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Abstract: Polychlorinated biphenyls (PCBs) have been found in soil, which has typically been the re-
sult of industrial pollution in the past two decades. Although they are banned, PCBs can still be found
in soils and other environmental media. For this reason, it is critical to develop an analytical method
that can reliably identify and monitor their sources. This study describes a gas chromatography with
mass spectrometry (GC-MS) technique, which was used to detect PCBs in soil samples by using a fast
extraction method. Using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method,
PCBs were more effectively extracted from soil. Different related parameters, such as time of shaking
and centrifuging, type of solvent, and clean-up adsorbents, were compared and optimized. As the
extraction solvent, acetonitrile/water produced the best results, and as the dispersive solid-phase
extraction sorbent, diatomaceous earth produced the best results. Procedures allowed recovery
values between 95.3% and 103.2%. A limit of detection of 1.9 µg/kg was determined with relative
standard deviations (n = 3) of 2.1–4.0% for intra-day assays and 3.6–5.8% for inter-day assays. It
was demonstrated that the method was simple, sensitive, efficient, and environmentally friendly
when applied to soil samples. To our knowledge, an integrated approach based on QuEChERS
for the determination of Aroclor 1254 in soil has not been published before. It is believed that this
approach will eliminate the significant challenge of sample extraction in GC-MS processing, which
was considered to be a procedural challenge in previous analyses.

Keywords: polychlorinated biphenyls (PCBs); quick; easy; cheap; effective; rugged; safe (QuEChERS);
(GC-MS); sample preparation; extraction methods; soil environmental

1. Introduction

Polychlorinated biphenyls (PCBs) are chemical compounds formed artificially by
replacing hydrogen atoms within biphenyl molecules with chlorine atoms, classifying
them as a persistent organic pollutant. A total of 209 possible PCB congeners exist due
to different commercial names for PCBs, accumulating and posing an environmental
hazard [1–3]. Despite the banning of using and/or producing PCBs, they are still widely
spread in environmental media, including in agricultural soil [4].

Aroclor 1254 is one type of PCB that has attracted researchers in recent years. A product
with dozens of highly chlorinated congeners, it has been widely used for numerous open and
closed industrial applications due to its chemical and thermal stabilities [5–7]. Therefore, the
possibility of exposing people to Aroclor 1254 has increased greatly in different ways, such
as through dietary intake, dermal contact, or inhalation, which negatively affect the human
body and cause serious conditions including neurotoxicity, dermatological disorders, and
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lung problems. Thus, the detection of Aroclor 1254 in the environment has become very
important and requires a sensitive analytical method [8,9].

Gas chromatography is most commonly used to detect polychlorinated biphenyls
usually in conjunction with an electron capture detector or mass spectrometry [10,11]. Some
of the features of these techniques are accuracy, reliability, and sensitivity [12]. Isolating
PCBs from the soil matrix is a crucial step in GC-MS. The PCB analysis has been carried out
using a wide range of extraction techniques, such as chemical methods—involving soxhlet
extraction [13–15], liquid–liquid extraction [16,17], and solid-phase extraction [18,19]—or
physical ones, involving ultrasonic extraction [20], microwave-assisted extraction [21],
supercritical fluid extraction [22], and pressurized fluid extraction [23].

Despite their own advantages, these methods suffer from hazardous solvents, and
sample preparation is expensive and time-consuming; therefore, Anastassiades et al. intro-
duced a quick, easy, cheap, effective, rugged, and safe method, known as QuEChERS, as an
alternative means of extraction [24].

The method involves acetonitrile extraction, followed by salt addition and dispersive
solid-phase extraction (d-SPE) cleanup. According to this alternative method, organic
solvents are minimized, which was rarely discussed in the literature review [25]. PCBs
have been removed from a variety of matrixes, including fish tissue [26–28], mussels [29],
meat [30], and honey [31], and isolated by QuEChERS. Although different optimizations
were discussed in the soil sample [32], further modification is required, including combi-
nations of solvents, sorbents, or salts, considering volume, type, and ratio, which mostly
depends on the analyte and the matrix.

