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Abstract: Naphthalene is a carcinogenic compound and its environmental release poses a major risk
to human and aquatic health. Therefore, the application of nanomaterial technologies for naphthalene
removal from wastewater has attracted significant attention. In this research, for the first time, the
performance of IRMOF-3 for naphthalene removal from aqueous media is evaluated. IRMOF-3
with a specific surface area of 718.11 m2·g−1 has the ability to absorb naphthalene from synthetic
wastewater to a high extent. The structures and morphology of IRMOF-3 were determined by FT-IR,
XRD, SEM and BET analyses. Thirty adsorption experiments were conducted to obtain the best
conditions for naphthalene removal. An optimum naphthalene removal efficiency of 80.96% was
obtained at IRMOF-3 amounts of 0.1 g·L−1, a solution concentration of 15 mg·L−1, a contact time
of 60 min and a pH = 11. The results indicate that the lower the concentration of naphthalene, the
higher its dispersion at the surface of the porous nanostructure. Increasing naphthalene concentration
results in its accumulation on porous nanostructures that clog cavities. In addition, high contact time
provides ample opportunity for naphthalene to penetrate the cavities and pores which facilitates
crystallization phenomena deep in the pores. Finally, the results of this study revealed that IRMOF-3
is one of the most effective adsorbents for naphthalene removal from wastewater.

Keywords: environment; porous nanostructure; IRMOF-3; naphthalene; central composite design; adsorption

1. Introduction

Water contamination is a global challenge that endangers life [1–5]. Thus, rehabilitation
of pollutants from soil and groundwater is very important for researchers and environmental
agencies. Phenols, aliphatic polycyclic aromatic hydrocarbons (PAHs), heavy metal ions, and
dyes in industrial wastewater seriously influence the quality of freshwater which ultimately
threatens human beings, animals, and plant life [1,6–8]. Aromatic polycyclic hydrocarbons
(PAHs) are carcinogenic chemical compounds with two to seven benzene rings [9,10]. Naph-
thalene is one of the aromatic hydrocarbons that is reportedly accumulated in estuaries and
sediments environments. Upon groundwater contamination with petroleum compounds,
naphthalene may enter drinking water sources and accumulate in adipose tissue through
the food chain [11–13]. Although the concentration of this compound in water is very low,
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its adverse impact is immense [14,15]. The standard for aromatic hydrocarbon compounds,
including naphthalene, concentration in water is ≤0.1 mg/L [16–18]. Serious health problems
such as hemolytic anemia in children and anemia are side effects of higher doses of naphtha-
lene in water [19,20]. Therefore, it is crucial to develop (1) novel technologies that prevent
naphthalene release into the environment and (2) effective methods for naphthalene removal
from surface waters [21–23]. Proposed methods for removing naphthalene from wastew-
ater include advanced oxidation processes, membrane separation, biological degradation
and adsorption [24–28]. Adsorption processes using solid adsorbents compared to the other
techniques have the merits of easy control, low operational cost, high elimination efficiency,
and adsorbent recovery [29–31]. Therefore, adsorption is one of the most widely employed
processes for organic contaminants removal from wastewater. Adsorbents like clay minerals,
agricultural wastes, zeolites [32–35], activated carbon, graphene oxide (GO) and metal-organic
frameworks (MOFs), have been reported for naphthalene removal from aqueous media [36–39].
By studying the aforesaid adsorbents, researchers are trying to synthesize and build a new
group of adsorbents to achieve enhanced efficiencies in single and multiple solvent systems [40].
MOFs are one of the proposed new adsorbents that offer huge surface area, adjustable pore
size, and tunable internal surface characteristics [41,42]. MOFs may be utilized in other ap-
plications including heterogeneous decomposition, separation, measurement, and molecular
detection [43–45]. MOFs include a central metal atom and the organic molecule which is known
as the ligand. The isoreticular metal organic framework-3 (IRMOF-3) is a popular MOF that
exhibits good capability as an efficient adsorbent for wastewater treatment processes. IRMOF-3
adsorption ability is attributed to (1) the presence of 2-amino-benzenedicarboxylate linkers in
its structure, (2) its 3D (three-dimensional) cubic porous framework consisting of secondary
Zn4O structural units [46,47], (3) unusual pore volume and large specific surface area, and (4)
suitable thermal and mechanical stability [48,49].

