Green-Engineered Barrier Creams with Montmorillonite-Chlorophyll Clays as Adsorbents for Benzene, Toluene, and Xylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Barrier Formulations
2.2. Characterization of Sorbents
2.3. Characterization of Barrier Formulations
2.4. Chemical Analysis
2.5. Adsorption Screening
2.6. Adsorption Kinetics
2.7. Adsorption Isotherms
2.8. L. minor Assay
2.9. H. vulgaris Assay
2.10. Statistical Analysis
3. Results
3.1. Characterization of Sorbents
3.2. Characterization of Barrier Formulations
3.3. Adsorption Screening
3.4. Effect of Chemical Concentration and Contact Time on Adsorption
3.5. Kinetic Models
3.6. Effect of Temperature
3.7. Adsorption Isotherms
3.8. L. minor Assay
3.9. H. vulgaris Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tursi, A.; Chidichimo, F.; Bagetta, R.; Beneduci, A. Btx removal from open aqueous systems by modified cellulose fibers and evaluation of competitive evaporation kinetics. Water 2020, 12, 3154. [Google Scholar] [CrossRef]
- Namkung, E.; Rittmann, B.E. Estimating volatile organic-compound emissions from publicly owned treatment works. J. Water Pollut. Control. Fed. 1987, 59, 670–678. [Google Scholar]
- Wilbur, S.; Wohlers, D.; Paikoff, S.; Keith, L.S.; Farron, O. Atsdr evaluation of potential for human exposure to benzene. Toxicol. Ind. Health 2008, 24, 399–442. [Google Scholar] [CrossRef] [PubMed]
- Mrowiec, B. Effect of btx on biological treatment of sewage. Environ. Prot. Eng. 2009, 35, 197–206. [Google Scholar]
- van Afferden, M.; Rahman, K.Z.; Mosig, P.; De Biase, C.; Thullner, M.; Oswald, S.E.; Muller, R.A. Remediation of groundwater contaminated with mtbe and benzene: The potential of vertical-flow soil filter systems. Water Res. 2011, 45, 5063–5074. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.W.; Klier, N.J.; Carpenter, C.L. Natural biological attenuation of benzene in-ground water beneath a manufacturing facility. Ground Water 1994, 32, 215–226. [Google Scholar] [CrossRef]
- Suarez, M.P.; Rifai, H.S. Evaluation of btex remediation by natural attenuation at a coastal facility. Ground Water Monit. Remediat. 2002, 22, 62–77. [Google Scholar] [CrossRef]
- Nakhla, G. Biokinetic modeling of in situ bioremediation of btx compounds—Impact of process variables and scaleup implications. Water Res. 2003, 37, 1296–1307. [Google Scholar] [CrossRef]
- Weisel, C.P. Benzene exposure: An overview of monitoring methods and their findings. Chem.-Biol. Interact. 2010, 184, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Shyr, T.; Ou-Yang, H. Sunscreen formulations may serve as additional water barrier on skin surface: A clinical assessment. Int. J. Cosmet. Sci. 2016, 38, 164–169. [Google Scholar] [CrossRef]
- Ogawa-Fuse, C.; Morisaki, N.; Shima, K.; Hotta, M.; Sugata, K.; Ichihashi, T.; Oguri, M.; Yoshida, O.; Fujimura, T. Impact of water exposure on skin barrier permeability and ultrastructure. Contact Dermat. 2019, 80, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Mistry, N. Guidelines for formulating anti-pollution products. Cosmetics 2017, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Frasch, H.F.; Dotson, G.S.; Barbero, A.M. In vitro human epidermal penetration of 1-bromopropane. J. Toxicol. Environ. Health-Part A-Curr. Issues 2011, 74, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.E.; Meade, B.J. Potential health effects associated with dermal exposure to occupational chemicals. Env. Health Insights 2014, 8 (Suppl. 1), 51–62. [Google Scholar] [CrossRef] [Green Version]
- Bunn, T.L.; Liu, Y.; Lee, K.; Robertson, M.; Yu, L. Farmer exposure to organic solvents during the maintenance and repair of farm machinery: A pilot study. Am. J. Ind. Med. 2009, 52, 973–981. [Google Scholar] [CrossRef]
- Carrer, P.; Maroni, M.; Cavallo, D.; Visentin, S.; Cecchetti, G.; Mangani, F.; Piovano, G.; Iachetta, R. Evaluation to the exposure to polycyclic aromatic hydrocarbons, benzene, toluene and xylenes in workers in a power plant fueled with heavy oil. Med. Lav. 2001, 92, 314–326. [Google Scholar] [PubMed]
