Nanobubble Enhances Rutile Flotation Separation in Styrene Phosphoric Acid System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Micro-Flotation
2.3. Generation and Detection of Nanobubbles
2.4. Contact Angle Test
2.5. Zeta Potential Test
3. Results and Discussion
3.1. Effect of Collectors on the Properties of Nanobubbles
3.1.1. Effect of Collector Concentration on the Properties of Nanobubbles
3.1.2. Effect of Standing Time on the Properties of Nanobubbles
3.2. Micro-Flotation
3.3. Zeta Potential
3.4. Contact Angle
3.5. Discussion on Adsorption Model
4. Conclusions
- (1)
- SPA can significantly increase the concentration of bulk nanobubbles, reduce the diameter of nanobubbles, and increase the existence time of bulk nanobubbles.
- (2)
- After the pre-interaction of SPA and nanobubbles, the flotation recovery of rutile can be significantly improved, and the amount of SPA can be reduced.
- (3)
- SPA acts as a bridge to adsorb nanobubbles on the surface of rutile particles, significantly improving the solid–liquid interface contact angle of rutile surface.
Author Contributions
Funding
Conflicts of Interest
References
- Jamil, M.; He, N.; Gupta, M.K.; Zhao, W.; Khan, A.M. Tool wear mechanisms and its influence on machining tribology of face milled titanium alloy under sustainable hybrid lubri-cooling. Tribol. Int. 2022, 170, 107497. [Google Scholar] [CrossRef]
- Du, J.; Li, J.; Lv, R.; Du, X. Controllable in situ growth of novel octahedral TiO2 nanoparticles on nickel/titanium alloy fiber substrate for selective solid-phase microextraction of ultraviolet filters in water samples. RSC Adv. 2022, 12, 11933–11941. [Google Scholar] [CrossRef] [PubMed]
- Belen, F.; Gravina, A.N.; Pistonesi, M.F. NIR-Reflective and Hydrophobic Bio-Inspired Nano-Holed Configurations on Titanium Alloy. ACS Appl. Mater. Interfaces 2022, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.-Q.; Dou, Z.-H.; Zhang, T.-A.; Yang, Z.-N. Study on the one-step acid conversion of the alkali conversion product of high titanium slag to prepare TiO2 of high purity. Hydrometallurgy 2022, 211, 105887. [Google Scholar] [CrossRef]
- Li, H.; Mu, S.; Weng, X.; Zhao, Y.; Song, S. Rutile flotation with Pb2+ ions as activator: Adsorption of Pb2+ at rutile/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 431–437. [Google Scholar] [CrossRef]
- Chen, Q.; Tian, M.; Kasomo, R.M.; Li, H.; Zheng, H. Depression effect of Al(III) and Fe(III) on rutile flotation using dodecylamine polyxyethylene ether as collector. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125269. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, L.; Zhang, Y.; Bao, S. Microflotation of Fine Rutile and Garnet with Different Particle Size Fractions. Minerals 2022, 12, 1238. [Google Scholar] [CrossRef]
- Xiao, W.; Cao, P.; Liang, Q.; Peng, H.; Zhao, H.; Qin, W.; Qiu, G.; Wang, J. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment. Minerals 2017, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Cao, P.; Liang, Q.-N.; Huang, X.-T.; Li, K.-Y.; Zhang, Y.-S.; Qin, W.-Q.; Qiu, G.-Z.; Wang, J. Adsorption behavior and mechanism of Bi(III) ions on rutile–water interface in the presence of nonyl hydroxamic acid. Trans. Nonferrous Met. Soc. China 2018, 28, 348–355. [Google Scholar] [CrossRef]
- Xiao, W.; Ren, Y.-X.; Yang, J.; Cao, P.; Wang, J.; Qin, W.-Q.; Qiu, G.-Z. Adsorption mechanism of sodium oleate and styryl phosphonic acid on rutile and amphibole surfaces. Trans. Nonferrous Met. Soc. China 2019, 29, 1939–1947. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Li, X.; Li, Y.; Han, Y. Collecting Performance of a New Chelating Collector DXL on Rutile. Metal Mine 2018, 6, 65–69. Available online: https://d.wanfangdata.com.cn/periodical/jsks201806013 (accessed on 26 February 2023).
