Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation
Abstract
:1. Introduction
2. Structured Photocatalysts for Azo Dye Removal
2.1. Fundamentals of Heterogeneous Photocatalysis
2.2. Immobilized Photocatalysts for Azo Dye Degradation
3. Supercritical Water Oxidation for Azo Dye Degradation
3.1. Fluids in Supercritical Conditions
3.2. Supercritical Water Oxidation
SCWO of Azo Dyes
- The high amount of energy required for the start-up of the process, which can be overcome by running the process for extended periods;
- The stringent thermal control necessary to retain safe conditions and carry out optimal energy recovery, which can be achieved using cooling water injections in various positions along the reactor;
- The possible erosion of the internal parts of the back-pressure regulator valves due to suspended solid particles contained in the wastewater that can create problems during the depressurization step.
4. Conclusions and Perspectives
- Due to their high light transmission and chemical stability, glass materials (such as glass spheres and glass plates) are still the most commonly reported supports for photocatalysts. Still, they have been used for the degradation of azo dyes mainly at the laboratory scale, and their effectiveness at the industrial scale still has to be proven.
- Besides glass substrates, polymeric materials (in the form of films or plates) are effective supports for structured photocatalysts utilized for azo dye degradation. However, in recent years, monolithic polymer aerogels with photocatalytic properties have been shown to be promising materials for wastewater treatment since these materials present exciting features, such as a high porosity, high specific surface area, low density, and easy separation from the treated water. Despite such advantages, to date, most polymer aerogels have been used to remove a wide variety of organic pollutants and rarely for azo dye photodegradation. Therefore, specific research studies on using these materials for colored wastewater are recommended.
- Studies on structured photocatalysts have been carried out to enhance their photocatalytic performances in dye degradation, achieving, in most cases, high removal only after prolonged irradiation time. Therefore, it is necessary to investigate the possibility of coupling photocatalytic processes based on structured photocatalysts with other treatment technologies (e.g., adsorption) to maximize the removal efficiency at a very low treatment time.
- Previous works are mainly based on the use of batch photocatalytic reactors. However, since batch treatment systems are not recommended for industrial applications of photocatalytic systems in actual practice, developing continuous-flow photocatalytic reactors with a high efficiency in degrading azo dyes is desirable. From this perspective, it was reported that using microreactors allows the entire solution volume to be irradiated uniformly, substantially enhancing the photodegradation performances. However, photocatalytic microreactors only work with meager liquid flow rates, typically 3–6 mL/min. These values are far from the typical values for wastewater coming from textile industries. Therefore, future research papers should focus on the design, scaling up, and feasibility demonstrations of photocatalytic microreactors for industrial applications, specifically for treating wastewater polluted by azo dyes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christie, R.M. Colour Chemistry; Royal Society of Chemistry: London, UK, 2014; ISBN 1849733287. [Google Scholar]
- Benkhaya, b.; El Harfi, S.; El Harfi, A. Classifications, properties and applications of textile dyes: A review. Appl. J. Environ. Eng. Sci. 2017, 3, 311–320. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’Rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 2020, 6, e03271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S.; Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. Classification of dye and pigments. In Dyes and Pigments; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y.; Ikhlaq, A.; Zahid, M.; Alazmi, A. Subcritical and supercritical water oxidation for dye decomposition. J. Environ. Manag. 2021, 290, 112605. [Google Scholar] [CrossRef] [PubMed]
- Oyetade, J.A.; Machunda, R.L.; Hilonga, A. Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. Sci. Afr. 2022, 17, e01305. [Google Scholar] [CrossRef]
- Bafana, A.; Devi, S.S.; Chakrabarti, T. Azo dyes: Past, present and the future. Environ. Rev. 2011, 19, 350–370. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Akinropo, O.J.; Oluwafemi, A.; Olumide, A. Tensile Properties and Dye Uptake Assessment of Cotton Fabrics Sized with Corn (Zea mays) Starch and Sorghum (Sorghum bicolor) Starch. Earthline J. Chem. Sci. 2021, 5, 49–62. [Google Scholar] [CrossRef]
- Saini, R.D. Textile organic dyes: Polluting effects and elimination methods from textile waste water. Int. J. Chem. Eng. Res. 2017, 9, 121–136. [Google Scholar]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Cat. B 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 2014, 692307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jie, R.H.; Guo, G.B.; Zhao, W.G.; An, S.L. Preparation and photocatalytic degradation for methyl orange of nano-powder TiO2 by hydrothermal method supported on activated carbon. Rengong Jingti Xuebao 2013, 42, 2144–2149. [Google Scholar]