Nowadays, statistical and engineering methods such as the surface response methodol-
ogy (RSM) are used for process optimization. Using this method, a smaller number of tests are
required and the interactions between different factors are considered [50–52]. In this way, the
optimal values of each variable and its degree of importance can be easily determined [53,54].
In this study, the central composite design (CCD) and response-level method were employed.
In the central composite design procedure, the principal goal is the evaluation of dependent
responses and parameters optimization. In addition, in CCD design each factor is examined
in five levels (−α, −1, 0, +1, +α) or, in the case of the facet center, in three levels (for α = 1)
where −1 and +1 are the upper and lower levels and −α and +α are the new limits of the
factors. Point zero is considered the central point of the design.

Arizavi et al. [55] studied naphthalene adsorption from aqueous media with a kaolin/Fe3O4
composite using the central composite design. Their results indicated that increasing pH, ex-
posure time or composite dose increases naphthalene adsorption. They reported the optimal
conditions as 4.8 g·L−1 of composite dose, 66 min contact time, and pH 6.5

For a solution containing 10 mg·L−1 of naphthalene at the optimum condition, 97% elimi-
nation efficiency was obtained. Farzadkia et al. [56] reported optimum TPH removal efficiency
of 49.90 ± 12.47% by modeling the ozonation process using RSM. Borousan et al. [57] modeled
malachite green dye degradation using RSM. They reported that at optimum conditions
IRMOF-3, IRMOF-3-MWCNT-OH and IRMOF-3-MWCNT-OH-Pd-NPs reveal adsorption
efficiencies of 37.20%, 55.50% and 96.10%, respectively. Clearly, the degradation efficiency
percentage enhances considerably upon adsorbent surface modification with MWCNT-OH
and Pd nanoparticles. They also reported that IRMOF-3 does not offer any reusable potential,
while IRMOF-3-MWCNT-OH and IRMOF-3-MWCNT-OH-Pd-NP possess three and five
successive retrievals, respectively.

Ghaedi et al. [37] studied the applicability of zinc sulfide nanoparticles loaded acti-
vated carbon (ZnS-NPs-AC) for naphthalene removal from aqueous solution using RSM.
In the quadratic CCD model, four independent parameters, namely pH (1.0–9.0), initial
concentration of naphthalene (5–45 mg·L−1), adsorbent dosage (0.005–0.025 g) and contact
time (5–25 min) were coded to predict the response. Based on the results under the opti-
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mum conditions of 0.02 g of adsorbent dose, 15 min contact time, pH 5.0 and 15 mg·L−1 of
naphthalene, its adsorption on ZnS-NPs-AC results in 98.8% removal.

Rani et al. [58] studied naphthalene removal from aqueous solutions by using a slurry
photocatalytic membrane reactor (coupling TiO2/UV-C photocatalysis and ultrafiltration
(UF) membrane process) that was studied by examining the effect of various parameters,
intermediate identification and using the RSM approach. Various operating parameters
such as initial NAP concentration (5–25 mg·L−1), catalyst dosage (0.1–0.9 g·L−1), and feed
solution pH (3–9) were investigated for NAP removal. Experimental results obtained from
the batch study of the integrated process showed 92.8% of NAP removal compared to
individual processes. UV-TiO2 (76.8% NAP removal) and UF membrane separation process
(49.1% NAP removal) showed low removal rates for similar experimental conditions. In ad-
dition, the results show that ANOVA proved a good accordance between the experimental
and predicted values with acceptable correlation coefficients (R2 = 0.9541 and R2 = 0.9456
adjusted) for naphthalene (NAP) removal. Yaqubzadeh et al. [59] studied naphthalene
removal from aqueous solution by facile synthesis of silica aerogel using RSM. Their input
parameters were Time, pH, and adsorbent dosages at a fixed naphthalene concentration of
34 mg·mL−1. They obtained a second-order nonlinear model for predicting naphthalene
removal that was reported according to the ANOVA analysis. The optimum conditions
were a time of 120 min, pH 4, and an adsorbate dosage of 4 g·L−1. The results show
that the adequacy of the model was guaranteed by evaluating statistical factors including
determination coefficient (R2 = 0.903), adjusted R2 (0.877), and sufficient accuracy (19.23).

