.47, 135.18, 129.69,
127.85, 126.33, 125.17, 123.63, 111.02, 71.74, 63.94, 57.24, 52.79, 36.80, 28.19, 25.07; Anal. for
C33H31ClN4O2; calcd: C, 71.92; H, 5.67; N, 10.17 Exper.: C, 71.59; H, 5.71; N, 10.44.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(thiophen-2-yl)-1’,2’,4a’,5’,6’,7’,8’,8a’,
9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7d).
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Pale yellow solid; yield (48%); m.p.:130–132 ◦C; IR (KBr, cm−1): 3624 (NH), 3258 (NH),
3091(CH), 2927 (CH),1728 (CO), 1689 (CO); 1H-NMR (CDCl3, 400 MHz): δ 10.18 (1H, s, NH),
8.64 (1H, s, NH), 7.84 (1H, d, J = 8.0 Hz, Ph-H), 7.34 (1H, d, J = 8.0 Hz, thio-H), 7.31–7.20 (4H,
m, Ph-H), 6.99 (1H, d, J = 3.5 Hz, thio-H), 6.95 (1H, dd, J = 8.2, 1.7 Hz, thio-H), 6.90–6.85
(1H, m, Ph-H), 6.39 (1H, d, J = 8.6 Hz, Ph-H), 5.30 (1H, d, J = 12.0 Hz, CHCO), 4.53–4.34(1H,
m, CHN), 4.12 (1H, t, J = 11.0 Hz, CHPh), 3.20 (1H, d, J = 4.0 Hz), 2.16 (1H, d, J = 5.0Hz),
1.83–0.82 (10 H, m, aliphatic C-H); 13C-NMR (CDCl3, 100 MHz): δ = 189.65, 181.65, 146.83,
143.16, 141.99, 139.94, 133.80, 129.28, 126.77, 125.88, 123.80, 111.02, 72.12, 71.33, 65.76, 57.93,
48.77, 37.52, 28.38, 27.86, 19.70; Anal. for C30H27ClN4O2S; calcd: C, 66.35; H, 5.01; N, 10.32
Exper.: C, 66.49; H, 5.20; N, 10.14.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(4-fluorophenyl)-1’,2’,4a’,5’,6’,7’,8’,
8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7e).

Pale yellow solid; yield (35%); m.p.:148–150 ◦C; IR (KBr, cm−1): 3431 (NH), 3268 (NH),
3096 (CH), 2960 (CH),1732 (CO), 1684 (CO); 1H-NMR (CDCl3, 400 MHz): δ 10.02 (1H, s,
NH), 8.55 (1H, s, NH), 7.82 (1H, d, J = 8.3 Hz, Ph-H), 7.40 (2 H, dd, J = 8.5, 5.4 Hz), 7.35–7.12
(5H, m, Ph-H), 6.94 (3H, m, Ph-H), 6.36 (1H, d, J = 8 Hz, Ph-H), 5.32 (1H, d, J = 12.4 Hz,
CHCO), 4.31 (1H, q, J = 7.4 Hz, CHN), 3.79 (1H, t, J = 12.4 Hz, CHPh), 3.19–0.87 (12 H,
m, aliphatic C-H); 13C-NMR (CDCl3, 100 MHz): δ = 189.71, 181.92, 163.19, 160.76, 146.85,
143.08, 139.91, 134.65, 134.62, 133.69, 129.56, 129.49, 129.30, 127.35, 126.82, 126.64, 126.09,
123.68, 122.61, 115.63, 115.42, 112.08, 110.91, 72.01, 71.26, 65.28, 57.78, 53.18, 41.88, 37.45,
29.79, 28.43, 27.82, 24.79, 19.75; Anal. for C32H28ClFN4O2; calcd: C, 69.25; H, 5.08; N, 10.09
Exper.: C, 69.49; H, 5.18; N, 10.44.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(2,4-dichlorophenyl)-1’,2’,4a’,5’,6’,7’,
8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7f).