Through the use of the QuEChERS method combined with GC-MS, this study aimed
to develop and validate an inexpensive and reliable method of analyzing PCBs in soil. The
QuEChERS method was examined for PCB extraction from six soil samples by examining
the effect of water, solvent types, solvent volume, time of shaking, centrifuge time, speed,
and types of sorbents used. To demonstrate the efficiency and accuracy of the methodology,
blank samples spiked with standards were used to evaluate the precision and accuracy of
the method.

2. Experiment
2.1. Instrumentation and Conditions for GC-MS

The GC-MS instrument used for the analysis of PCBs was an Agilent 6890/5973, which
consisted of an Agilent 6890N GC equipped with an inert mass selective detector 5973.
A capillary column HP-5MS [5%-phenyl)-methylpolysiloxane] Agilent J&W GC column,
with a dimension of 0.25 mm ID × 30 m and a 0.25 µm film coating thickness, was used
for the separation of PCB congeners. Helium was used as the carrier gas, with a flow rate
of 1.0 mL/min and a pressure of 18 psi. The injector was kept at a constant pressure and
temperature of 250 ◦C. The oven temperature was programmed as follows: it was initially
set at 70 ◦C and held for two minutes, then increased to 180 ◦C at a rate of 25 ◦C/min, then
increased to 200 ◦C at a rate of 3 ◦C/min, then increased to 280 ◦C at a rate of 8 ◦C/min,
and held for 13 min. The injector and detector temperatures were both set at 280 ◦C. The
injection volume was 5 µL in the splitless mode. The ionization voltage was 70 eV, and the
solvent delay was set to 6 min. Detection of the compounds was performed in full scan
mode with a scan range of 50 to 500 mass to charge ratios (m/z). The total run time was
36.07 min. The MS transfer line temperature was 280 ◦C, and the ion source temperature
was 250 ◦C.

2.2. Chemicals and Instruments

The following were all obtained from Sigma (Dublin, Ireland): an Aroclor 1254 stock
solution at a concentration of 200 µg/mL in methanol; a surrogate solution of a mixture
in acetone containing 200 µg/mL of decachlorobiphenyl (deca-CB) and of tetrachloro-m-
xylene (TCMX); anhydrous MgSO4 powder; sodium chloride NaCl powder; diatomaceous
earth; clean soil; acetonitrile; hexane; acetone; ethyl acetate; methanol. The reagents
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and solvents used in the experiments were generally of an analytical grade or higher.
Ultrapure deionized water, with a resistivity of 18.2 MΩ·cm, was obtained from a Milli-Q
system (Millipore, Molsheim, France). We used a QuEChERS Original Method extraction
kit (5 g samples), 50/pk. The kit contents were as follows: 4 g MgSO4, 1 g NaCl with
50 mL tubes, and a QuEChERS dispersive clean-up kit (PSA, C18, MgSO4); these were
purchased from Agilent Technologies Ireland Limited (Cork, Ireland). We also used a
centrifuge (Heraeus Megafuge 16, Thermo Fisher, Bremen, Germany), analog vortex mixer
(VWR Mixer Mini Vortex, Missouri CT, USA), ultrasonic Branson 5510 cleaner (Branson
Ultrasonics Corporation, Brookfield, CT, USA), suitable hoods, glassware, volumetric flasks,
pipettes, cylinders, beakers, vials, tubes for soil sample extraction, and filter paper for soil
sample filtration.

2.3. Standard and Sample Solution Preparation

A six-point calibration curve was employed for the quantitative analysis. Standard
solutions of Aroclor 1254 were prepared at levels of 0.32, 0.65, 1.25, 2.5, 5, and 10 ng/mL
by diluting 200 µg/mL Aroclor 1254 stock solutions with methanol. Surrogate standard
solutions for Deca-CB and TCMX were prepared at a concentration of 5 ng/mL via dilution
with acetone from a 200 µg/mL stock solution. To assess extraction recovery, a surrogate
standard was added, and the standards and working solutions were stored at 4 ◦C. For the
recovery experiment, the soil used in this work (about 100 g) was purchased from Sigma.
The soil samples were stored at room temperature 25 ◦C in dark-colored glass bottles.
The physicochemical properties of the soil were as follows: The soil texture was sandy;
pH = 6.2; organic matter at levels of 0.1%. Afterwards, soil samples were spiked with
PCBs standards at 10 µg/kg and 5 µg/kg. To obtain a homogeneous sample, a mechanical
stirring apparatus was used. After that, to allow the solvent to evaporate, the samples
were left in a ventilated area for eight hours. The standards are thought to bind the soil
samples similarly to natural processes. For accurate recovery results, it is critical to use
suitable extraction methods and solvents to avoid soil interference. The soil was pretreated
to remove the interfering compounds. Additionally, the potential contamination sources
were controlled and evaluated throughout the process to obtain better recovery.