- Scheepers, P.T.J.; de Werdt, L.; van Dael, M.; Anzion, R.; Vanoirbeek, J.; Duca, R.C.; Creta, M.; Godderis, L.; Warnakulasuriya, D.T.D.; Devanarayana, N.M. Assessment of exposure of gas station attendants in sri lanka to benzene, toluene and xylenes. Environ. Res. 2019, 178, 108670. [Google Scholar] [CrossRef]
- Zhai, H.; Maibach, H.I. Effect of barrier creams: Human skin in vivo. Contact Dermat. 1996, 35, 92–96. [Google Scholar] [CrossRef]
- Korinth, G.; Geh, S.; Schaller, K.H.; Drexler, H. In vitro evaluation of the efficacy of skin barrier creams and protective gloves on percutaneous absorption of industrial solvents. Int. Arch. Occup. Environ. Health 2003, 76, 382–386. [Google Scholar] [CrossRef]
- Burnett, M.E.; Wang, S.Q. Current sunscreen controversies: A critical review. Photodermatol. Photoimmunol. Photomed. 2011, 27, 58–67. [Google Scholar] [CrossRef]
- Cohen, L.E.; Grant, R.T. Sun protection: Current management strategies addressing uv exposure. Clin. Plast. Surg. 2016, 43, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.; Farbrot, A.; Larko, O.; Wennberg, A.M. Percutaneous absorption of the sunscreen benzophenone-3 after repeated whole-body applications, with and without ultraviolet irradiation. Br. J. Dermatol. 2006, 154, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Hayden, C.G.J.; Roberts, M.S.; Benson, H.A.E. Systemic absorption of sunscreen after topical application. Lancet 1997, 350, 863–864. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Roberts, M.S.; Collins, D.M.; Benson, H.A.E. Absorption of sunscreens across human skin: An evaluation of commercial products for children and adults. Br. J. Clin. Pharmacol. 1999, 48, 635–637. [Google Scholar] [CrossRef] [Green Version]
- Calafat, A.M.; Wong, L.Y.; Ye, X.Y.; Reidy, J.A.; Needham, L.L. Concentrations of the sunscreen agent benzophenone-3 in residents of the united states: National health and nutrition examination survey 2003–2004. Environ. Health Perspect. 2008, 116, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Urciuoli, W. Linking connecticut patients, families, and residents to reliable health information. In Wellness Through Answers News; UConn Library: Storrs, CT, USA, 2021. [Google Scholar]
- Team Valisure. Valisure detects benzene in sunscreen. In Valisure News; Valisure: New Haven, CT, USA, 2021. [Google Scholar]
- Romanhole, R.C.; Fava, A.L.M.; Tundisi, L.L.; de Macedo, L.M.; dos Santos, E.M.; Ataide, J.A.; Mazzola, P.G. Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods. Int. J. Pharm. 2020, 591, 120013. [Google Scholar] [CrossRef] [PubMed]
- Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm. J. 2019, 27, 1009–1018. [Google Scholar] [CrossRef]
- Ngoc, L.N.; Van Tran, V.; Moon, J.Y.; Chae, M.; Park, D.; Lee, Y.C. Recent trends of sunscreen cosmetic: An update review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.L.; Lim, H.W. A review of inorganic uv filters zinc oxide and titanium dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Phillips, T.D. Inclusion of montmorillonite clays in environmental barrier formulations to reduce skin exposure to water-soluble chemicals from polluted water. ACS Appl. Mater. Interfaces 2022, 14, 23232–23244. [Google Scholar] [CrossRef]
- Hoang-Minh, T.; Le, T.L.; Kasbohm, J.; Giere, R. Uv-protection characteristics of some clays. Appl. Clay Sci. 2010, 48, 349–357. [Google Scholar] [CrossRef]
- Farmhouse on boone. Homemade All Natural Diaper Rash Cream with Bentonite Clay. 2019. Available online: https://www.farmhouseonboone.com/best-diaper-rash-cream-all-natural (accessed on 1 April 2023).
- Mommypotamus2. Homemade Diaper Rash Cream with Bentonite Clay. 2017. Available online: https://mommypotamus.com/homemade-diaper-rash-cream-bentonite-clay/ (accessed on 1 April 2023).
- Oliver, K. Diy Anti-Itch Cream with Bentonite Clay. 2016. Available online: https://draxe.com/beauty/diy-anti-itch-cream/ (accessed on 1 April 2023).