Pale yellow solid; yield (48%); m.p.:138–140 ◦C; IR (KBr, cm−1): 3436 (NH), 3281 (NH),
3090 (CH), 2925 (CH),1730 (CO), 1685 (CO); 1H-NMR (CDCl3, 400 MHz): δ 10.14 (1H,
s, NH), 8.40 (1H, s, NH), 7.84 (1H, d, J = 8.0 Hz, Ph-H), 7.55 (1H, d, J = 8.7 Hz, Ph-H),
7.37 (1H, s, Ph-H), 7.35–7.14 (5H, m, Ph-H), 6.95 (1H, d, J = 8.0 Hz, Ph-H), 6.37 (1H, d,
J = 8.0 Hz, Ph-H), 5.39 (1H, d, J = 12.3 Hz, CHCO), 4.47 (1H, t, J = 11.0 Hz, CHPh), 4.20 (1H,
q, J = 8.5 Hz, CHN), 3.20 (1 H, d, J = 4.4 Hz), 2.14–0.89 (12 H, m, aliphatic C-H); 13C-NMR
(CDCl3, 100 MHz): δ = 189.44, 181.66, 146.72, 143.03, 139.94, 135.42, 135.35, 133.76, 133.00,
129.56, 126.98, 125.98, 110.98, 71.87, 48.25, 27.66, 19.79; Anal. for C32H27Cl3N4O2; calcd: C,
63.43; H, 4.49; N, 9.25 Exper.: C, 63.59; H, 5.04; N, 9.04.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(3-hydroxyphenyl)-1’,2’,4a’,5’,6’,7’,8’,
8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7g).

Pale yellow solid; yield (62%); m.p.:186–188 ◦C; IR (KBr, cm−1): 3626 (NH), 3257 (OH),
2931 (CH), 1726 (CO), 1688 (CO); 1H-NMR (CDCl3, 400 MHz): δ 9.00 (1H, s, NH), 8.25
(1H, s, NH), 7.54 (1H, d, J = 4.0 Hz, Ph-H), 7.46 (1H, s, OH), 7.22 (1H, d, J = 8.0 Hz, Ph-H),
7.08–7.04 (3H, m, Ph-H), 6.89–6.72 (5H, m, Ph-H), 6.23 (1H, d, J = 8.0 Hz, Ph-H), 5.31 (1H,
d, J = 12.5 Hz, CHCO), 4.49–4.38 (1H, m, CHN), 3.75–3.65 (1H, m, CHPh), 3.14 (1H, d,
J = 4 Hz), 2.16–0.81 (12 H, m, aliphatic C-H); Anal. for C32H29ClN4O3; calcd: C, 69.49; H,
5.29; N, 10.13 Exper.: C, 69.69; H, 5.14; N, 9.94.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(3,4,5-trimethoxyphenyl)-1’,2’,4a’,5’,
6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7h).

Pale yellow solid; yield (88%); m.p.:160–162 ◦C; IR (KBr, cm−1): 3430 (NH), 3269 (NH),
3093 (CH), 2996 (CH),1722 (CO), 1683 (CO); 1H-NMR (CDCl3, 400 MHz): δ 10.15 (1H, s,
NH), 8.500 (1H, s, NH), 7.81 (1H, d, J = 8.0 Hz, Ph-H), 7.37–7.19 (4H, m, Ph-H), 6.97 (1H, d,
J = 8.4 Hz, Ph-H), 6.66 (2H, s, Ph-H), 6.38 (1H, d, J = 8.5 Hz, Ph-H), 5.38 (1H, d, J = 12.3 Hz,
CHCO), 4.33 (1H, m, CHPh), 3.78 (6H, s, OCH3), 3.73 (3H, s, OCH3), 3.19 (1H, m, CHN),
2.02–0.78 (12 H, m, aliphatic C-H); 13C-NMR (CDCl3, 100 MHz): δ = 189.75, 181.68, 153.30,
146.99, 143.14, 139.85, 136.95, 134.53, 133.80, 133.31, 126.78, 126.18, 123.39, 122.48, 110.86,
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104.89, 72.25, 71.07, 60.86, 56.33, 56.18, 54.56, 41.84, 37.58, 28.44, 27.83, 24.76.; Anal. for
C35H35ClN4O5; calcd: C, 67.03; H, 5.63; N, 8.93 Exper.: C, 67.59; H, 5.34; N, 9.05.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(2-hydroxyphenyl)-1’,2’,4a’,5’,6’,7’,8’,
8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7i).