- Bouberka, Z.; Benabbou, K.A.; Khenifi, A.; Maschke, U. Degradation by irradiation of an Acid Orange 7 on colloidal TiO 2/(LDHs). J. Photochem. Photobiol. A 2014, 275, 21–29. [Google Scholar] [CrossRef]
- He, L.; Freeman, H.S.; Lu, L.; Zhang, S. Spectroscopic study of anthraquinone dye/amphiphile systems in binary aqueous/organic solvent mixtures. Dye. Pigment. 2011, 91, 389–395. [Google Scholar] [CrossRef]
- Sharma, A.; Rani, S.; Bansal, A.; Sood, A. Effect of mordant combination on silk dyeing with apricot dye. In Natural Dyes: Scope Challenges; Daniel, M., Bhattacharya, S.D., Arya, A., Raole, V.M., Eds.; Scientific Publishers (India): Jodhpur, India, 2006; pp. 137–143. [Google Scholar]
- Harbinder, K.; Namrita, K. Eco-friendly finishing and dyeing of jute with direct and mordant dye method. Asian J. Home Sci. 2012, 7, 19–22. [Google Scholar]
- Lau, Y.Y.; Wong, Y.S.; Teng, T.T.; Morad, N.; Rafatullah, M.; Ong, S.A. Coagulation-flocculation of azo dye acid orange 7 with green refined laterite soil. Chem. Eng. J. 2014, 246, 383–390. [Google Scholar] [CrossRef]
- Obiora-Okafo, I.; Onukwuli, O. Optimization of coagulation-flocculation process for colour removal from azo dye using natural polymers: Response surface methodological approach. Niger. J. Technol. 2017, 36, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Nazir, R.; Khan, M.; Rehman, R.U.; Shujah, S.; Khan, M.; Ullah, M.; Zada, A.; Mahmood, N.; Ahmad, I. Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from Monotheca buxifolia waste seeds. Soil Water Res. 2020, 15, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ding, W.; Wang, J.; Diao, G. Removal of azo dyes from water by combined techniques of adsorption, desorption, and electrolysis based on a supramolecular sorbent. Ind. Eng. Chem. Res. 2013, 52, 2403–2411. [Google Scholar] [CrossRef]
- Mittal, Y.; Dash, S.; Srivastava, P.; Mishra, P.M.; Aminabhavi, T.M.; Yadav, A.K. Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: A new design for enhanced performance. Chem. Eng. J. 2022, 427, 131856. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Zhou, A.; Wang, A.; Wu, Z.; Lv, L.; Li, X.; Zhang, K.; Zhu, T. Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chem. Eng. J. 2017, 326, 454–461. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, P.; Iyengar, L. Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegrad. 2007, 59, 73–84. [Google Scholar] [CrossRef]
- Solís, M.; Solís, A.; Pérez, H.I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process Biochem. 2012, 47, 1723–1748. [Google Scholar] [CrossRef]
- Hinckley, D.A.; Seybold, P.G.; Borris, D.P. Solvatochromism and thermochromism of rhodamine solutions. Spectrochim. Acta Part A Mol. Spectrosc. 1986, 42, 747–754. [Google Scholar] [CrossRef]
- Devi, L.G.; Arunakumari, M.L. Enhanced photocatalytic performance of Hemin (chloro(protoporhyinato) iron(III)) anchored TiO2 photocatalyst for methyl orange degradation: A surface modification method. Appl. Surf. Sci. 2013, 276, 521–528. [Google Scholar] [CrossRef]
- Gong, W.-J.; Li, F.; Xi, D.-L. Oxidation of Industrial Dyeing Wastewater by Supercritical Water Oxidation in Transpiring-Wall Reactor. Water Environ. Res. 2008, 80, 186–192. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Guo, Y.; Xu, D.; Gong, Y.; Tang, X. Experimental study on supercritical water oxidation of CI Reactive Orange7 dye wastewater using response surface methodology. Colour. Technol. 2012, 128, 323–330. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Huo, Y.; Xie, Z.; Wang, X.; Li, H.; Hoang, M.; Caruso, R.A. Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dye. Pigment. 2013, 98, 106–112. [Google Scholar] [CrossRef]
- Vogelpohl, A.; Kim, S.-M. Advanced oxidation processes (AOPs) in wastewater treatment. J. Ind. Eng. Chem. 2004, 10, 33–40. [Google Scholar]
- Silva, A.C.; Pic, J.S.; Sant’Anna, G.L., Jr.; Dezotti, M. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media. J. Hazard. Mater. 2009, 169, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Ay, F.; Catalkaya, E.C.; Kargi, F. A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. J. Hazard. Mater. 2009, 162, 230–236. [Google Scholar] [CrossRef]
- Tarkwa, J.B.; Oturan, N.; Acayanka, E.; Laminsi, S.; Oturan, M.A. Photo-Fenton oxidation of Orange G azo dye: Process optimization and mineralization mechanism. Environ. Chem. Lett. 2019, 17, 473–479. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Galluzzi, A.; Polichetti, M.; Pepe, G.; Campiglia, P. Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton. Int. J. Hydrogen Energy 2018, 43, 2184–2196. [Google Scholar] [CrossRef]
- Bahadori, E.; Vaiano, V.; Esposito, S.; Armandi, M.; Sannino, D.; Bonelli, B. Photo-activated degradation of tartrazine by H2O2 as catalyzed by both bare and Fe-doped methyl-imogolite nanotubes. Catal. Today 2018, 304, 199–207. [Google Scholar] [CrossRef]