To calculate the recovery, a chromatogram with characteristic peak areas and retention
times, or a “fingerprint” pattern, was produced by a single PCB mixture of Aroclor 1254. In
this study, an Aroclor 1254 mixture containing tetra-CB, m/z 292; hexa-CB, m/z 360; hepta-
CB, m/z 394; penta-CB, m/z 326 with peak areas of penta-chlorinated biphenyls (penta-CBs)
were selected and used to construct the calibration models for the quantification of Aroclor
1254, because penta-CBs are one of the major PCBs in Aroclor 1254 (48% weight). The
areas of selected peaks in the sample were compared to the same areas in a standard PCB
mixture, which was the method utilized.

Phase separation is a process in which a mixture is divided into two or more distinct
phases, usually due to the presence of a separating agent. Salt is a commonly used sep-
arating agent, and its addition can induce phase separation. However, it is important to
note that the effectiveness of the extraction system can also be influenced by the amount
of salt used. In a recent study, the same amount of magnesium sulfate (MgSO4) has been
used as in a previous study to induce phase separation [24]. Magnesium sulfate (MgSO4)
is often used as a drying agent to remove water from the organic phase and improve the
efficiency of the extraction process. In addition to MgSO4, NaCl can also be employed to
minimize the effects of polar interference. This can be particularly useful when analyzing
samples that contain high levels of polar compounds, as these compounds can interfere
with the extraction process and lead to inaccurate results. Therefore, careful considera-
tion of the type and amount of separating agents used is crucial for the success of any
extraction process.
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2.4. Extraction and Clean-Up Procedure

Extraction was performed according to the QuEChERS method described by Anas-
tassiades, Michelangelo Lehotay, Steven J. (2003) [24]. Approximately 5 g of soil samples
were weighed into a 50 mL centrifuge tube and mixed with 15 mL of acetonitrile/water
(75%: 25%, v/v) or hexane/water (75%: 25%, v/v) in a QuEChERS tube, followed by vortex
homogenization for 4 min. Then, the tube containing samples was ultrasonically treated
for 20 min. After that, 4 g of MgSO4 and 1 g of NaCl were added. After vortexing the
mixture for 4 min, the extract was centrifuged at 4500 rpm for 10 min to remove the upper
layer. Approximately 6 mL of the organic layer extract was transferred into a clean-up tube
containing 900 mg MgSO4 and 150 mg of sorbent mix (PSA/C18) or diatomaceous earth.
After 4 min of vortex homogenization, the tubes were centrifuged for 10 min at 4500 rpm.
Approximately 1.5 milliliters of the upper layer were filtered before being transferred to
GC vials for a GC-MS analysis, and 50 µL of deca-CB and TCMX internal standards were
added the modified QuEChERS extraction method is shown in Figure 1. The blank samples
(soils without PCBs) were treated the same way, but without the PCB standard solution.
The experiments were replicated three times.
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Figure 1. Schematic illustration of the modified QuEChERS extraction method.

2.5. Method Validation

The analytical parameters used to validate the method for analyzing PCBs include
linearity, limit of detection (LOD), limit of quantification (LOQ), relative standard devia-
tion (RSD), and recovery. The linearity of the relationship between concentration and
peak area was determined by analyzing standard PCB solutions. Calibration curves
used 6 standard solutions in the concentration range of 0.32–10 ng/mL for Aroclor
1254 in triplicate. LOD and LOQ were calculated using the formulas LOD = 3.3 SD of
intercept/slope and LOQ = 10 SD of intercept/slope. Precision was evaluated by measuring
the inter-day and intra-day variability at two concentration levels within the linearity range,
with three replicates on the same day or on three different days. Recovery was assessed by
performing a study at two concentration levels within the linearity range to evaluate the
accuracy of the GC-MS method. The results of these analytical parameters are presented in
the results section of the study.