Despite several studies on naphthalene removal by novel adsorbents, to the authors’
knowledge, there has not been any application of the IRMOF-3 for naphthalene adsorbent.
In this study, the adsorption rate of naphthalene by porous IRMOF-3 nanostructure has
been investigated and the impact of naphthalene concentration, pH, time, and adsorbent
dose as independent variables on removal percentage are studied. In order for the studied
parameters to be at equal distances, the value of α in this study is set to 1.

2. Materials and Methods
2.1. Materials

Zinc nitrate haxahydrate and 2-aminoterephthalic acid were purchased from Sigma
Aldrich. Naphthalene crystalline powder C10H8, N,N-dimethylformamid, and ethanol
were supplied from Merck, Scharlau, and Zakaria Jahrom, respectively. All materials are
more than 99.9% pure and used as supplied.

2.2. IRMOF-3 Synthesis

IRMOF-3 was obtained according to the procedure described elsewhere [60] with slight
modification. In brief, zinc nitrate hexahydrate (1.2 g, 4.59 mmol) and 2-aminoterephthalic
acid (0.3 g, 1.66 mmol) were dissolved in dry DMF (30 mL). The obtained suspension was
stirred for 20 min at room temperature. This mixture was then stored in an oven for 24 h at
105 ◦C, followed by a slow cooling to room temperature. The solvent was removed and the
brown crystals were rinsed 3 times with dry DMF. The products were then immersed in
CHCl3 for three days, the solvent was replaced daily with a fresh one. Finally, the solvent
was decanted and the resulting brown powder was dried at 120 ◦C.

2.3. IRMOF-3 Characterization

NanoSpec2 UV-Vis Spectrophotometer (Nanolytik, EMCLAB, Duisburg, Germany),
X-ray diffraction (XRD) (MPD 3000, Novara, Italy—G. N. R. Analytical Instruments Group),
Fourier-transform infrared spectroscopy (FTIR) Spectrometer (RX-I, PerkinElmer, Waltham,
MA, USA), scanning electron microscopy (SEM) (Leo1430VP, Carl Zeiss AG, Jena, Germany),
thermo gravimetric analysis (TGA) (PT-1000, Linseis STA, Selb, Germany), and Brunauer–
Emmett–Teller (BET) (BELSORP miniII, Microtrac, Japan) were used to analyze samples.
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2.4. Sample Preparation and Adsorption Characterization

A pH meter (F470, Qis, United States), an ultrasonic bath homogenizer (PARSONIC
11s), and a laboratory-scale centrifuge (Sahand T.A., Iran) were used for sample preparation.
A stock solution of 50 mg·L−1 of naphthalene was prepared in water–ethanol (30:70% v/v)
and later used to prepare solutions with concentrations of 15, 20, 25, 30, 35, 40, 45 and
50 mg·L−1. To regulate the pH of the solutions, hydrochloric acid (0.1 M) and sodium
hydroxide (0.1 M) were used. The samples were placed in a shaker operating at 500 rpm
for proper mixing of the adsorbent and the adsorbate. An ultrasonic bath was then used
for homogenization and, after a certain time, the adsorbent was removed by centrifugation
and the residual naphthalene concentration was analyzed using a spectrophotometer at a
wavelength of 220 nm. The percentage of naphthalene removal and its adsorption value
(mg·g−1) were calculated by Equations (1) and (2), respectively:

R% =
(C 0 − C f

)
C0

× 100 (1)

qe =
(C 0 − C f

)
× v

w
(2)

In these relations, C0 and Cf indicate the initial and final concentration of naphthalene
(mg·L−1). In addition, w is the adsorbent dosage (g) and v is the volume of solution (L).