- Ince, N.H.; Gönenç, D.T. Treatability of a textile azo dye by uv/h2o2. Environ. Technol. 1997, 18, 179–185. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dye. Pigment. 2004, 62, 269–275. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Pepe, G.; Campiglia, P.; Palma, V. Degradation of acid orange 7 azo dye in aqueous solution by a catalytic-assisted, non-thermal plasma process. Catalysts 2020, 10, 888. [Google Scholar] [CrossRef]
- Russo, M.; Iervolino, G.; Vaiano, V.; Palma, V. Non-thermal plasma coupled with catalyst for the degradation of water pollutants: A review. Catalysts 2020, 10, 1438. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Dosta, S.; Guilemany, J.M.; Brillas, E. Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl. Cat. B 2013, 132–133, 142–150. [Google Scholar] [CrossRef]
- Ferraz, E.R.A.; Oliveira, G.A.R.; Grando, M.D.; Lizier, T.M.; Zanoni, M.V.B.; Oliveira, D.P. Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples. J. Environ. Manag. 2013, 124, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Al-Rasheed, R.A. Water treatment by heterogeneous photocatalysis an overview. In Proceedings of the 4th SWCC Acquired experience symposium, Jeddah, Saudi Arabia, 7 May 2005; pp. 1–14. [Google Scholar]
- Neppolian, B.; Choi, H.C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 2002, 46, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Stylidi, M.; Kondarides, D.I.; Verykios, X.E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Cat. B 2003, 40, 271–286. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Wang, S.; Cui, C.; Yang, C.; Li, J. Review on mechanisms and kinetics for supercritical water oxidation processes. Appl. Sci. 2020, 10, 4937. [Google Scholar] [CrossRef]
- Bermejo, M.D.; Cocero, M.J. Supercritical water oxidation: A technical review. AIChE J. 2006, 52, 3933–3951. [Google Scholar] [CrossRef]
- Vadillo, V.; Sánchez-Oneto, J.; Portela, J.R.; Martínez De La Ossa, E.J. Problems in supercritical water oxidation process and proposed solutions. Ind. Eng. Chem. Res. 2013, 52, 7617–7629. [Google Scholar] [CrossRef]
- Veriansyah, B.; Kim, J.D. Supercritical water oxidation for the destruction of toxic organic wastewaters: A review. J. Environ. Sci. (China) 2007, 19, 513–522. [Google Scholar] [CrossRef]
- Shanableh, A. Production of useful organic matter from sludge using hydrothermal treatment. Water Res. 2000, 34, 945–951. [Google Scholar] [CrossRef]
- Nishio, J.; Tokumura, M.; Znad, H.T.; Kawase, Y. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. J. Hazard. Mater. 2006, 138, 106–115. [Google Scholar] [CrossRef]
- Weldegebrieal, G.K. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorg. Chem. Commun. 2020, 120, 108140. [Google Scholar] [CrossRef]
- Iervolino, G.; Zammit, I.; Vaiano, V.; Rizzo, L. Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Top. Curr. Chem. 2019, 378, 7. [Google Scholar] [CrossRef] [PubMed]
- Vaez, M.; Zarringhalam Moghaddam, A.; Alijani, S. Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized Titania nanoparticles. Ind. Eng. Chem. Res. 2012, 51, 4199–4207. [Google Scholar] [CrossRef]
- Coronado, J.M.; Fresno, F.; Hernández-Alonso, M.D.; Portela, R. Design of advanced photocatalytic materials for energy and environmental applications. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 71. [Google Scholar]
- Franco, P.; Sacco, O.; De Marco, I.; Sannino, D.; Vaiano, V. Photocatalytic Degradation of Eriochrome Black-T Azo Dye Using Eu-Doped ZnO Prepared by Supercritical Antisolvent Precipitation Route: A Preliminary Investigation. Top. Catal. 2020, 63, 1193–1205. [Google Scholar] [CrossRef]
- Mottola, S.; Mancuso, A.; Sacco, O.; De Marco, I.; Vaiano, V. Production of hybrid TiO2/β-CD photocatalysts by supercritical antisolvent micronization for UV light-driven degradation of azo dyes. J. Supercrit. Fluids 2022, 188, 105695. [Google Scholar] [CrossRef]
- Shan, A.Y.; Ghazi, T.I.M.; Rashid, S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl. Cat. A 2010, 389, 1–8. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq. 2020, 309, 113094. [Google Scholar] [CrossRef]
- Ansari, S.A.; Ansari, S.G.; Foaud, H.; Cho, M.H. Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. New J. Chem. 2017, 41, 9314–9320. [Google Scholar] [CrossRef]
- Yao, S.; Qu, F.; Wang, G.; Wu, X. Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. J. Alloys Compd. 2017, 724, 695–702. [Google Scholar] [CrossRef]
- Pitre, S.P.; Yoon, T.P.; Scaiano, J.C. Titanium dioxide visible light photocatalysis: Surface association enables photocatalysis with visible light irradiation. Chem. Commun. 2017, 53, 4335–4338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Meng, Q.; Jing, L.; Liu, D.; Cao, Y. Facile synthesis of surface-modified nanosized α-Fe2O 3 as efficient visible photocatalysts and mechanism insight. J. Phys. Chem. C 2013, 117, 1358–1365. [Google Scholar] [CrossRef]
- Bae, J.; Kim, J.; Jeong, H.; Lee, H. CO oxidation on SnO2 surfaces enhanced by metal doping. Catal. Sci. Technol. 2018, 8, 782–789. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Salimi, A. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J. Colloid Interface Sci. 2016, 479, 43–54. [Google Scholar] [CrossRef]
- Sacco, O.; Franco, P.; De Marco, I.; Vaiano, V.; Callone, E.; Ceccato, R.; Parrino, F. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues. J. Mater. Sci. Technol. 2022, 112, 49–58. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Matarangolo, M. Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catal. Today 2018, 315, 230–236. [Google Scholar] [CrossRef]