- Moosavi, M. Bentonite clay as a natural remedy: A brief review. Iran. J. Public Health 2017, 46, 1176–1183. [Google Scholar] [PubMed]
- Clark, M.G.; Digiovine, R.P. Topical Barrier Composition Containing Silicone and Bentonite; Office USPTO: Alexandria, VA, USA; Derma Sciences Inc.: Princeton, NJ, USA, 1996. [Google Scholar]
- Rivenbark, K.J.; Wang, M.; Lilly, K.; Tamamis, P.; Phillips, T.D. Development and characterization of chlorophyll-amended montmorillonite clays for the adsorption and detoxification of benzene. Water Res. 2022, 221, 118788. [Google Scholar] [CrossRef]
- Grant, P.G.; Phillips, T.D. Isothermal adsorption of aflatoxin b(1) on hscas clay. J. Agric. Food Chem. 1998, 46, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Hearon, S.E.; Wang, M.C.; McDonald, T.J.; Phillips, T.D. Decreased bioavailability of aminomethylphosphonic acid (ampa) in genetically modified corn with activated carbon or calcium montmorillonite clay inclusion in soil. J. Environ. Sci. 2021, 100, 131–143. [Google Scholar] [CrossRef]
- Wang, M.; Hearon, S.E.; Phillips, T.D. A high capacity bentonite clay for the sorption of aflatoxins. Food Addit. Contam. Part A 2020, 37, 332–341. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Fernandes, A.R.; Sousa, I.M.D.; Goncalves, F.C.D.; Eberlin, S.; Davila, J.L.; Jozala, A.F.; Chaud, M.V.; Sanchez-Lopez, E.; et al. Flavonoid-enriched plant-extract-loaded emulsion: A novel phytocosmetic sunscreen formulation with antioxidant properties. Antioxidants 2019, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, G.S.; Bin Mahbub, M.K.; Wilhelm, M.; Lima, E.C.; Sampaio, C.H.; Saucier, C.; Dias, S.L.P. Activated carbon from sewage sludge for removal of sodium diclofenac and nimesulide from aqueous solutions. Korean J. Chem. Eng. 2016, 33, 3149–3161. [Google Scholar] [CrossRef]
- Wang, M.; Maki, C.R.; Phillips, T.D. Development of high capacity enterosorbents for aflatoxin b1 and other hazardous chemicals. Chem. Res. Toxicol. 2017, 30, 1694–1701. [Google Scholar] [CrossRef]
- Dastgheib, S.A.; Karanfil, T.; Cheng, W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon 2004, 42, 547–557. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Rusyn, I.; Phillips, T. Testing the efficacy of broad-acting sorbents for environmental mixtures using isothermal analysis, mammalian cells, and H. Vulgaris. J. Hazard. Mater. 2020, 408, 124425. [Google Scholar] [CrossRef]
- Odeniyi, M.A.; Okumah, V.C.; Adebayo-Tayo, B.C.; Odeniyi, O.A. Green synthesis and cream formulations of silver nanoparticles of nauclea latifolia (african peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain. Chem. Pharm. 2020, 15, 100197. [Google Scholar] [CrossRef]
- El-Gied, A.A.A.; Abdelkareem, A.M.; Hamedelniel, E.I. Investigation of cream and ointment on antimicrobial activity of mangifera indica extract. J. Adv. Pharm. Technol. Res. 2015, 6, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Seth, A.; Tiwari, R.; Singh, S.; Behl, H.M.; Singh, S. Development and evaluation of antimicrobial herbal cosmetic preparation. Afr. J. Pharm. Pharmacol. 2014, 8, 514–528. [Google Scholar]
- Bahrami, A.; Mahjub, H.; Sadeghian, M.; Golbabaei, F. Determination of benzene, toluene and xylene (btx) concentrations in air using hplc developed method compared to gas chromatography. Int. J. Occup. Hyg. 2011, 3, 12–17. [Google Scholar]
- Yuvaraja, G.; Prasad, C.; Vijaya, Y.; Subbaiah, M.V. Application of ZnO nanorods as an adsorbent material for the removal of As (III) from aqueous solution: Kinetics, isotherms and thermodynamic studies. Int. J. Ind. Chem. 2018, 9, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, C.; Li, F.; Bo, X.; Liu, G.; Zhou, Q. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon. J. Hazard. Mater. 2009, 169, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J. Hazard. Mater. 2006, 137, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Gong, J. Rshiny. 2020. Available online: https://jgong9.shinyapps.io/chemistry_app/ (accessed on 1 April 2023).