Yellow solid; yield (82%); m.p.:128–130 ◦C; IR (KBr, cm−1): 3311 (OH), 3063 (CH), 2925
(CH),1716 (CO), 1667 (CO); 1H-NMR (CDCl3, 400 MHz): δ 10.57 (1H, s, NH), 8.93 (1H, s,
NH), 7.80 (1H, d, J = 8.0 Hz, Ph-H), 7.49 (1H, d, J = 8.0 Hz, Ph-H), 7.29 (2H, d, J = 7.3 Hz,
Ph-H), 7.23 (1H, s, OH), 7.08 (2H, t, J = 7.7 Hz, Ph-H), 6.97 (2H, d, J = 8 Hz, Ph-H), 6.87 (2H,
d, J = 8 Hz, Ph-H), 6.45 (1H, d, J = 8 Hz, Ph-H), 5.07 (1H, dd, J = 11.7, 6.6 Hz, CHCO), 4.54
(1H, q, J = 7.3 Hz, CHN), 4.43 (1H, t, J = 11.0 Hz, CHPh), 3.22 (1H, d, J = 4.4 Hz), 2.16–0.83
(12 H, m, aliphatic C-H); 13C-NMR (CDCl3, 100 MHz): δ = 191.67, 181.97, 154.84, 146.69,
142.54, 139.78, 133.34, 129.39, 128.16, 127.44, 126.93, 125.55, 125.42, 124.12, 122.07, 121.41,
118.44, 112.22, 111.31, 85.63, 85.25, 83.06, 73.14, 57.83, 46.34, 41.88, 40.99, 37.30, 28.55, 28.44,
27.76, 24.73, 23.97; Anal. for C32H29ClN4O3; calcd: C, 69.49; H, 5.29; N, 10.13 Exper.: C,
69.55; H, 5.16; N, 10.34.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(4-(dimethylamino)phenyl)-1’,2’,4a’,
5’,6’,7’,8’,8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7j).

Orange solid; yield (45%); m.p.:140–142 ◦C; IR (KBr, cm−1): 3434 (NH), 3275 (NH),
3094 (CH), 2929 (CH),1729 (CO), 1682 (CO); 1H-NMR (CDCl3, 400 MHz): δ 9.81 (1H, s, NH),
8.01 (1H, s, NH), 7.78 (1H, d, J = 8.0 Hz, Ph-H), 7.31 (5H, m, Ph-H), 7.17 (1H, d, J = 2.2 Hz,
Ph-H), 6.94 (1H, dd, J = 8.3, 2.3 Hz, Ph-H), 6.65 (2H, d, J = 8.8 Hz, Ph-H), 6.31 (1H, d,
J = 8.6 Hz, Ph-H), 5.32 (1H, d, J = 12.4 Hz, CHCO), 4.38–4.27 (1H, m, CHN), 4.10 (1H, t,
J = 7.3 Hz, CHPh), 3.19 (1H, d, J = 3.8 Hz), 2.87 (6H, s, NCH3), 2.07–0.83 (12 H, m, aliphatic
C-H); 13C-NMR (CDCl3, 100 MHz): δ = 189.78, 181.66, 149.77, 147.05, 139.62, 133.54, 129.10,
128.85, 128.72, 127.56, 126.77, 126.36, 112.88, 110.59, 72.04, 71.13, 65.09, 57.80, 53.18, 40.70,
31.67, 28.50, 27.81, 24.84, 22.74, 19.86; Anal. for C34H34ClN5O2; calcd: C, 70.39; H, 5.91; N,
12.07 Exper.: C, 70.65; H, 6.06; N, 11.94.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-1’-(4-bromophenyl)-5-chloro-1’,2’,4a’,5’,6’,7’,8’,
8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2-a]indol]-2-one (7k).