2.5. Experimental Design Method

RSM was used to optimize the adsorption process. RSM is a well-organized and
economical method that employs a set of mathematical and statistical approaches for
analyzing the effect of several independent parameters on the response and adaptation of
experimental models for experimental data. RSM outcome depends on the appropriateness
of experimental polynomial models [61]. RSM minimizes the experimentation [62]. RSM is
categorized as CCD, Box–Behnken design, and factorial design of three levels [63]. Among
these, CCD is better suited for optimizing various operational parameters.

To evaluate the interplay of operational parameters A: pH (3–9), B: naphthalene concen-
tration (15–50 mg·L−1), C: contact time (30–60 min), and D: dose adsorbents (0.01–0.10 g·L−1)
in CCD are used as input variables, while their effect on removal percent of naphthalene by
IRMOF-3 was considered as a response. In the CCD method for each variable highest level,
high, center, low, and lowest, five levels + α, +1, 0, −1 and −α were selected (see Table 1). In
total, 30 independent test runs were designed to systematically assess the potential impact
of different operating conditions. In order to minimize possible experimental errors, all
experimental designs were performed randomly. Then, to evaluate the contribution of the
main factors and their interaction, analysis of variance (ANOVA) was used by Design Expert
7.0 software (95% confidence level) (see Table 2).

Table 1. Experimental variables and their levels in central composite design.

Independent Variables Range and Levels (Coded)

Factors Coded Units −α −1 0 +1 +α

pH A 3 3 7 11 11
Concentration B mg·L−1 15 15 32.5 50 50
Time C min 30 30 45 60 60
Adsorbent
dose D g·L−1 0.01 0.1 0.055 0.10 0.11



Separations 2023, 10, 261 5 of 16

Table 2. Central composite design matrix with naphthalene adsorption experiments (%).

RUN A: pH B: Concentration (mg/L) C: Time (min) D: Adsorbent dose (g·L−1) Adsorption %

1 7 32.5 45 0.06 44.15
2 3 15 30 0.1 49.01
3 11 15 30 0.1 52.81
4 3 32.5 45 0.06 40.15
5 3 50 30 0.01 21.08
6 3 15 30 0.01 42.27
7 3 50 60 0.1 40.21
8 7 32.5 45 0.06 44.15
9 11 50 60 0.1 45.96

10 11 50 30 0.1 33.01
11 11 15 30 0.01 46.1
12 11 32.5 45 0.06 43.11
13 11 50 60 0.01 31.63
14 3 50 30 0.1 21.08
15 7 32.5 30 0.06 38.23
16 7 50 45 0.06 37.5
17 11 50 30 0.01 28.13
18 11 15 60 0.01 56.6
19 7 15 45 0.06 47.4
20 7 32.5 45 0.01 33.12
21 3 50 60 0.01 25.87
22 7 32.5 45 0.06 44.15
23 3 15 60 0.01 51.31
24 7 32.5 45 0.06 44.15
25 7 32.5 45 0.1 48.91
26 7 32.5 45 0.06 44.15
27 3 15 60 0.1 61.73
28 11 15 60 0.1 80.96
29 7 32.5 45 0.06 44.15
30 7 32.5 60 0.06 46.71

The relationship between the independent parameters and the responses obtained by
the quadratic polynomial model was expressed [64,65]. The model equation is presented
as follows:

Y = β0 +
k

∑
i=1

βiXi+
k

∑
i=1

k

∑
j=1

βijXiXj +
k

∑
i=1

βiiX2
i + ε (3)

In Equation (3), Y is the predicted response (removal percent). Xi and Xj are encrypted
values of independent variables. β0 is the model constant. βi, βii and βij are coefficients
of regression for linear, quadratic, and interaction terms, respectively. k is expressed as
the number of independent variables and ε is the remaining error of the model. The re-
sults of naphthalene adsorption are reported as an analysis of variance (ANOVA) and
model outputs including three-dimensional diagrams, contour diagrams, and predicted di-
agrams against real values. In addition, sufficient accuracy (AP), regression coefficient (R2),
p value, and F value (Fisher variation ratio) were the essential parameters to confirm the
relationship, importance, and appropriateness of the designed model.