3. Results and Discussion
3.1. Optimization of Extraction Solvent Conditions

For the purpose of this study, Aroclor 1254 was selected to be analyzed in soil samples.
QuEChERS has been utilized in several studies to measure a variety of pollutants, including
pesticides in soil samples [32,33], aromatic organochlorines [34], veterinary products, and
pharmaceuticals [35,36]. In spite of this, the method has not been extensively used in the
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extraction of Aroclor 1254 from soil. The QuEChERS method should be optimized in order
to obtain the best recovery. Several related parameters, including water effect, solvent
effect, and solvent volume effect, were optimized.

A traditional QuEChERS extraction was performed with samples containing a high
moisture content. Additionally, the QuEChERS method has been modified [37–39]. Hu-
midity is an important factor when preparing soil samples [40,41]. It was necessary to
add ultrapure water to soil samples in order to ensure moisture content and to improve
the recovery of PCBs from soil samples. To achieve high extraction efficiency, different
amounts of water (3, 5, 7, and 10 mL) were tested. According to the results, maximum peak
intensity and maximum recovery were achieved with 5 and 7 mL of water; as the amount
of water increases, peak intensity decreases (see Figure 2a). For the additional experiment
we utilized 5 mL.
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Extraction efficiency is highly dependent on the solvent used for extraction. In addition,
the solvent must be less costly, compatible with analytical instruments, and eco-friendly [42].
To determine the most suitable solvent for the extraction of PCBs from soil samples, two
different solvents were used: acetonitrile and hexane in combination with water. The
original QuEChERS method used acetonitrile as the extract solvent, as did many other
studies involving QuEChERS procedures [24]. Therefore, this solvent was chosen for use
in the present study as one of the solvents, while hexane was chosen as the other solvent
since it is commonly used to extract PCBs from soil [43], although it is less eco-friendly. As
shown in Figure 2b, recovery rates of PCBs in the acetonitrile extraction were 85.53–102.72%,
showing better efficiency, the production of cleaner extracts, and overall higher recoveries
for PCBs than the hexane extraction. In this study, acetonitrile was found to be the most
suitable extraction solvent, as it extracts a lower amount of the matrix, which is consistent
with the findings of the previous study [31,44].
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Furthermore, the volume of solvent used is critical for effective recovery, and there
should be enough solvent to allow the sample to be fully immersed and interact with the
analyte. Various amounts of acetonitrile, including 3, 5, 7, 10, and 15 mL were tested, and
it was found that 10 mL of acetonitrile yielded the highest peak intensity and recovery,
as depicted in Figure 2c. Acetonitrile is considered to be a more selective solvent and
produces a cleaner chromatogram compared to most other solvents used in the QuEChERS
technique [45]. When compared to other solvents utilized in QuEChERS, ACN separates
from water more effectively in the presence of salts, producing good phase separation,
which inhibits polar matrix interaction [46].