- Liu, Q.; Peng, Y. The development of a composite collector for the flotation of rutile. Miner. Eng. 1999, 12, 1419–1430. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, H.W.; Zhao, H.B.; Qin, W.Q.; Qiu, G.Z. Flotation behavior and mechanism of rutile with nonyl hydroxamic acid. Rare Met. 2016, 35, 419–424. [Google Scholar] [CrossRef]
- Xiao, W.; Cao, P.; Liang, Q.; Zhang, E.; Wang, J. Synergistic adsorption mechanism of styryl phosphoric acid and nonyl alcohol on the rutile surface and effects on flotation. Can. Metall. Q. 2018, 58, 1–9. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, L.; Zhang, Y. Role of nanobubbles in the flotation of fine rutile particles. Miner. Eng. 2021, 172, 107140. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, L.; Zhang, R.; Yang, Z.; Xing, Y.; Gui, X.; Cao, Y.; Sun, W. Enhancement of flotation response of fine low-rank coal using positively charged microbubbles. Fuel 2019, 245, 505–513. [Google Scholar] [CrossRef]
- Ohgaki, K.; Khanh, N.Q.; Joden, Y.; Tsuji, A.; Nakagawa, T. Physicochemical approach to nanobubble solutions. Chem. Eng. Sci. 2010, 65, 1296–1300. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, L.; Faraji, H.; Feldberg, S.W.; White, H.S. Electrochemical Measurements of Single H2 Nanobubble Nucleation and Stability at Pt Nanoelectrodes. J. Phys. Chem. Lett. 2014, 5, 3539–3544. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, Q.; Zhang, T.; Shi, Z.; Tian, Y.; Shi, S.; Smale, N.; Wang, J. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. J. Hazard. Mater. 2015, 287, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Ke, S.; Xiao, W.; Quan, N.; Dong, Y.; Zhang, L.; Hu, J. Formation and Stability of Bulk Nanobubbles in Different Solutions. Langmuir 2019, 35, 5250–5256. [Google Scholar] [CrossRef]
- Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 2010, 27, 796–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Wang, X.; Shin, H.-J.; Wang, J.; Tai, R.; Zhang, X.; Fang, H.; Xiao, W.; Wang, L.; Wang, C.; et al. Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water. J. Am. Chem. Soc. 2020, 142, 5583–5593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Seddon, J.R.T. Nanobubble–Nanoparticle Interactions in Bulk Solutions. Langmuir 2016, 32, 11280–11286. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zou, Z.; Wang, S.; Wang, X.; Wang, L.; Dong, Y.; Zhao, H.; Zhang, L.; Hu, J. Formation and Stability of Bulk Nanobubbles Generated by Ethanol-Water Exchange. Chemphyschem 2017, 18, 1345–1350. [Google Scholar] [CrossRef]
- Xiao, W.; Ke, S.; Quan, N.; Zhou, L.; Wang, J.; Zhang, L.; Dong, Y.; Qin, W.; Qiu, G.; Hu, J. The Role of Nanobubbles in the Precipitation and Recovery of Organic-Phosphine-Containing Beneficiation Wastewater. Langmuir 2018, 34, 6217–6224. [Google Scholar] [CrossRef]
- Albijanic, B.; Ozdemir, O.; Nguyen, A.V.; Bradshaw, D. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Adv. Colloid Interface Sci. 2010, 159, 1–21. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, W.; Zhao, H.; Cao, P.; Hu, Q.; Qin, W.; Zhang, Y.; Qiu, G.; Wang, J. Hydrophobic flocculation flotation of rutile fines in presence of styryl phosphonic acid. Trans. Nonferrous Met. Soc. China 2018, 28, 1424–1432. [Google Scholar] [CrossRef]
- Agrawal, A.; Park, J.; Ryu, D.Y.; Hammond, P.T.; Russell, T.P.; McKinley, G. Controlling the Location and Spatial Extent of Nanobubbles Using Hydrophobically Nanopatterned Surfaces. Nano Lett. 2005, 5, 1751–1756. [Google Scholar] [CrossRef] [Green Version]
- German, S.R.; Wu, X.; An, H.; Craig, V.S.J.; Mega, T.L.; Zhang, X. Interfacial Nanobubbles Are Leaky: Permeability of the Gas/Water Interface. ACS Nano 2014, 8, 6193–6201. [Google Scholar] [CrossRef]
- Albijanic, B.; Ozdemir, O.; Hampton, M.; Nguyen, P.; Nguyen, A.; Bradshaw, D. Fundamental aspects of bubble-particle attachment mechanism in flotation separation. Miner. Eng. 2014, 65, 187–195. [Google Scholar] [CrossRef]
- Albijanic, B.; Amini, E.; Wightman, E.; Ozdemir, O.; Nguyen, A.; Bradshaw, D.J. A relationship between the bubble-particle attachment time and the mineralogy of a copper-sulphide ore. Miner. Eng. 2011, 24, 1335–1339. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wang, L.; Hu, J.; Wang, C.L.; Zhao, B.; Zhang, X.; Tai, R.; He, M.; Chen, L.; et al. Formation of surface nanobubbles on nanostructured substrates. Nanoscale 2017, 9, 1078–1086. [Google Scholar] [CrossRef]
Sample | Component Content | |||||||
---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O3 | SiO2 | TiO2 | CaO | MnO | Fe2O3 | |
Rutile | - | - | - | 0.73 | 97.59 | 0.32 | 0.61 | 0.51 |
Garnet | 0.75 | 5.26 | 16.76 | 38.15 | 1.72 | 9.12 | 0.51 | 26.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xiao, W.; Qin, W. Nanobubble Enhances Rutile Flotation Separation in Styrene Phosphoric Acid System. Separations 2023, 10, 243. https://doi.org/10.3390/separations10040243
Wang Y, Xiao W, Qin W. Nanobubble Enhances Rutile Flotation Separation in Styrene Phosphoric Acid System. Separations. 2023; 10(4):243. https://doi.org/10.3390/separations10040243
Chicago/Turabian StyleWang, Yonghai, Wei Xiao, and Wenqing Qin. 2023. "Nanobubble Enhances Rutile Flotation Separation in Styrene Phosphoric Acid System" Separations 10, no. 4: 243. https://doi.org/10.3390/separations10040243
APA StyleWang, Y., Xiao, W., & Qin, W. (2023). Nanobubble Enhances Rutile Flotation Separation in Styrene Phosphoric Acid System. Separations, 10(4), 243. https://doi.org/10.3390/separations10040243