- Khataee, A.R.; Pons, M.N.; Zahraa, O. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. J. Hazard. Mater. 2009, 168, 451–457. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Modirshahla, N.; Daneshvar, N.; Rabbani, M. Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem. Eng. J. 2007, 127, 167–176. [Google Scholar] [CrossRef]
- Krýsa, J.; Novotná, P.; Kment, S.; Mills, A. Effect of glass substrate and deposition technique on the properties of sol gel TiO2 thin films. J. Photochem. Photobiol. A 2011, 222, 81–86. [Google Scholar] [CrossRef]
- Joseph, A.; Vijayanandan, A. Review on support materials used for immobilization of nano-photocatalysts for water treatment applications. Inorg. Chim. Acta 2023, 545, 121284. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Sun, L.; Wang, X. A review on the application of photocatalytic materials on textiles. Text. Res. J. 2015, 85, 1104–1118. [Google Scholar] [CrossRef]
- Zulfakar, M.; Hairul, N.A.H.; Akmal, H.M.R.; Rahman, M.A. Photocatalytic degradation of phenol in a fluidized bed reactor utilizing immobilized TiO2 photocatalyst: Characterization and process studies. J. Appl. Sci. 2011, 11, 2320–2326. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, B.; Goutham, R.; Badri Narayan, R.; Ramprasath, A.; Gopinath, K.P.; Sankaranarayanan, A.R. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Li Puma, G.; Bono, A.; Krishnaiah, D.; Collin, J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater. 2008, 157, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, R.L.; Baltanás, M.A.; Cassano, A.E. Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today 1997, 39, 219–231. [Google Scholar] [CrossRef]
- Sonawane, R.S.; Hegde, S.G.; Dongare, M.K. Preparation of titanium(IV) oxide thin film photocatalyst by sol–gel dip coating. Mater. Chem. Phys. 2003, 77, 744–750. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Appl. Cat. B 2015, 170–171, 153–161. [Google Scholar] [CrossRef]
- Cao, S.; Liu, B.; Fan, L.; Yue, Z.; Liu, B.; Cao, B. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation. Appl. Surf. Sci. 2014, 309, 119–127. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Maleki, A.; Zandsalimi, Y.; Ghanbari, R.; Shahmoradi, B.; Rezaee, R.; Safari, M.; Joo, S.W.; Daraei, H.; Harikaranahalli Puttaiah, S.; et al. Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution. J. Ind. Eng. Chem. 2019, 73, 297–305. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G. Facile method to immobilize ZnO particles on glass spheres for the photocatalytic treatment of tannery wastewater. J. Colloid Interface Sci. 2018, 518, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Xu, F.; Shen, Y.; Sun, L.; Zeng, H.; Lu, Y. Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale 2011, 3, 5020–5025. [Google Scholar] [CrossRef]
- Djošić, M.S.; Mišković-Stanković, V.B.; Janaćković, D.T.; Kačarević-Popović, Z.M.; Petrović, R.D. Electrophoretic deposition and characterization of boehmite coatings on titanium substrate. Colloids Surf. A Physicochem. Eng. Asp. 2006, 274, 185–191. [Google Scholar] [CrossRef]
- Chen, C.H.; Kelder, E.M.; Schoonman, J. Electrostatic sol-spray deposition (ESSD) and characterisation of nanostructured TiO2 thin films. Thin Solid Films 1999, 342, 35–41. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Dong, Y.; Wang, F.; Dong, S. Plasmonic AgX nanoparticles-modified ZnO nanorod arrays and their visible-light-driven photocatalytic activity. Chin. J. Catal. 2014, 35, 1113–1125. [Google Scholar] [CrossRef]
- Ramasundaram, S.; Seid, M.G.; Choe, J.W.; Kim, E.-J.; Chung, Y.C.; Cho, K.; Lee, C.; Hong, S.W. Highly reusable TiO2 nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation. Chem. Eng. J. 2016, 306, 344–351. [Google Scholar] [CrossRef]
- Akerdi, A.G.; Bahrami, S.H.; Arami, M.; Pajootan, E. Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere 2016, 159, 293–299. [Google Scholar] [CrossRef]
- Ghoreishian, S.M.; Badii, K.; Norouzi, M.; Malek, K. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology. Appl. Surf. Sci. 2016, 365, 252–262. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Moghaddam, S.G.; Modirshahla, N.; Shokri, M. Investigation of the effect of heat attachment method parameters at photocatalytic activity of immobilized ZnO nanoparticles on glass plate. Desalination 2009, 249, 1371–1376. [Google Scholar] [CrossRef]
- Koohestani, H.; Sadrnezhaad, S.K. Photocatalytic Activity of Immobilized Geometries of TiO2. J. Mater. Eng. Perform. 2015, 24, 2757–2763. [Google Scholar] [CrossRef]
- Hir, Z.A.M.; Moradihamedani, P.; Abdullah, A.H.; Mohamed, M.A. Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye. Mat. Sci. Semicon. Proc. 2017, 57, 157–165. [Google Scholar] [CrossRef]
- Yu, J.; Sun, D.; Wang, T.; Li, F. Fabrication of Ag@AgCl/ZnO submicron wire film catalyst on glass substrate with excellent visible light photocatalytic activity and reusability. Chem. Eng. J. 2018, 334, 225–236. [Google Scholar] [CrossRef]