3.2. Optimization of Physical Extraction Condition

In this study, the effects of shaking time, centrifuge time, and speed were optimized
and discussed. Several methods, including laboratory shakers, manual shakers, and
vortexes, have been commonly used to extract targets from the soil. However, due to
the strong binding characteristics of the soil, manual shaking for one minute, which was
sufficient for the analysis of pesticides in fruits and vegetables according to the original
QuEChERS method, resulted in lower recovery rates in this study. [24,47,48]. To compare
the efficacy of manual shaking and vortex extraction, various extraction times ranging
from 1 to 6 min were evaluated. The results showed that the recovery obtained with vortex
extraction was higher than that obtained with manual shaking. Additionally, it was found
that increasing the intensity of shaking was beneficial in breaking the strong interactions
between analytes and matrix, resulting in improved extraction. Based on these findings,
vortex extraction was selected as the preferred method of extraction for the targets from
soil in this study. As shown in Figure 3a, the optimal extraction time for the removal of
target PCBs from soil was found to be 4 min, and extending the extraction time beyond this
did not improve recovery rate.
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Figure 3. (a) Effect of shaking: 4 min, 15 mL of acetonitrile/water (75%:25%, v/v), 5 g of soil, 4 g
MgSO4, 1 NaCl. (b) Effect of centrifuge time: 4500 rpm, 15 mL of acetonitrile/water (75%:25%, v/v),
5 g of soil, 4 g MgSO4, 1 NaCl. (c) Effect of speed: 10 min, 15 mL of acetonitrile/water (75%:25%,
v/v), 5 g of soil, 4 g MgSO4, 1 NaCl. (d) Comparison of recovery rates for different sorbents in the
QuEChERS extraction method (n = 3). The conditions for the experiment were: 5 g of soil, 15 mL of
acetonitrile/water (75%:25%, v/v), 4 g of MgSO4, 1 g of NaCl, 4500 rpm.
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There was a significant effect on centrifugation time and rate. In addition, different
extraction times (1, 5, and 10 min) and rates (1500, 4500, and 5000 rpm) were investigated
for 5 and 10 ng/mL concentration levels for PCB extraction. The results shown in Figure 3b
indicate that excellent recovery of PCBs was achieved at 10 min, which was chosen as the
optimal centrifugation time. A centrifuge of 4500 rpm was found to be sufficient to obtain
good recovery of PCBs (Figure 3c). Using a centrifuge facilitates increased contact between
the solvent and the soil sample, which improves dissolution of the analyte [49,50] and
reduces the extraction time.

As part of the preparation of complex matrixes such as soil, a clean-up step was
necessary in order to reduce interference, improve quantification, and avoid disturbing
the signal on the chromatographic system [51]. In addition to traditional sorbents used
in the clean-up step of QuEChERS extraction from soil samples, C18 and PSA, diatoma-
ceous earth was also used as alternative sorbents [52,53]; they were less expensive and
more eco-friendly than the traditional ones, but have not been extensively investigated
in d-SPE [52]. As shown in Figure 3d, the sorbent has different effects on recovery and
selectivity, and to achieve a satisfactory level of purification and recovery of PCBs, the
effects of sorbent types were evaluated. The PSA retains a wide range of polar substances,
including sugars, organic acids, and fatty acids. In addition, the nonpolar adsorbent, C18,
retains trace amounts of nonpolar co-extractives and is capable of removing long chain
fatty compounds and sterols from the extract. When PSA is used in conjunction with C18,
additional lipids and sterols can be removed [53]. Diatomaceous earth consists of natural
silica (SiO2 nH2O), with traces of metal oxides of specific structures, and its proposed use is
as a simple alternative material and an environmentally-friendly natural sorbent [54]. The
use of diatomaceous earth improved phase separation during QuEChERS extraction. Cal-
culations of the differences between spiked and blank soil samples were used to determine
recovery rates.

3.3. Method Validation

Under optimized extraction and clean-up conditions, we studied analytical parame-
ters such as selectivity, linearity, LOD, LOQ, precision, and recovery. In order to evaluate
the selectivity of the method, a blank sample was extracted by the optimized QuECh-
ERS method, and positive samples were confirmed by GC-MS (Figure 4A). This confirms
that the method has good selectivity, as no peaks interfered with analyte retention time.
A standard calibration curve (Figure 4B) has been prepared using concentrations rang-
ing from 0.31 to 10 ng/mL (0.31, 0.65, 1.25, 2.5, 5, 10 ng/mL) of Aroclor 1254 with a
coefficient of determination R2 of 0.9933; the linear regression equation fit is shown as
(Y = 38,098 (x) − 26,023). The limit of detection (LOD) and limit of quantification (LOQ)
were calculated based on three and ten times the standard deviation, respectively. The LOD
value was 1.9 ng/mL and the LOQ value was 5.7 ng/mL, which indicated good sensitivity
of this method.
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3.4. Analysis of Aroclor 1254 in Spiked Soil Samples (Recovery and Precision)