Yellow solid; yield (72%); m.p.:159–161 ◦C; IR (KBr, cm−1): 3625 (NH), 3422 (NH), 3088
(CH), 2913 (CH),1725 (CO), 1682 (CO); 1H-NMR (CDCl3, 400 MHz): δ 10.08 (1H, s, NH),
8.46 (1H, s, NH), 7.80 (1H, d, J = 8.2 Hz, Ph-H), 7.36 (2H, d, J = 8.6 Hz, Ph-H), 7.31–7.16 (7H,
m, Ph-H), 6.99–6.93 (1H, m, Ph-H), 6.34 (1H, d, J = 8.2 Hz, Ph-H), 5.30 (1H, d, J = 12.3 Hz,
CHCO), 4.36–4.24 (1H, m, CHN), 3.75 (1H, t, J = 12.4 Hz, CHPh), 3.19 (1H, d, J = 3.9 Hz),
2.22–0.82 (12 H, m, aliphatic C-H); 13C-NMR (CDCl3, 100 MHz): δ = 189.58, 181.78, 146.77,
143.06, 139.92, 138.08, 133.72, 131.76, 129.87, 129.35, 127.32, 126.82, 126.65, 126.03, 122.61,
120.92, 112.11, 110.94, 71.97, 71.19, 65.20, 57.78, 53.43, 41.86, 37.41, 28.43, 27.81, 24.78, 19.75;
Anal. for C32H28BrClN4O2; calcd: C, 62.40; H, 4.58; N, 9.10 Exper.: C, 62.60; H, 4.34; N, 9.03.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(3-fluorophenyl)-1’,2’,4a’,5’,6’,7’,8’,
8a’,9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2- a]indol]-2-one (7l).

Pale yellow solid; yield (42%); m.p.:143–145 ◦C; IR (KBr, cm−1): 3625 (NH), 3422 (NH),
3088 (CH), 2913 (CH),1725 (CO), 1682 (CO); 1H-NMR (CDCl3, 400 MHz): δ 9.51 (1H, s, NH),
7.86 (1H, d, J = 8.0 Hz, Ph-H), 7.42 (1H, s, NH), 7.32 (2H, d, J = 4 Hz, Ph-H), 7.29–7.27 (2H,
m, Ph-H), 7.23–7.13 (3H, m, Ph-H), 6.96 (1H, dd, J = 8.5, 2.2 Hz, Ph-H), 6.91–6.85 (1H, m,
Ph-H), 6.32 (1H, d, J = 8.4 Hz, Ph-H), 5.31 (1H, d, J = 12.0 Hz, CHCO), 4.41–4.30 (1H, m,
CHN), 3.79 (1H, t, J = 12.4 Hz, CHPh), 3.22 (1H, d, J = 4.3 Hz, CHPh), 2.17–0.88 (12 H, m,
aliphatic C-H); Anal. for C32H28ClFN4O2; calcd: C, 69.25; H, 5.08; N, 10.09 Exper.: C, 69.40;
H, 4.94; N, 10.13.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(furan-2-yl)-1’,2’,4a’,5’,6’,7’,8’,8a’,9’,
9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2- a]indol]-2-one (7m).
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Pale yellow solid; yield (62%); m.p.:165–167 ◦C; IR (KBr, cm−1): 3435 (NH), 3256 (NH),
3090 (CH), 2928 (CH),1729 (CO), 1687 (CO); 1H-NMR (CDCl3, 400 MHz): δ 10.31 (1H, s,
NH), 8.77 (1H, s, NH), 7.83 (1H, d, J = 8 Hz, Ph-H), 7.36 (1H, d, J = 8 Hz, Ph-H), 7.28 (1H, t,
J = 7.5 Ph-H), 7.22 (2H, d, J = 7.9 Hz, Ar), 7.11 (1H, s, Ph-H), 6.93 (1H, d, J = 8.7 Hz, Ph-H),
6.39 (1H, d, J = 8.7 Hz, Ph-H), 6.20 (1H, t, J = 1.6 Hz, fur-H), 6.12 (1H, d, J = 3.6 Hz, fur-H),
5.37 (1H, d, J = 12.3 Hz, CHCO), 4.39 (1H, q, J = 8.3 Hz, CHN), 3.97 (1H, t, J = 11.4 Hz,
CHPh), 3.17 (1H, d, J = 4.4 Hz), 2.16–0.85 (12 H, m, aliphatic C-H); 13C-NMR (CDCl3,
100 MHz): δ = 189.68, 181.80, 153.04, 146.83, 143.19, 141.75, 141.71, 141.67, 139.98, 133.89,
129.32, 127.40, 126.74, 126.63, 125.97, 123.69, 122.69, 112.20, 111.05, 110.27, 106.01, 71.94,
68.30, 62.85, 57.68, 46.89, 41.94, 37.74, 28.39, 27.79, 24.80, 19.69; Anal. for C30H27ClN4O3;
calcd: C, 68.37; H, 5.16; N, 10.63 Exper.: C, 68.60; H, 4.94; N, 10.33.