- Soltani, R.D.C.; Rezaee, A.; Khataee, A.R.; Safari, M. Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: Optimization by response surface methodology. J. Ind. Eng. Chem. 2014, 20, 1861–1868. [Google Scholar] [CrossRef]
- Li, C.; Ahmed, T.; Ma, M.; Edvinsson, T.; Zhu, J. A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Appl. Cat. B 2013, 138–139, 175–183. [Google Scholar] [CrossRef]
- Sarwar, Z.; Ashraf, M.; Rehman, A.; Aziz, H.; Javid, A.; Nasir, N.; Iqbal, K.; Hussain, T.; Ashar, A. Voltage-assisted photocatalytic activity of ZnO nanorods grown on carbon fabric for effluent treatment. J. Clean. Prod. 2018, 201, 909–915. [Google Scholar] [CrossRef]
- Tang, L.; Jia, C.T.; Xue, Y.C.; Li, L.; Wang, A.Q.; Xu, G.; Liu, N.; Wu, M.H. Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: A promising strategy for water remediation. Appl. Cat. B 2017, 219, 241–248. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Wu, X.; Suo, H.; Shen, X.; Cui, S. Synthesis of bulk BaTiO3 aerogel and characterization of photocatalytic properties. J. Solgel Sci. Technol. 2019, 90, 313–322. [Google Scholar] [CrossRef]
- Han, H.; Bai, R. Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV-Vis and Vis lights. Sep. Purif. Technol. 2010, 73, 142–150. [Google Scholar] [CrossRef]
- Sannino, D.; Morante, N.; Sacco, O.; Mancuso, A.; De Guglielmo, L.; Di Capua, G.; Femia, N.; Vaiano, V. Visible light-driven degradation of Acid Orange 7 by light modulation techniques. Photochem. Photobiol. Sci. 2023, 22, 185–193. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Libralato, G.; Lofrano, G.; Siciliano, A.; Carraturo, F.; Guida, M.; Carotenuto, M. Degradation of anionic azo dyes in aqueous solution using a continuous flow photocatalytic packed-bed reactor: Influence of water matrix and toxicity evaluation. J. Environ. Chem. Eng. 2020, 8, 104549. [Google Scholar] [CrossRef]
- Mohammed Redha, Z.; Abdulla Yusuf, H.; Amin, R.; Bououdina, M. The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab J. Basic Appl. Sci. 2020, 27, 287–298. [Google Scholar] [CrossRef]
- Alhaji, M.H.; Sanaullah, K.; Khan, A.; Hamza, A.; Muhammad, A.; Ishola, M.S.; Rigit, A.R.H.; Bhawani, S.A. Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater- A review. Int. J. Environ. Sci. Technol. 2017, 14, 2039–2052. [Google Scholar] [CrossRef]
- Le, A.T.; Le, T.D.H.; Cheong, K.-Y.; Pung, S.-Y. Immobilization of zinc oxide-based photocatalysts for organic pollutant degradation: A review. J. Environ. Chem. Eng. 2022, 10, 108505. [Google Scholar] [CrossRef]
- Magalhães, F.; Moura, F.C.C.; Lago, R.M. TiO2/LDPE composites: A new floating photocatalyst for solar degradation of organic contaminants. Desalination 2011, 276, 266–271. [Google Scholar] [CrossRef]
- Fabiyi, M.E.; Skelton, R.L. Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. J. Photochem. Photobiol. A 2000, 132, 121–128. [Google Scholar] [CrossRef]
- Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Cat. A 2013, 462-463, 178–195. [Google Scholar] [CrossRef]
- Guastaferro, M.; Baldino, L.; Vaiano, V.; Cardea, S.; Reverchon, E. Supercritical Phase Inversion to Produce Photocatalytic Active PVDF-coHFP_TiO2 Composites for the Degradation of Sudan Blue II Dye. Materials 2022, 15, 8894. [Google Scholar] [CrossRef]
- Ata, R.; Sacco, O.; Vaiano, V.; Rizzo, L.; Tore, G.Y.; Sannino, D. Visible light active N-doped TiO2 immobilized on polystyrene as efficient system for wastewater treatment. J. Photochem. Photobiol. A 2017, 348, 255–262. [Google Scholar] [CrossRef]
- Vaiano, V.; Chianese, L.; Rizzo, L.; Iervolino, G. Visible light driven oxidation of arsenite to arsenate in aqueous solution using Cu-doped ZnO supported on polystyrene pellets. Catal. Today 2021, 361, 69–76. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Sacco, O. UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets. Chem. Eng. J. 2018, 350, 703–713. [Google Scholar] [CrossRef]
- Sacco, O.; Venditto, V.; Fittipaldi, R.; Vaiano, V.; Daniel, C. Composite polymeric films with photocatalytic properties. Chem. Eng. Trans. 2021, 86, 571–576. [Google Scholar] [CrossRef]
- Daniel, C.; Navarra, W.; Venditto, V.; Sacco, O.; Vaiano, V. Nanoporous polymeric aerogels–based structured photocatalysts for the removal of organic pollutant from water under visible or solar light. In Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants; Sacco, O., Vaiano, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 99–120. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Daniel, C.; Navarra, W.; Venditto, V. Highly Robust and Selective System for Water Pollutants Removal: How to Transform a Traditional Photocatalyst into a Highly Robust and Selective System for Water Pollutants Removal. Nanomaterials 2019, 9, 1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacco, O.; Vaiano, V.; Daniel, C.; Navarra, W.; Venditto, V. Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels. Mat. Sci. Semicon. Proc. 2018, 80, 104–110. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P.; Longo, S.; Venditto, V.; Guerra, G. N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. J. Chem. Technol. Biotechnol. 2014, 89, 1175–1181. [Google Scholar] [CrossRef]