3. Results and Discussion
3.1. IRMOF-3 Characterization

FT-IR analysis, depicted in Figure 1a, was utilized to investigate the structural charac-
teristics of the IRMOF-3 sample. The peaks at 3219.33 and 3127.43 cm−1 are correlated with
the asymmetric and symmetric stretching of amine groups, respectively [66]. Strong peaks
at 1388.63 and 1569.36 cm−1 represent the symmetric and asymmetric vibrations of dicar-
boxylate O-C=O and C=C in the benzene ring, respectively [67]. A slight shift in the peaks
is attributed to the hydrogen bonds formed with the primary amines and -OH belonging



Separations 2023, 10, 261 6 of 16

to the carboxyl group of IRMOF-3. The strong band at 1243.75 cm−1 is dedicated to the
C-N bond stretching vibrations. The aromatic C-H bending of the porous nanostructure
can be seen at 1157.39 and 814.03 cm−1 [68]. To investigate the crystal characteristics of the
IRMOF-3 sample, the XRD analysis, as depicted in Figure 1b, was used. The diffraction
peaks at 2θ = 6.8, 9.8, and 13.8◦ correspond to (200), (220), and (400) planes, respectively.
These diffraction peaks are consistent with the reported IRMOF-3 structure [69]. Finally,
low-grade peaks confirm the formation of a crystalline structure as expected.
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The SEM micrographs presented in Figure 2a,b are used to study the morphology and
structure of the IRMOF-3 sample. The SEM images represent a well-formed cubic crystal
structure of IRMOF-3. The results confirm that the synthesized porous nanostructure is
morphologically similar to the previous reports [70].
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Figure 2. SEM images of IRMOF−3 (a,b).

In order to evaluate the porosity of the IRMOF-3 sample, the nitrogen adsorption–
desorption isotherms analysis (BET) was performed as shown in Figure 3. The IRMOF-3
adsorption isotherms have type IV characteristics. According to Table 3, BET-specific
surface area, pore volume, and pore diameter of the IRMOF-3 sample are 718.11 m2·g−1,
0.378 cm3/g, and 2.105 nm, respectively. Thus, the samples have mesoporous features.
Comparison of the Specific surface area of IRMOF-3 with other adsorbents and their
naphthalene adsorption efficiency are summarized in Table 4.
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Figure 3. BET diagram of IRMOF-3.

Table 3. Physical properties of IRMOF-3 porous nanostructure.

Sample Specific Area (m2/g) Pore Volume (cm3/g) Pore Diameter (nm)

IRMOF-3 718.11 0.378 2.105

Table 4. Comparison of Specific area (m2/g) for IRMOF-3 with other adsorbents regarding naphtha-
lene absorption efficiency.

Adsorbent Specific Area (m2·g−1) PAHs Adsorption Efficiency Ref.

ZIF-8 1299 Acenaphthene 60.7% [71]
NH2-UiO-66(Zr) 985 Naphthalene 97.7% [72]
green mCS/GO 22.8358 Naphthalene 70% [73]
Fe@N-L-GM 10.16 Naphthalene 97.81% [74]
CuZnFeAlO 125 Naphthalene 90.1% [75]
IRMOF-3 718.11 Naphthalene 80.96 This study