2’-(1H-Benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(4-nitrophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,
9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2- a]indol]-2-one (7n).

Pale yellow solid; yield (46%); m.p.:165–167 ◦C; IR (KBr, cm−1): 3437 (NH), 3255 (NH),
3094 (CH), 2929 (CH),1728 (CO), 1686 (CO); 1H-NMR (CDCl3, 400 MHz): δ 9.81 (1H, s,
NH), 8.12 (1H, s, NH), 8.12 (2H, d, J = 8.6 Hz, Ph-H), 7.80 (1H, d, J = 8.0 Hz, Ph-H), 7.63
(2H, d, J = 8.6 Hz, Ph-H), 7.33–7.23 (3H, m, Ph-H), 7.14 (1H, s, Ph-H), 6.97 (1H, dd, J = 8.3,
1.8 Hz, Ph-H), 6.36 (1H, d, J = 8.6 Hz, Ph-H), 5.35 (1H, d, J = 11.9 Hz, CHCO), 4.41–4.35
(1H, m, CHN), 3.90 (1H, t, J = 12 Hz, CHPh), 3.23 (1 H, d, J = 3.9 Hz), 2.03- 0.84 (12 H,
m, aliphatic C-H); 13C-NMR (CDCl3, 100 MHz): δ = 189.08, 181.27, 147.16, 146.89, 146.55,
143.00, 139.84, 133.60, 129.53, 129.10, 129.04, 126.98, 126.86, 125.72, 123.92, 122.54, 112.06,
110.85, 71.90, 71.25, 65.46, 57.83, 53.73, 41.86, 37.38, 31.67, 28.38, 27.80, 24.73, 23.95; Anal. for
C32H28ClN5O4; calcd: C, 66.03; H, 4.85; N, 12.03 Exper.: C, 66.10; H, 4.74; N, 12.11.

2’-(1H-benzo[d]imidazole-2-carbonyl)-5-chloro-1’-(3-nitrophenyl)-1’,2’,4a’,5’,6’,7’,8’,8a’,
9’,9a’-decahydrospiro[indoline-3,3’-pyrrolo[1,2- a]indol]-2-one (7o).

Pale yellow solid; yield (52%); m.p.:135–137 ◦C; IR (KBr, cm−1): 3438 (NH), 3257 (NH),
3092 (CH), 2930 (CH),1729 (CO), 1688 (CO); 1H-NMR (CDCl3, 400 MHz): δ 9.55 (1H, s,
NH), 8.36 (1H, s, NH), 8.06 (1H, dd, J = 8.1, 2.3 Hz, Ph-H), 7.86 (2H, d, J = 8.2 Hz, Ph-H),
7.57 (1H, s, Ph-H), 7.47 (1H, t, J = 8 Hz, Ph-H), 7.31 (3H, d, J = 4.0 Hz, Ph-H), 7.14 (1H, d,
J = 2.1 Hz, Ph-H), 6.98 (1H, dd, J = 8.3, 2.4 Hz, Ph-H), 6.33 (1H, d, J = 8.0 Hz, Ph-H), 5.31
(1H, d, J = 12.0 Hz, CHCO), 4.46–4.36 (1H, m, CHN), 3.92 (1H, t, J = 12.0 Hz, CHPh), 3.24
(1H, d, J = 4.3 Hz), 2.19–0.81 (12 H, m, aliphatic C-H); Anal. for C32H28ClN5O4; calcd: C,
66.03; H, 4.85; N, 12.03 Exper.: C, 66.09; H, 4.73; N, 12.10.