- Navarra, W.; Sacco, O.; Daniel, C.; Venditto, V.; Vaiano, V.; Vignati, D.A.L.; Bojic, C.; Libralato, G.; Lofrano, G.; Carotenuto, M. Photocatalytic degradation of atrazine by an N-doped TiO2/polymer composite: Catalytic efficiency and toxicity evaluation. J. Environ. Chem. Eng. 2022, 10, 108167. [Google Scholar] [CrossRef]
- Mancuso, A.; Vaiano, V.; Antico, P.; Sacco, O.; Venditto, V. Photoreactive polymer composite for selective oxidation of benzene to phenol. Catal. Today 2023, 413–415, 113914. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, R.; Ma, M.; Zhou, Y. Monolithic aerogel photocatalysts: A review. J. Mater. Chem. A 2018, 6, 754–775. [Google Scholar] [CrossRef]
- Hasanpour, M.; Motahari, S.; Jing, D.; Hatami, M. Numerical Modeling for the Photocatalytic Degradation of Methyl Orange from Aqueous Solution using Cellulose/Zinc Oxide Hybrid Aerogel: Comparison with Experimental Data. Top. Catal. 2021, in press. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Pisano, D.; Sannino, D.; Ciambelli, P. From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem. Eng. Sci. 2015, 137, 152–160. [Google Scholar] [CrossRef]
- Chanathaworn, J.; Pornpunyapat, J.; Chungsiriporn, J. Decolorization of dyeing wastewater in continuous photoreactors using TiO2 coated glass tube media. Songklanakarin J. Sci. Technol. 2014, 36, 97–105. [Google Scholar]
- Dong, G.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.; Stoyanov, S.R.; Yang, M.; Zhang, B. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochem. Photobiol. Sci. 2016, 15, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Ollis, D.F.; Turchi, C. Heterogeneous photocatalysis for water purification: Contaminant mineralization kinetics and elementary reactor analysis. Environ. Progress 1990, 9, 229–234. [Google Scholar] [CrossRef]
- Knez, Ž.; Markočič, E.; Leitgeb, M.; Primožič, M.; Knez Hrnčič, M.; Škerget, M. Industrial applications of supercritical fluids: A review. Energy 2014, 77, 235–243. [Google Scholar] [CrossRef]
- Reverchon, E.; Schiavo Rappo, E.; Cardea, S. Flexible supercritical CO2-assisted process for poly(methyl methacrylate) structure formation. Polym. Eng. Sci. 2006, 46, 188–197. [Google Scholar] [CrossRef]
- Trucillo, P.; Cardea, S.; Baldino, L.; Reverchon, E. Production of liposomes loaded alginate aerogels using two supercritical CO2 assisted techniques. J. CO2 Util. 2020, 39, 101161. [Google Scholar] [CrossRef]
- Crampon, C.; Boutin, O.; Badens, E. Supercritical Carbon Dioxide Extraction of Molecules of Interest from Microalgae and Seaweeds. Ind. Eng. Chem. Res. 2011, 50, 8941–8953. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Supercritical Antisolvent Process for Pharmaceutical Applications: A Review. Processes 2020, 8, 938. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 2020, 119, 109546. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, M.; Xing, X.; Wang, H.; Zeng, Y.; Xu, C.C. Supercritical water gasification of biomass model compounds: A review. Renew. Sustain. Energy Rev. 2020, 118, 109529. [Google Scholar] [CrossRef]
- Franco, P.; Pessolano, E.; Belvedere, R.; Petrella, A.; De Marco, I. Supercritical impregnation of mesoglycan into calcium alginate aerogel for wound healing. J. Supercrit. Fluids 2020, 157, 104711. [Google Scholar] [CrossRef]
- Hart, A.; Anumudu, C.; Onyeaka, H.; Miri, T. Application of supercritical fluid carbon dioxide in improving food shelf-life and safety by inactivating spores: A review. J. Food Sci. Technol. 2022, 59, 417–428. [Google Scholar] [CrossRef]
- Wu, H.-T.; Chuang, Y.-H.; Lin, H.-C.; Hu, T.-C.; Tu, Y.-J.; Chien, L.-J. Immediate Release Formulation of Inhaled Beclomethasone Dipropionate-Hydroxypropyl-Beta-Cyclodextrin Composite Particles Produced Using Supercritical Assisted Atomization. Polymers 2022, 14, 2114. [Google Scholar] [CrossRef]
- Dauber, C.; Carreras, T.; González, L.; Gámbaro, A.; Valdés, A.; Ibañez, E.; Vieitez, I. Characterization and incorporation of extracts from olive leaves obtained through maceration and supercritical extraction in Canola oil: Oxidative stability evaluation. LWT 2022, 160, 113274. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; Capanoglu, E.; De Marco, I. PVP/flavonoid coprecipitation by supercritical antisolvent process. Chem. Eng. Process. 2019, 146, 1–10. [Google Scholar] [CrossRef]
- Franco, P.; Incarnato, L.; De Marco, I. Supercritical CO2 impregnation of α-tocopherol into PET/PP films for active packaging applications. J. CO2 Util. 2019, 34, 266–273. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Zhang, X.; Zhang, R.; Ding, L. Formation and inhibition of polycyclic aromatic hydrocarbons from the gasification of cyanobacterial biomass in supercritical water. Chemosphere 2020, 253, 126777. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, L.; Wei, W.; Jin, H.; Guo, L. Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor. Energy 2022, 238, 121740. [Google Scholar] [CrossRef]
- Marrone, P.A.; Hodes, M.; Smith, K.A.; Tester, J.W. Salt precipitation and scale control in supercritical water oxidation—Part B: Commercial/full-scale applications. J. Supercrit. Fluids 2004, 29, 289–312. [Google Scholar] [CrossRef]