- Yan, F.; Chu, Y.Y.; Zhang, K.; Zhang, F.F.; Bhandari, N.; Ruan, G.D.; Dai, Z.Y.; Liu, Y.; Zhang, Z.; Kan, A.T.; et al. Determination of adsorption isotherm parameters with correlated errors by measurement error models. Chem. Eng. J. 2015, 281, 921–930. [Google Scholar] [CrossRef]
- Drost, W.; Matzke, M.; Backhaus, T. Heavy metal toxicity to lemna minor: Studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 2007, 67, 36–43. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Oecd Guidelines for the Testing of Chemicals 221. Lemna sp. Growth Inhibition Test; EPA: Washington, DC, USA, 2006. [Google Scholar]
- Brown, K.A.; Mays, T.; Romoser, A.; Marroquin-Cardona, A.; Mitchell, N.J.; Elmore, S.E.; Phillips, T.D. Modified hydra bioassay to evaluate the toxicity of multiple mycotoxins and predict the detoxification efficacy of a clay-based sorbent. J. Appl. Toxicol. 2014, 34, 40–48. [Google Scholar] [CrossRef] [Green Version]
- VanderWeele, T.J.; Mathur, M.B. Some desirable properties of the bonferroni correction: Is the bonferroni correction really so bad? Am. J. Epidemiol. 2019, 188, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Julinawati, J.; Gea, S.; Eddiyanto, E.; Wirjosentono, B.; Ichwana, I. The use of bentonite of bener meriah aceh to improve the mechanical properties of polypropylene-montmorillonite nanocomposite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 523, 012023. [Google Scholar] [CrossRef]
- Alabarse, F.G.; Conceicao, R.V.; Balzaretti, N.M.; Schenato, F.; Xavier, A.M. In-situ FTIR analyses of bentonite under high-pressure. Appl. Clay Sci. 2011, 51, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Maina, E.W.; Wanyika, H.J.; Gacanja, A.N. Instrumental characterization of montmorillonite clay by FT-IR and xrd from J.K.U.A.T farm, in the republic of kenya. Chem. Mater. Res. 2015, 7, 43–49. [Google Scholar]
- Marroquín-Cardona, A.G.; Deng, Y.; Garcia-Mazcorro, J.F.; Johnson, N.M.; Mitchell, N.J.; Tang, L.; Wang, J.-S.; Harvey, R.B.; Phillips, T.D. Aflatoxin b1 sorption and safety of dietary sodium bentonite in sprague-dawley rats. Clays Clay Min. 2022, 70, 165–181. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Kumar Yadav, V.; Ali, D.; Ramar, K.; Gokhlesh, K.; Narayanan, V. New designing (NH4) 2SiP4O13 nanowires and effective photocatalytic degradation of malachite green and antimicrobial properties. Chem. Phys. Lett. 2022, 803, 139817. [Google Scholar] [CrossRef]
- Reusch, W. Infrared Spectroscopy. 2013. Available online: https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/infrared.htm (accessed on 1 April 2023).
- Patel, H.A.; Somani, R.S.; Bajaj, H.C.; Jasra, R.V. Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci. 2006, 29, 133–145. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Mavilia, G.; Mavilia, L.; Lombardo, D.; Magazu, S. Self-assembly processes in hydrated montmorillonite by ftir investigations. Materials 2020, 13, 1100. [Google Scholar] [CrossRef] [Green Version]
- Dankova, Z.; Mockovciakova, A.; Dolinska, S. Influence of ultrasound irradiation on cadmium cations adsorption by montmorillonite. Desalination Water Treat. 2014, 52, 5462–5469. [Google Scholar] [CrossRef]