2.3. NCI Screening

The compounds have been processed according to the standard method NCI-60
Human Tumor Cell Lines Screen for the organic compound at the development therapeutic
program (DTP) (see Supplementary Materials, Table S2; Figures S1 and S2).

2.4. Anticancer Activity Protocol

The anticancer activity protocol was carried out according to the method reported
in [48]. “The cytotoxicity of tested compounds was investigated on a human normal lung
fibroblast (Wi-38) cell line, triple-negative breast (MDA-MB 231) cells, and prostate cancer
(PC3) cells. These cells were cultured in DMEM containing 10% fetal bovine serum. After
cell seeding (10,000, 4000, and 5000 cells, respectively, per well) in 96-well cell culture plates
and incubating for 24 h in a 5% CO2 incubator, serial dilutions (2,4,6,8, and 10 µM) of
the tested compounds were added. Following 48 h in a 5% CO2 incubator, 20 µL of MTT
(5 mg/mL) was added and incubated for 4 h, then this solution was removed and 100 µL
of DMSO was added. The absorbance was measured at 590 nm (BMG LabTech, Ortenberg,
Germany). The half-inhibitory growth concentration (IC50) was calculated by GraphPad
Prism software” [48].
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2.5. MDM2 Binding Analysis by Microscale Thermophoresis (MST) Assay

The full protocol has been provided in SI and the binding curve is shown in the
Supplementary Material (Figures S3–S6).

2.6. Methodology for Molecular Docking

Two-dimensional structures of compounds 7a, 7g, 7h, and 7k were drawn via the
builder and subjected to preliminary structure preparation, namely energy minimization
with the force field MMFF94x and the subsequent application of partial charges. The
X-Ray crystal structure of MDM2 with PDB ID: 5LAZ, having a cocrystallized ligand with
structural similarity to the studied compounds, was retrieved from the RCSB Protein Data
Bank for the docking studies. Structure preparation of the protein was brought about by
energy minimization with force field Amber10:EHT and partial charges were then applied
to the protein. The cocrystallized ligand (6ST), after the necessary structure preparations,
was used as a reference compound for validation of the results in docking studies of the
aforementioned compounds [34]. Benchmarking of the docking protocols was performed
well before the docking studies. Redocking of the 6ST ligand was brought about to observe
the deviation of the ligand conformation from the original one (SI Figure S7). All the opera-
tions were performed in the molecular operating environment (MOE 2019.01) [49], which
was chosen based on the RMSD value (0.14 Å) between the coordinates of the cognate
ligand and the simulated pose. Induced fit docking was directed to the ligand atoms,
brought about by placement of the ligand into the binding site of MDM2 utilizing the
triangle matcher algorithm followed by determining the scores of the generated fifteen
conformations through the London dG scoring function. Finally, five top-scored confor-
mations were retained and evaluated by the GBVI/WSA dG scoring function. Thereafter,
the same protocols were followed for the docking simulation of the studied compounds.
The interaction patterns of the ligands with binding site residues were analyzed by the
Protein-Ligand Interaction Profiler [50].

2.7. Statistical Analysis

The data are expressed as mean ± standard error of the mean (SEM) and values were
considered significantly different at p < 0.05, using one-way analysis of variance (ANOVA)
and Tukey’s test (SPSS software version 16).

3. Results and Discussion
3.1. Chemistry

Based on the recently published idea of spiroxindole having the benzimidazole nucleus
and showing promising results against cancer cell lines and an antimetastatic effect. To
study the cytotoxicity and structure reactivity relationship, a new library 7a-o has been
synthesized and characterized (Scheme 1). Different electronic effects on the aromatic ring,
including electron-donating and electron-withdrawing effects, also achieved a heterocycle
aromatic ring and were explored. The synthetic methodology was carried out based on a
multicomponent one-pot reaction via the [3+2] cycloaddition reaction approach [48]. The
desired dipolarphiles were synthesized from orthophenylene diamine in a consequential
step. Mixing the chalcones 4a-o with the 5-chloroisatin, 5 and the key amino acid 6 in
methanol under reflux for 2–3 h, afforded the final compounds in a high chemical yield
and a regio- and diasetero-selective manner. The stereochemistry for the final cycloadduct
is matched with the previous lead compound published by our research group [48].
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Scheme 1. Synthetic methodology for the desired spirooxindole derivative 7a-o.