- Karmakar, A.; Chandra, A. Water under Supercritical Conditions: Hydrogen Bonds, Polarity, and Vibrational Frequency Fluctuations from Ab Initio Simulations with a Dispersion Corrected Density Functional. ACS Omega 2018, 3, 3453–3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koech, G.C.; Hatakeda, K. Degradation of reactive dyes by supercritical water oxidation in a batch reactor. Colour. Technol. 2002, 118, 112–114. [Google Scholar] [CrossRef]
- Connolly, J.F. Solubility of Hydrocarbons in Water Near the Critical Solution Temperatures. J. Chem. Eng. Data 1966, 11, 13–16. [Google Scholar] [CrossRef]
- Wang, X.; Gron, L.U.; Klein, M.T.; Brill, T.B. The influence of high-temperature water on the reaction pathways of nitroanilines. J. Supercrit. Fluids 1995, 8, 236–249. [Google Scholar] [CrossRef]
- Kritzer, P.; Dinjus, E. An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts. Chem. Eng. J. 2001, 83, 207–214. [Google Scholar] [CrossRef]
- Baur, S.; Schmidt, H.; Krämer, A.; Gerber, J. The destruction of industrial aqueous waste containing biocides in supercritical water—Development of the SUWOX process for the technical application. J. Supercrit. Fluids 2005, 33, 149–157. [Google Scholar] [CrossRef]
- Jin, F.-M.; Kishita, A.; Moriya, T.; Enomoto, H. Kinetics of oxidation of food wastes with H2O2 in supercritical water. J. Supercrit. Fluids 2001, 19, 251–262. [Google Scholar] [CrossRef]
- Dietrich, M.J.; Randall, T.L.; Canney, P.J. Wet air oxidation of hazardous organics in wastewater. Environ. Prog. 1985, 4, 171–177. [Google Scholar] [CrossRef]
- Mishra, V.S.; Mahajani, V.V.; Joshi, J.B. Wet Air Oxidation. Ind. Eng. Chem. Res. 1995, 34, 2–48. [Google Scholar] [CrossRef]
- Cocero, M.J.; Alonso, E.; Sanz, M.T.; Fdz-Polanco, F. Supercritical water oxidation process under energetically self-sufficient operation. J. Supercrit. Fluids 2002, 24, 37–46. [Google Scholar] [CrossRef]
- Cocero, M.J.; Alonso, E.; Torío, R.; Vallelado, D.; Fdz-Polanco, F. Supercritical Water Oxidation in a Pilot Plant of Nitrogenous Compounds: 2-Propanol Mixtures in the Temperature Range 500−750 °C. Ind. Eng. Chem. Res. 2000, 39, 3707–3716. [Google Scholar] [CrossRef]
- Uygur, A. An overview of oxidative and photooxidative decolorisation treatments of textile waste waters. J. Soc. Dye. Colour. 1997, 113, 211–217. [Google Scholar] [CrossRef]
- Söğüt, O.Ö.; Akgün, M. Removal of C.I. Basic Blue 41 from aqueous solution by supercritical water oxidation in continuous-flow reactor. J. Ind. Eng. Chem. 2009, 15, 803–808. [Google Scholar] [CrossRef]
- Jiang, A.; Cheng, Z.; Shen, Z.; Guo, W. QSAR study on the removal efficiency of organic pollutants in supercritical water based on degradation temperature. Chem. Cent. J. 2018, 12, 16. [Google Scholar] [CrossRef]
- Söğüt, O.Ö.; Akgün, M. Treatment of textile wastewater by SCWO in a tube reactor. J. Supercrit. Fluids 2007, 43, 106–111. [Google Scholar] [CrossRef]
- Söǧüt, O.Ö.; Akgün, M. Degradation of aqueous disperse orange 25 by supercritical water oxidation. Fresenius Environ. Bull. 2008, 17, 864–871. [Google Scholar]
- Zhang, J.; Wang, S.; Li, Y.; Lu, J.; Chen, S.; Luo, X. Supercritical water oxidation treatment of textile sludge. Environ. Technol. 2017, 38, 1949–1960. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Jiang, Z.; Yang, C.; Xu, H. Supercritical water oxidation of dyeing sludge. IOP Conf. Series Earth Environ. Sci. 2019, 233, 052004. [Google Scholar] [CrossRef]
- Söǧüt, O.O.; Akgün, M. Treatment of dyehouse waste-water by supercritical water oxidation: A case study. J. Chem. Technol. Biotechnol. 2010, 85, 640–647. [Google Scholar] [CrossRef]
- Wang, Q.; Lv, Y.; Zhang, R.; Bi, J. Decomposition of dyeing wastewater by supercritical water oxidation. Fresenius Environ. Bull. 2013, 22, 3588–3595. [Google Scholar]
- McCarthy, B.J. Biotechnology and coloration. Colour. Technol. 1997, 27, 26–31. [Google Scholar] [CrossRef]
- Crooker, P.J.; Ahluwalia, K.S.; Fan, Z.; Prince, J. Operating Results from Supercritical Water Oxidation Plants. Ind. Eng. Chem. Res. 2000, 39, 4865–4870. [Google Scholar] [CrossRef]
- Yang, B.; Shen, Z.; Cheng, Z.; Ji, W. Total nitrogen removal, products and molecular characteristics of 14 N-containing compounds in supercritical water oxidation. Chemosphere 2017, 188, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Cheng, Z.; Tang, Q.; Shen, Z. Nitrogen transformation of 41 organic compounds during SCWO: A study on TN degradation rate, N-containing species distribution and molecular characteristics. Water Res. 2018, 140, 167–180. [Google Scholar] [CrossRef]
- Aymonier, C.; Beslin, P.; Jolivalt, C.; Cansell, F. Hydrothermal oxidation of a nitrogen-containing compound: The fenuron. J. Supercrit. Fluids 2000, 17, 45–54. [Google Scholar] [CrossRef]
- Li, H.; Oshima, Y. Elementary Reaction Mechanism of Methylamine Oxidation in Supercritical Water. Ind. Eng. Chem. Res. 2005, 44, 8756–8764. [Google Scholar] [CrossRef]
- Bermejo, M.D.; Fdez-Polanco, F.; Cocero, M.J. Effect of the Transpiring Wall on the Behavior of a Supercritical Water Oxidation Reactor: Modeling and Experimental Results. Ind. Eng. Chem. Res. 2006, 45, 3438–3446. [Google Scholar] [CrossRef]
Azo Dye | Photocatalyst | Light Source | Reactor | Degradation (%) | Treatment Time (min) | Ref. |
---|---|---|---|---|---|---|
MO | TiO2/steel mesh | UVA | Batch | Total discoloration; TOC removal = 22% at pH = 6.8–7 | 180 | [92] |
