Improvement of Gd(III) Solvent Extraction by 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one: Non-Aqueous Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Solvent Extraction Studies
2.3. EPR Measurements
3. Results and Discussion
3.1. Investigation of Gd(III) Solvent Extraction: Comparison of Molecular Diluent and IL as Well as Aqueous and Non-Aqueous Systems
3.2. Solvent Extraction and Selectivity across the Periodic Table and 4f Series
- (1)
- Unextractable metal ions, %E < 1: Li+, Na+, K+, Ca2+, Mg2+, Ba2+, Sr2+, Pb2+, Zn2+, Cd2+, Cr3+, Co2+, La3+, Ce3+;
- (2)
- Overall extraction %E ≤ 50: Al3+ as well as Ni2+ and Hg2+ with only [C1C4im+][Tf2N−] as a diluent.
- (1)
- Unextractable metal ions, %E < 1: Li+, Na+, K+, Ca2+, Mg2+, Ba2+, Sr2+, Zn2+, Cd2+, Co2+, Ni2+, Ce3+;
- (2)
- Overall extraction %E ≤ 50: Cr3+, Pb2+, Al3+ but Hg2+ and La3+ only when the [C1C4im+][Tf2N−] compound is a diluent;
- (3)
- Overall extraction %E > 50: Fe3+, Cu2+, Tl+, Bi3+, Eu3+, Gd3+, Lu3+, but Ag+ only reacts with the [C1C4im+][Tf2N−] compound.
3.3. EPR Investigation of the Extracting LP Phases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUPAC. Gold Book, Compendium of Chemical Terminology, 2nd ed.; IUPAC: Zurich, Switzerland, 2019; Available online: https://goldbook.iupac.org (accessed on 1 April 2023).
- Löfström-Engdahl, E.; Ekberg, C.; Foreman, M.; Skarnemark, G. Diluents effect. In Proceedings of the First ACSEPT International Workshop, Lisbon, Portugal, 31 March–2 April 2010. [Google Scholar]
- Shimojo, K. Solvent extraction in analytical separation techniques. Anal. Sci. 2018, 34, 1345. [Google Scholar] [CrossRef]
- Healy, T. Synergism in the solvent extraction of di-, tri- and tetravalent metal ions—II: Synergic effects in so-called inert diluents. J. Inorg. Nucl. Chem. 1961, 19, 328. [Google Scholar] [CrossRef]
- Petrova, M. The Crucial Performance of Mutual Solubility among Water and Ionic Liquids in the Time of Liquid-Liquid Extraction of Metallic Species; Academic Solutions: Sofia, Bulgaria, 2020. [Google Scholar]
- El-Nadi, Y.A. Solvent extraction and its applications on ore processing and recovery of metals: Classical approach. Sep. Purif. Rev. 2017, 46, 195. [Google Scholar] [CrossRef]
- Jose Ruiz-Angel, M.; Carda-Broch, S. Recent advances on ionic liquid uses in separations techniques. Separations 2022, 9, 96. [Google Scholar] [CrossRef]
- He, J.; Tao, W.; Dong, G. Study on extraction performance of vanadium(V) from aqueous solutions by octyl-imidazole ionic liquids extractants. Metals 2022, 12, 854. [Google Scholar] [CrossRef]
- Feng, X.; Song, H.; Zhang, T.; Yao, S.; Wang, Y. Magnetic technologies and green solvents in extraction and separation of bioactive molecules together with biochemical objects: Current opportunities and challenges. Separations 2022, 9, 346. [Google Scholar] [CrossRef]
- Atanassova, M. Solvent extraction of metallic species in ionic liquids: An overview of s-, p- and d-elements. J. Chem. Technol. Met. 2021, 56, 443. [Google Scholar]
- Mohapatra, P.K. Actinide ion extraction using room temperature ionic liquids: Opportunities and challenges for nuclear fuel cycle applications. Dalton Trans. 2017, 46, 1730. [Google Scholar] [CrossRef]
- Dietz, M. Ionic liquids as extraction solvents: Where do we stand? Sep. Sci. Technol. 2006, 41, 2047. [Google Scholar] [CrossRef]
- Okamura, H.; Hirayama, N. Recent Progress in Ionic Liquid Extraction for the Separation of Rare Earth Elements. Anal. Sci. 2021, 37, 119. [Google Scholar] [CrossRef]
- Turanov, A.; Karandashev, V.; Yarkevich, A.; Khsostikov, V. Extraction of REE(III), U(VI), and Th(IV) from nitric acid solutions with diphenyl(dibutylcarbamoylmethyl)phosphine oxide in the presence of quaternary ammonium bis[(trifluoromethyl)sulfonyl]imides. Radiochemistry 2019, 61, 694. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kultin, D.; Zakharov, A.; Kustov, L. Advantages of electrochemical polishing of metals and alloys in ionic liquids. Metals 2021, 11, 959. [Google Scholar] [CrossRef]