3.2. In Vitro Anti-Cancer Activity Assays
3.2.1. NCI Screening (Development Therapeutic Program, DTP)

The successfully synthesized spirooxindoles (7a-o) were submitted for NCI for screen-
ing against 60 various cancer cell lines, classified into nine subpanels: breast, kidney,
melanoma colon, prostate, CNS, ovary, melanoma, leukemia, and lung cancers. The initial
single dose assay for the assessed spirooxindoles were tested at a 10 µM and the results
were then expressed as a percentage of growth inhibition (GI%) (Table S2). As observed,
the synthesized compounds inhibited the growth of the NCI cell-line panel according to
the following order: breast > renal > leukemia cancer cell lines > other tested cancer cell
lines (Table S2). The initial results afforded the most active compound, 7g, which entered
the five dose assays, and the results are shown in Supporting Materials (Figures S1 and S2).

3.2.2. MTT Assay

In order to determine the IC50 (µM) of the synthesized spirooxindoles, 7a-o were
subjected to an MTT assay in vitro against the two-cancer cell line MDA-MB 231 and
PC3 cells, and the data reported in Table 1. For the breast cancer line (MDA-MB 231)
the compounds are shown in IC50 (µM) in the range between 3.797–6.879 µM; the most
active candidate between the series was compound 7d with IC50 = 3.797 ± 0.205 µM, the
chemical structure compromises a thiophene ring. On the other hand, the least reactivity
was compound 7n with IC50 = 6.879 ± 0.308 µM. All other compounds are shown in
the range of 4 µM reactivity. In the case of prostate cancer (PC3), the reactivity of the
synthesized compounds exhibited the range of IC50 = 4.252 to 7.567 µM. In the case of
compound 7a with the Cl-atom in the fourth position showed IC50 = 4.763 ± 0.069 and
4.574 ± 0.011 µM, for both tested two-cancer cells MDA-MB 231, and PC3, respectively.
The reactivity slightly improved compared with compound 7a when the CF3-group was
introduced into the aromatic ring, as indicated in compound 7b which showed IC50 = 4.284
± 0.007 and 4.404 ± 0.008 µM; 7e contain the p-fluoro atom on the aromatic ring compared
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with 7l having the m-fluoro atom on the aromatic, where no differences were observed in
the cytotoxicity. In the isosteric analog of the compound 7d, which replaced the thiophene
with furan heterocycle, as shown in compound 7m, the cytotoxicity dropped to IC50 = 6.039
± 0.111 and 5.098 ± 0.119 µM with less than 1.6 and 1.18 times, compared to the compound
7d. Introducing the electron-withdrawing effect of the NO2 group either in the para- or
meta-position, we observed that NO2 in the meta (compound 7o) was more active than the
para-position (compound 7n) with 1.66 and 1.77 folds. The existence of electron donating
groups such as methyl group (compound 7c); hydroxyl group (compound 7g or compound
7c); trimethoxy groups (compound 7h); and dimethyl amine (compound 7j) did not alter
the reactivity.

Table 1. The estimated IC50 (µM) of 7a-o on Wi-38 viability, the growth of MDA-MB 231, and
PC3 cells.

Chemical Structure
Wi-38 MDA-MB 231 PC3

IC50 (µM)
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3.3. Molecular Docking of the Studied Compound

Results of the docking simulations of the spirooxindoles molecules were validated
relative to the reference compound (6ST), which was firmly held into the binding site by a
diverse network of interactions. The nitrogen of the imidazole ring of His96 and oxygen
in the carboxylic acid moiety of Leu54 accepted hydrogens from the N-H of indolinone
and the N-H of pyrrolidine rings, resulting in hydrogen bonds with 1.99 Å and 2.16 Å
lengths, respectively. Additionally, His96 had π-stacking and halogen bonding with the
chloroindolinone moiety. There were formed salt bridges by the carboxylate group of this
compound with His73 and Lys94. This binding was further enhanced by hydrophobic
interactions with seven amino acid residues.