Figure 4 shows the TGA and DTG curves of the IRMOF-3 sample under the nitrogen
atmosphere. According to Figure 4, by increasing temperature from 30 to 115 ◦C, 2% weight
loss occurs. This weight loss is related to the release of adsorbed water molecules on the
surface and pores of the sample. Increasing temperature from 115 ◦C to 321 ◦C results
in 7%weight loss which can be due to the release of DMF molecules on the MOF cavities
as well as the degradation of the unreacted 2-amino terephthalic acids trapped inside the
MOF cavities [68]. From 321 ◦C to 550 ◦C, a sharp weight loss of about 38% is observed,
which can be due to thermal degradation of the organic linkers or 2-amino terephthalic acid
in the IRMOF-3 structure. On the other hand, the approximate constant slope of the TGA
curve of the sample after 490 ◦C represents the thermal stability of the material left after the
degradation process. The residual weight of the sample at the end of heat degradation up
to 550 ◦C is about 52%, which is related to the weight of remaining organic ash and stable
forms of ZnO.
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Figure 4. TGA results of IRMOF-3 porous nanostructures.

3.2. Model Analysis Based on CCD

CCD is applied for assessing the fitness of the obtained quadratic model, which
identifies the interplay of operational variables and their influence on the absorption (%).
The fitting of the mathematical and experimental model and analysis of experimental
data of naphthalene adsorption was performed using analysis of variance (ANOVA) and
the statistical summary of the quadratic model is expressed in (Table 5). An important
correlation between dependent variables and obtained responses for naphthalene removal
is expressed in Equation (4).

Adsorption (%) = + 42.93 + 3.64A − 11.32B + 6.07C + 5.42D − 0.10AB − 1.25BC − 0.92BD + 2.82CD
− 9.516 × 10−3 B2 + 0.010C2 (4)

Table 5. Analysis of variance (ANOVA) for naphthalene removal (%).

Response 1 Absorption

ANOVA for Response Surface Reduced Quadratic Model

Analysis of variance table [Partial sum of squares—Type III]

Sum of Mean F p-value

Source Squares df Square Value Prob > F
Model 3902.805 10 390.2805 30.74218738 <0.0001 significant
A-pH 239.0756 1 239.0756 18.83185395 0.0004
B-Concentration 2305.658 1 2305.658 181.6154259 <0.0001
C-time 663.2082 1 663.2082 52.24055604 <0.0001
D-Absorbent dose 528.8836 1 528.8836 41.65987941 <0.0001
AB 0.172225 1 0.172225 0.013566071 0.9085
BC 25.1001 1 25.1001 1.977121484 0.1758
BD 13.4689 1 13.4689 1.060938066 0.3159
CD 127.2384 1 127.2384 10.02250088 0.0051
B2 0.000312 1 0.000312 2.46 × 10−5 0.9961
C2 0.000379 1 0.000379 2.98 × 10−5 0.9957
Residual 241.2102 19 12.69527
Lack of Fit 241.2102 14 17.2293
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Table 5. Cont.

Response 1 Absorption

Pure Error 0 5 0
Cor Total 4144.015 29
Std. Dev. 3.563043 R2 0.941793
Mean 42.92633 Adj R2 0.911158
C.V. % 8.300366 Pred R2 0.815208

PRESS 765.781 Adeq
Precision 24.52136

Clearly, naphthalene adsorption percentage is a function of A, B, C, Dm AB, BC, BD,
CD, B2

, and C2. Recall that A, B, C, and D represent the pH of the solution, naphthalene
concentration, contact time and dosage of adsorbent, respectively. The results of ANOVA
illustrated that the quadratic model remarkably expresses the variables’ response and
interaction. Large F value (30.74) and small p-value (p < 0.0001) prove that the quadratic
model is very appropriate to the insignificance of B2 and C2 (low F-value and p < 0.05).
The quadratic model is further compared and complies with the findings of other studies
on naphthalene adsorption [57,76–78]. The accuracy and validity of the experimental
responses are investigated using sufficient accuracy, variance coefficient (C.V.%), regression
coefficient and standard deviation. A reliable and repeatable model must have a C.V. less
than 10% [79]. The C.V. value in this study is 8.30%. “Coefficient of determination (R2)”
and “adjusted coefficient (R2-adjusted)” in this study are 0.9418 and 0.9112, respectively.
Comparative values of R2 and R2-adjusted indicate that the test data are very suitable in the
quadratic model. The observed experimental responses (% adsorption) match the predicted
value of the confirmed model with the value of R2.