AR 14 | TiO2/GO plate | UVA | Batch | Discoloration = 96.38% at pH = 9 | 120 | [93] |
RO 16 | TiO2:ZnO/3D fabric | UVC | Batch | Discoloration =96.38% in the presence of H2O2 | 60 | [94] |
AR 88 | ZnO/glass plate | UVC | Batch | COD removal = 60% | 240 | [95] |
MO | TiO2/ceramic templates | UV | Batch | Discoloration of about 90% | 210 | [96] |
MO | TiO2/polyethersulfone film | UVA | Batch | Discoloration = 90%; TOC removal = 38% at pH = 5.8 | 540 | [97] |
EB-T | N-TiO2/glass spheres | UVA Vis | Batch | Discoloration = 41% under UV light and 31% under visible light; TOC removal = 35% under UV light and 30% under visible light | 210 | [83] |
MO | Ag@AgCl/ZnO on glass | Vis | Batch | Discoloration = 80.7%; TOC removal = 38% at pH = 5.8 | 120 | [98] |
MO | AgX/ZnO on glass | Vis | Batch | Discoloration = 84% | 180 | [91] |
MO | Carbon/ ZnO on glass | UVC | Batch | Discoloration = 84%; TOC removal = 56% at pH = 5 | 95 | [99] |
EB-T | CdS/ZnO on glass | Vis | Batch | Discoloration = 45% | 90 | [100] |
RO | ZnO/carbon fabric | UVA | Batch | Complete discoloration | 100 | [101] |
MO | g-C3N4/ GO aerogel | Vis | Batch | Discoloration = 91.1% | 40 | [102] |
MO | BaTiO3 aerogels | UVA | Batch | Discoloration = 92.59% at pH = 3 | 120 | [103] |
MO | TiO2/polypropylene fabrics | UV-Vis | Batch | Total discoloration | 120 | [104] |
Tannery WW polluted by azo dyes | ZnO/glass spheres | UVA | Batch | COD removal = 70% | 120 | [86] |
AO 7 | N-TiO2/polystyrene plate | Vis | Batch | Discoloration = 55%; TOC removal = 54% | 180 | [105] |
AR 73 | TiO2/sackcloth fiber | UVA | Batch | Discoloration = 86%; COD removal = 96% at pH = 6.5 | 180 | [57] |
EB-T | TiO2 pellets | UVA | Continuous | Complete discoloration | 10 (steady-state condition) | [106] |
NR | TiO2/glass plate | UV | Continuous | Discoloration = 15% at pH = 7 | 350 (steady-state condition) | [107] |
Dye | P [MPa] T [°C] t [s] | Reactor | Main Results | Ref. |
---|---|---|---|---|
BB 41 | P = 25 ± 1 T = 400–650 t = 9–19 | Continuous | TOC removal efficiency up to 99.87%; complete degradation of BB41 and transformation into CO2, H2O, and their intermediate products | [160] |
CV | P = 24 T = 275–500 t = 100–150 | Batch | TOC degradation efficiency higher than 95% at temperatures higher than 385 °C with a removal efficiency up to 99.9% at 500° C | [161] |
DO 25 | P = 25 ± 1 T = 400–600 t = 5–11 | Continuous | COD conversion efficiency up to 98.5%; complete degradation of the molecular structure of DO25; clear and colorless water at temperatures higher than 500 °C | [162] |
DO 25 | P = 25 ± 1 T = 400–600 t = 5–11 | Continuous | TOC removal efficiency up to 99.96%; liquid-phase products were clear and colorless at temperatures of 500 °C and above; they were clear and yellowish at 400 and 450 °C | [163] |
EBB | P = 24 T = 275–500 t = 100–150 | Batch | TOC degradation efficiency higher than 95% at temperatures higher than 300 °C with a removal efficiency up to 99.9% at 500 °C | [161] |
MB | P = 24 T = 275–500 t = 100–150 | Batch | TOC degradation efficiency higher than 95% at all the tested temperatures, with a removal efficiency up to 98% at 500 °C | [161] |
MO | P = 24 T = 275–500 t = 100–150 | Batch | TOC degradation efficiency higher than 95% at temperatures higher than 385 °C with a removal efficiency up to 99% at 500 °C | [161] |
RB 5 RBl 49 RR 3 | P = 30 T = 400 t = 600 | Batch | Total decolorization of the dye was achieved at each dye concentration (TOC from 1 to 15%); an optimum 5–10% excess concentration is recommended for cost-effective SCWO of the reactive dyes studied; 99.9% TOC removal efficiency | [149] |
RO 7 | P = 25 ± 1 T = 400–550 t = 60–1200 | Batch | COD conversion up to 98%; TOC removal efficiency up to 88% | [30] |
RO 7 | P = 25 T = 450–600 t = 600 | Batch | COD and TOC decomposition efficiencies reached 99.6% and 93.9%, respectively | [164] |
Textile WW | P = 25 T = 520–600 t = 120–600 | Batch | COD removal efficiency up to 99.8%; catalytic SCWO strongly enhances the removal efficiency of COD and NH3-N | [165] |
Textile WW | P = 25 T = 400–600 t = 8–16 | Continuous | TOC removal efficiency up to 100% and hydrothermal decomposition up to 93.8%; color of the WW removed completely at temperatures of 450 °C and above | [166] |
Textile WW | P = 22–30 T = 320–430 t = 13–34 | Continuous | COD removal efficiency of more than 98.4% at the optimal reaction conditions | [29] |
Textile WW | P = 25 T = 400–600 t = 15–45 | Continuous | TOC conversions of the effluents after SCWO equal to 99.79% at the best reaction conditions | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaiano, V.; De Marco, I. Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation. Separations 2023, 10, 230. https://doi.org/10.3390/separations10040230
Vaiano V, De Marco I. Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation. Separations. 2023; 10(4):230. https://doi.org/10.3390/separations10040230
Chicago/Turabian StyleVaiano, Vincenzo, and Iolanda De Marco. 2023. "Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation" Separations 10, no. 4: 230. https://doi.org/10.3390/separations10040230
APA StyleVaiano, V., & De Marco, I. (2023). Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation. Separations, 10(4), 230. https://doi.org/10.3390/separations10040230