- Turanov, A.N.; Matveeva, A.G.; Kudryavtsev, I.Y.; Pasechnik, M.P.; Matveev, S.V.; Godovikova, M.I.; Baulina, T.V.; Karandashev, V.K.; Brel, V.K. Tripodal organophosphorus ligands as synergistic agents in the solvent extraction of lanthanides(III). Structure of mixed complexes and effect of diluents. Polyhedron 2019, 161, 276. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, L.; Zhang, Z.-Y.; Cong, Y.; Wang, M.; Wang, X.; Yang, J.; Liu, L.; Huai, Z. Molecular modelling of ionic liquids: Situations when charge scaling seems insufficient. Molecules 2023, 28, 800. [Google Scholar] [CrossRef]
- Dukov, I.; Atanassova, M. Effect of the diluents on the synergistic solvent extraction of some lanthanides with thenoyltrifluoroacetone and quaternary ammonium salt. Hydrometallurgy 2003, 68, 89. [Google Scholar] [CrossRef]
- Khamseh, A.; Ghorbanian, S. Experimental and modeling investigation of thorium biosorption by orange peel in a continuous fixed-bed column. J. Radioanal. Nucl. Chem. 2018, 317, 871. [Google Scholar] [CrossRef]
- Merino-Garcia, I.; Velizarov, S. New insights into the definition of membrane cleaning strategies to diminish the fouling impact in ion exchange membrane separation processes. Sep. Purif. Technol. 2021, 277, 119445. [Google Scholar] [CrossRef]
- Chen, F.; Liu, F.; Wang, L.; Wang, J. Comparison of the preparation process of rare earth oxides from the water leaching solution of waste Nd-Fe-B magnets’ sulfate roasting products. Processes 2022, 10, 2310. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, N.; Zhang, Y.; Zheng, Q. High-efficiency stepped separation and recoveries of vanadium and molybdenum via low-temperature carbonation conversion of high-chromium vanadium residue. Processes 2023, 11, 470. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Eldin, S.; Ali, I.; Usman, M.; Iqbal, R.; Rizwan, M.; Abdel-Hameed, U.; Haider, A.; Tariq, A. Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: A critical review. Separations 2023, 10, 197. [Google Scholar] [CrossRef]
- Pyrzynska, K. Recent applications of carbon nanotubes for separation and enrichment of lead ions. Separations 2023, 10, 152. [Google Scholar] [CrossRef]
- Tatsumi, T.; Tahara, Y.; Matsumoto, M. Adsorption of metallic ions on amidoxime-chitosan/cellulose hydrogels. Separations 2021, 8, 202. [Google Scholar] [CrossRef]
- Admawi, H.; Mohammed, A. A comprehensive review of emulsion liquid membrane for toxic contaminants removal: An overview on emulsion stability and extraction efficiency. J. Environ. Chem. Eng. 2023, 11, 109936. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P. Solvometallurgy: An emerging branch of extractive metallurgy. J Sustain. Metall. 2017, 3, 570. [Google Scholar] [CrossRef]
- Wellens, S.; Thijs, B.; Möller, C.; Binnemans, K. Separation of cobalt and nickel by solvent extraction with two mutually immiscible ionic liquids. Phys. Chem. Chem. Phys. 2013, 15, 9663–9669. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dewulf, B.; Binnemans, K. Nonaqueous solvent extraction for enhanced metal separations: Concept, systems, and mechanisms. Ind. Eng. Chem. Res. 2021, 60, 17285. [Google Scholar] [CrossRef] [PubMed]
- Batchu, N.K.; Dewulf, B.; Riano, S.; Binnemans, K. Development of a solvometallurgical process for the separation of yttrium and europium by Cyanex 923 from ethylene glycol solutions. Sep. Purif. Technol. 2020, 235, 116193. [Google Scholar] [CrossRef]
- Dewulf, B.; Riano, S.; Binnemans, K. Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests. Sep. Purif. Technol. 2022, 290, 1220882. [Google Scholar] [CrossRef]
- Rizk, S.; Gamal, R.; El-Hefny, N. Insights into non-aqueous solvent extraction of gadolinium and neodymium from ethylene glycol solution using Cyanex 572. Sep. Purif. Technol. 2021, 275, 119160. [Google Scholar] [CrossRef]