Figure 5 shows the linear correlation between the actual experimental response and
the predicted response to the percentage of naphthalene uptake. This linear correlation
demonstrates that the actual experimental values of naphthalene adsorption are in good
agreement with the predicted value of the model. The quadratic model well describes the
experimental data.
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3.3. Impact of Combination of Variables on Response Levels

Response level plots are a more suitable tool for investigating the significant effects
and interactions of two parameters keeping all other parameters at the central levels [80,81].
The effects of concentration–contact time, concentration–adsorbent amount, contact time–
adsorbent amount and pH–concentration on the removal percentage of naphthalene were
determined and the results are depicted as 3D curves of the response surface in Figure 6.
The combined effect of contact time–concentration on naphthalene removal is shown in
Figure 6a. Naphthalene uptake percentage increased with decreasing its concentration and
increasing contact time. This may be owing to the availability of ample surface-active sites
of the porous IRMOF-3 nanostructure per naphthalene molecule. At high naphthalene
concentrations, the active sites of the porous nanostructure are rapidly filled with naphtha-
lene molecules. Longer contact time enhances the opportunity for naphthalene molecules
to effectively interact with the active sites. At high naphthalene concentration and/or
low contact time enhanced competition between naphthalene molecules and/or reduced
effective naphthalene molecules-MOF active sites interaction reduces the naphthalene
uptake by MOF.
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It can be seen from Figure 6b that adsorption % improves with decreasing naph-
thalene concentration and/or increasing adsorbent amount. Increasing the ratio of ad-
sorbent/naphthalene concentration increases the number of active sites per naphthalene
molecule which in turn enhances the probability of effective naphthalene molecules-MOF
active sites interaction which is positively correlated with the adsorption percentage.

Figure 6c shows that with the increase in time and/or adsorbent dosage, the absorption
percentage increases. As mentioned earlier, by increasing the adsorbent dosage the number
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of active sites available for adsorption increases [82]. The same explanation of the time
effect explained in Figure 6a is also valid for Figure 6c. The influence of pH and naphthalene
concentration on naphthalene removal is reported in Figure 6d. IRMOF-3 here acts as a
dual-site adsorbent. The alkaline properties of MOFs are due to the presence of the free
amine groups and the acidity of these compounds is attributed to the Zn-OH groups as
well as the presence of structural defects. Thus, as naphthalene possesses a negative surface
charge in the alkaline medium [83], it can chemically interact with the adsorbent Zn-OH
groups at higher pH values. This can justify the significant increase in the adsorption
capacity with the increasing pH.

4. Conclusions

In this work, IRMOF-3 was successfully synthesized and characterized by FT-IR, XRD,
SEM, TGA, and BET analysis. The adsorbent was then utilized for naphthalene removal
from a water–ethanol solution (30:70% v/v). To obtain the optimum adsorption condition,
the CCD approach was utilized with a total of 30 independent experiments. It was found
that the optimal IRMOF-3 adsorbability occurs at 15 mg·L−1 of naphthalene concentration,
pH = 11, contact time of 60 min, and 0.1 g·L−1 of adsorbent dose, respectively. The
results indicate that at high naphthalene concentrations, the active sites of the porous MOF
nanostructure are rapidly filled which reduces the percentage of adsorption. Longer contact
time provides a better opportunity for naphthalene interaction with the surface-active sites.
The adsorption percentage increases with increasing adsorbent dose due to the availability
of a larger number of adsorption sites. The obtained results suggest that IRMOF-3 acts as a
dual-site adsorbent. The alkaline properties of MOFs are owing to the presence of the free
amine groups and the acidity of these compounds is attributed to the Zn-OH groups as well
as the presence of structural defects. On the other hand, naphthalene polarity enhances
its chemical interaction with the adsorbent Zn-OH groups at higher pH values. This can
justify the significant increase in the adsorption capacity with the increasing pH. This study
revealed that IRMOF-3 is an efficient adsorbent which can be utilized for naphthalene
removal from contaminated water.
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