- Mico-Vicent, B.; Jordan, J.; Perales, E.; Martinez-Verdu, F.M.; Cases, F. Finding the additives incorporation moment in hybrid natural pigments synthesis to improve bioresin properties. Coatings 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- ALOthman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Anah, L.; Astrini, N. Isotherm adsorption studies of Ni (II) ion removal from aqueous solutions by modified carboxymethyl cellulose hydrogel. In Proceedings of the 2nd International Symposium on Green Technology for Value Chains 2017 (Greenvc 2017), Jakarta, Indonesia, 23–24 October 2017; Volume 160. [Google Scholar]
CM | SM | CMCH | SMCH | |
---|---|---|---|---|
Appearance | Off-white to greyish-green powder | Off-white powder | Green powder | Green powder |
pH | 8.07 | 9.39 | 8.10 | 8.04 |
Zeta potential | −7.79 ± 0.70 mV | −22.3 ± 0.52 mV | −11.6 ± 2.22 mV | 14.2 ± 0.34 mV |
Particle size | 743.6 nm | 670.7 nm | 686.9 nm | 775.6 nm |
Bulk density | 979.6 kg/m3 | 1109.6 kg/m3 | 758.4 kg/m3 | 1111.8 kg/m3 |
Moisture | 10% | 6% | 6% | 4% |
Hydrophobicity | 0.57 | 0.41 | 1.27 | 1.8 |
COLE | 1.8 | 7.5 | 2 | 2.1 |
Chemical | Conc. (Ci, mg L−1) | EVB | EVB-SMCH | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qe (exp, mg kg−1) | qe (cal, mg kg−1) | K2 | R2adj | qe (exp, mg kg−1) | qe (cal, mg kg−1) | K2 | R2adj | |||
Benzene | 10 | 140 ± 6.6 | 118 ± 23 | 3.7 × 101 | 0.94 | 260 ± 5.7 | 263 ± 19 | 1.1 × 10−4 | 0.96 | |
8 | 166 ± 1.9 | 147 ± 6.0 | 6.7 × 10−3 | 0.99 | 160 ± 1.1 | 148 ± 8.9 | 5.1 × 10−3 | 0.99 | ||
5 | 175 ± 5.1 | 171 ± 9.3 | 7.5 × 10−4 | 0.96 | 160 ± 4.8 | 148 ± 9.2 | 1.5 × 10−3 | 1 | ||
Toluene | 10 | 127 ± 1.4 | NA | 7.7 × 10−6 | 0.74 | 126 ± 3.7 | 105 ± 8.7 | 8.9 × 10−3 | 0.97 | |
8 | 128 ± 1.1 | 91 ± 23 | 6.8 × 102 | 0.93 | 138 ± 1.5 | 117 ± 23 | 4.4 × 104 | 0.87 | ||
5 | 57 ± 2.9 | NA | 2.1 × 10−5 | 0.66 | 72 ± 2.2 | 53 ± 10 | 9.5 × 10−4 | 0.87 | ||
Xylene | 10 | 125 ± 2.1 | 93 ± 20 | 9.0 × 104 | 0.92 | 132 ± 14 | 110 ± 21 | 8.7 × 103 | 0.94 | |
8 | NA | NA | 3.6 × 10−4 | 0.38 | 101 ± 1.1 | 109 ± 16 | 3.3 × 10−4 | 0.89 | ||
5 | 102 ± 2.6 | 120 ± 8.9 | 1.0 × 10−4 | 0.97 | 100 ± 1.6 | 92 ± 12 | 2.2 × 10−4 | 0.96 |
Chemical | EVB | EVB-SMCH | |||||
---|---|---|---|---|---|---|---|
Kf | n | r2 | Kf | n | r2 | ||
Benzene | 1.1 ± 0.28 | 0.56 ± 0.18 | 0.89 | 2.3 ± 1.4 | 1.4 ± 0.28 | 0.85 | |
Toluene | 6.9 ± 1.0 | 0.73 ± 0.08 | 0.92 | 5.3 ± 0.45 | 0.82 ± 0.06 | 0.94 | |
Xylene | 5.4 ± 0.47 | 1.2 ± 0.30 | 0.85 | 3.3 ± 0.40 | 1.9 ± 0.55 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Phillips, T.D. Green-Engineered Barrier Creams with Montmorillonite-Chlorophyll Clays as Adsorbents for Benzene, Toluene, and Xylene. Separations 2023, 10, 237. https://doi.org/10.3390/separations10040237
Wang M, Phillips TD. Green-Engineered Barrier Creams with Montmorillonite-Chlorophyll Clays as Adsorbents for Benzene, Toluene, and Xylene. Separations. 2023; 10(4):237. https://doi.org/10.3390/separations10040237
Chicago/Turabian StyleWang, Meichen, and Timothy D. Phillips. 2023. "Green-Engineered Barrier Creams with Montmorillonite-Chlorophyll Clays as Adsorbents for Benzene, Toluene, and Xylene" Separations 10, no. 4: 237. https://doi.org/10.3390/separations10040237
APA StyleWang, M., & Phillips, T. D. (2023). Green-Engineered Barrier Creams with Montmorillonite-Chlorophyll Clays as Adsorbents for Benzene, Toluene, and Xylene. Separations, 10(4), 237. https://doi.org/10.3390/separations10040237