The validation of a method is crucial to ensure that the results obtained are accurate
and reliable. In the case of analyzing Aroclor 1254 in soil samples, sample spikes were used
to improve the validation of the method. Two different levels of Aroclor 1254 standard
solution were spiked into the soil samples at 5 and 10 µg/kg levels. The spiked samples
were run in triplicate to evaluate the precision and repeatability of the assay. The RSD%
was used to determine the precision, which was evaluated using two parameters: intra-day
(repeatability) and inter-day precision. Repeatability was assessed by analyzing three
replicates of soil samples spiked at two levels (5 and 10 µg/kg) on the same day, while
inter-day precision was determined by analyzing samples on three different days over a
period of two weeks.

The results of the analysis showed that the recovery of Aroclor 1254 from soil samples
ranged from 95.3% to 103.2%, indicating the accuracy of the method. The RSD for inter-day
precision ranged from 3.6% to 5.8%, while that for intra-day precision ranged from 2.1%
to 4%, indicating the repeatability of the method. The developed modified QuEChERS
method was compared with other recent studies in the literature, as demonstrated in Table 1.
The present work shows great recovery value due to the use of different extraction solvents,
which has a significant impact on the level of PCBs extraction from soil. Additionally,
the comparison for blank (in black) and soil sample (in red) for 10 µg/kg and 5 µg/kg
concentrations are presented in Figure 5, which further supports the accuracy and reliability
of the modified QuEChERS and GC-MS methods for analyzing Aroclor 1254 in soil samples.
These findings are important for environmental studies and risk assessments, as accurate
analysis of pollutants in soil is necessary for identifying potential risks and implementing
effective mitigation strategies.

Table 1. Comparison of the present study with other studies. For the present work recovery and RSD
was included at different Aroclor 1254 concentrations in soil samples (n = 3).

Sample Extraction Added (µg/kg) Intra-Day (RSD%) Inter-Day (RSD%) Recovery (%) Reference

Water acetonitrile 8 (µg /L) ≥15% - 90–95% [54]

Shrimp water/MeCN * 1, 5, 10 >20% - 70–115% [55]

Sedimen
water/Ace/Hex *

or
wter/Ace/DCM *

50 ≥15% - 76–131% [56]

Soil Water/acetonitrile 5 4 5.8 103.2% Present work

Soil water/acetonitrile 10 2.1 3.6 95.3% Present work

* MeCN (Acetonitrile), Ace (Acetone), Hex (Hexane), DCM (Dichloromethane).
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4. Conclusions

In this study, we have utilized a modified QuEChERS method, combined with GC-MS
analysis, to analyze Aroclor 1254 in soil samples. This novel method has several advantages
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over traditional techniques, including its simplicity, cost-effectiveness, eco-friendliness,
and minimal solvent extraction. We have modified the sample pretreatment procedure by
incorporating vortex shaking, a mixed solvent (either acetonitrile/water or hexane/water),
and three adsorbents (PSA, C18, and diatomaceous earth) for the cleaning process. We have
found that the best results were obtained when water/acetonitrile and diatomaceous earth
were used. The method demonstrated excellent accuracy, linearity, LOD, LOQ, intra-day
precision, and inter-day precision. Specifically, the recovery was in the range of 95.3–103.2%,
correlation coefficients were higher than 0.98, the limit of detection (LOD) was 1.9 µg/kg,
and the limit of quantification (LOQ) was 5.7 µg/kg, intra-day precision varied between
2.1% and 4%, and inter-day precision was between 3.6% and 5.8%.

This optimized method offers several advantages over traditional techniques, includ-
ing a reduction in overall analysis time, an avoidance of the use of large levels of non-eco-
friendly solvents, increased sensitivity, rapid results, and a reduction in the consumption of
organic reagents. Compared to other common extraction methods, this streamlined proce-
dure offers an efficient and effective technique for monitoring PCBs in the environment.
Moreover, this technique has the potential to be applied to a wider range of sample types
and applications, making it an even more valuable tool for environmental monitoring.
Overall, the study provides a significant contribution to the field of analytical chemistry
and environmental science, demonstrating a novel and effective method for analyzing
Aroclor 1254 in soil samples.
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