Compound 7a developed a network of interactions similar to that of the reference
compound. A hydrogen bond was established with the ligand at a distance of 2.08 Å,
where hydrogen was donated by the N-H of benzimidazole to Leu54. Furthermore, His96
formed π-stacking and halogen bonding with the chlorobenzene ring the same way it
was created with the reference compound. Similarly, hydrophobic interactions formed
by seven residues well accommodated this compound into the binding site. In contrast
to 7a, compound 7g formed two hydrogen bonds. One of the hydrogen bonds between
benzimidazole moiety and Val93 was of 3.02 Å length, and the other bond resulted between
the amino group of Lys96, being the donor, and phenolic group of the ligand was accepting
at 2.59 Å distance. His96 provided π-stacking with the aromatic rings of benzimidazole
moiety. However, fewer hydrophobic interactions were observed for this compound
as compared to 7a. In the case of 7h, only one hydrogen bond was formed, which was
between the amino group of Lys94 and the central methoxy group of the trimethoxybenzene
substituent in the compound. The benzimidazole of this compound was anchored by π-
stacking, twice with His96 and once with Tyr100. Three hydrophobic interactions were also
developed. For compound 7k, the observed interactions included a halogen bond between
its bromobenzene substituent and His96, and hydrophobic interactions with six residues of
the MDM2 binding site.

The docked poses of the studied compounds are presented in Figure 2, and Table 3
enlists all the observed interactions, the interacting groups, and docking scores.
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Table 3. Docking scores and network of interactions formed between the ligands and residues
of MDM2.

Cpd.
ID

S (kcal/mol)
Hydrogen Bonding Hydrophobic

Interactions Other Interactions
Residues Ligand Residues Distance (Å)

7a −7.05 Leu54 N-H of benzmidazole 2.08 Leu54, Leu57, Ile61,
Phe91, Val93, Ile99, Ile103

π-stacking, Halogen
bonding with His96

7g −7.09
Val93 N-H of benzmidazole 3.02 Leu54, Tyr67, Ile99,

Tye100
π-stacking with His96

Lys94 O of phenol ring 2.59

7h −7.43 Lys94 O of methoxy 3.29 Leu54, Ile61, Ile99 π-stacking with His96,
Tyr100

7k −7.29 - - - Lys51, Leu54, Leu57, Ile61,
Phe91, Ile99 halogen bonding with His96

6ST −8.97
Leu54 N-H of indolinone 1.99 Leu54, Leu57, Ile61,

Phe91, Val93, Lys94, Ile99

π-stacking, Halogen
bonding with His96; salt
bridge with His73, Lys94His96 N-H of pyrrolidine 2.16

4. Conclusions

New spiroxindoles, combined with a benzimidazole scaffold, were synthesized, char-
acterized, and identified as an MDM2 inhibitor. The requisite spiroxindoles were suc-
cessfully achieved via the [3+2] cycloaddition reaction approach, which separated in an
excellent regioselective and diastereoselective manner. The separated spirooxindoles
showed promising results against cancer cells including MDA-MB 231 and PC3 in mi-
croscale reactivity. The anticancer reactivity for compound 7d showed potential activity
with IC50 = 3.797±0.205 µM and was recognized as the most active candidate in the series.
MDM2 binding analysis showed that compound 7a could be inhibited by the MDM2 with
KD = 2.38 µM. This finding could be of possible use for cancer research development in
the future.
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Figure S2: Five doses for the compound 7g; Figure S3–S6: Binding curve for MST assay; Figure S7:
validation of the docking protocol. Figure S8–S38: Selected NMR and IR spectrum; Table S1: Charac-
terization of the chalcones 4a-o; Table S2: GI % at 10 µM concentration for compounds 7a-o; Table S3:
The percentage of Wi-38 viability and the toxicity percentage of MDA-MB231, and PC3 cells after
incubation with 5 µM of different tested compounds (7a-o).
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