- Marchetii, F.; Rettinari, C.; Pettinari, R. Acylpyrazolone ligands: Synthesis, structures, metal coordination chemistry and applications. Coor. Chem. Rev. 2005, 249, 2909. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, V.E.; Baulin, D.V.; Tsivadze, A.Y. Synergistic solvent extraction of lanthanides(III) with mixtures of 4-benzoyl-3-methyl-1-phenyl-5-pyrazolone and phosphoryl-containing podands. Acta Chim. Slovenica 2020, 67, 246. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, D.V.; Baulin, V.E.; Tsivadze, A.Y. Solvent extraction of lanthanides(III) with mixtures of 1,3,5-tris(2-diphenylphosphoryl-4-ethylphenoxymethyl)benzene and 4-benzoyl-5-methyl-2-phenyl-3-pyrazolone. Russ. Chem. Bull. 2021, 70, 2416. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, D.V.; Baulin, V.E.; Tsivadze, A.Y. Extraction of rare earth elements(III) with mixtures of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and 2-phosphorylphenoxyacetamides. Russ. J. Inorg. Chem. 2019, 64, 407. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Khvostikov, V.A.; Artyushin, O.I.; Bondarenko, N.A. Extraction of rare earth elements(III) with mixtures of some new tridentate carbamoylmethylphosphine oxides and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one from hydrochloric acid solutions. Russ. J. of Gen. Chem. 2021, 91, 383. [Google Scholar] [CrossRef]
- Jensen, M.; Borkowski, M.; Laszak, I.; Beitz, J.; Rickert, P.; Dietz, M. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid. Sep. Sci. Technol. 2012, 47, 233. [Google Scholar] [CrossRef]
- Okamura, H.; Takagi, H.; Isomura, T.; Morita, K.; Nagatani, H.; Imura, H. Highly selective synergism for the extraction of lanthanoid(III) ions with β-diketones and trioctylphosphine oxide in an ionic liquid. Anal. Sci. 2014, 30, 323–325. [Google Scholar] [CrossRef]
- Rama, R.; Rout, A.; Venkatesan, K.; Antony, M.; Vasudeva Rao, P. Extraction behavior of americium(III) in benzoylpyrazolone dissolved in pyrrolidinium based ionic liquid. Sep. Sci. Technol. 2015, 50, 2164. [Google Scholar] [CrossRef]
- Atanassova, M. Worthy extraction and uncommon selectivity of 4f-ions in ionic liquid medium: 4-acylpyrazolones and CMPO. ACS Sustain. Chem. Eng. 2016, 4, 2366. [Google Scholar] [CrossRef]
- Atanassova, M. Solvent extraction chemistry in ionic liquids: An overview of f-ions. J. Mol. Liq. 2021, 343, 117530. [Google Scholar] [CrossRef]
- Atanassova, M.; Okamura, H.; Eguchi, A.; Ueda, Y.; Sugita, T.; Shimojo, K. Extraction ability of 4-benzoyl-3-phenyl-5-isoxazolone towards 4f-ions into ionic and molecular media. Anal. Sci. 2018, 34, 973. [Google Scholar] [CrossRef]
- Atanassova, M.; Kukeva, R.; Stoyanova, R.; Todorova, N.; Kurteva, V. Synergistic and antagonistic effects during solvent extraction of Gd(III) ion in ionic liquids. J. Mol. Liqs. 2022, 353, 118818. [Google Scholar] [CrossRef]
- Atanassova, M.; Todorova, S.; Kurteva, V.; Todorova, N. Insights into the synergistic selectivity of 4f-ions implementing 4-acyl-5-pyrazolone and two new unsymmetrical NH-urea containing ring molecules in an ionic liquid. Sep. Purif. Technol. 2018, 204, 328–335. [Google Scholar] [CrossRef]
- Soukeur, A.; Szymczyk, A.; Berbar, Y.; Amara, M. Extraction of rare earth elements from waste products of phosphate industry. Sep. Purif. Technol. 2021, 256, 117857. [Google Scholar] [CrossRef]
- Atanassova, M.; Dukov, I. Synergistic solvent extraction and separation of trivalent lanthanide metals with mixtures of 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one and Aliquat 336. Sep. Purif. Technol. 2004, 40, 171. [Google Scholar] [CrossRef]
- Atanasova, M.; Dukov, I. Crown ethers as synergistic agents in the solvent extraction of trivalent lanthanoids with thenoyltrifluoroacetone. Sep. Sci. Technol. 2005, 40, 1104. [Google Scholar] [CrossRef]
- Atanassova, M. Synergictic solvent extraction of lanthanide(III) ions from perchlorate medium with 4-benzoyl-3-phenyl-5-isoxazolone in the presence of quaternary ammonium salt. Solvent Extr. Ion Exch. 2009, 27, 159. [Google Scholar] [CrossRef]
- Atanassova, M.; Kurteva, V. Synergism as a phenomenon in solvent extraction of 4f-elements with calixarenes. RSC Adv. 2016, 6, 11303. [Google Scholar] [CrossRef]
- Atanassova, M.; Dukov, I. Synergistic Solvent extraction of trivalent lanthanoids with mixtures of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and crown ethers. Acta Chim. Slovenika 2006, 53, 457. [Google Scholar]
- Healy, T.V. Synergism with thenoyltrifluoracetone in the solvent extraction of metallic species. Nucl. Sci. Eng. 1963, 16, 413. [Google Scholar] [CrossRef]
- Nakamura, E.; Hiruta, Y.; Watanabe, T.; Iwasawa, N.; Citterio, D.; Suzuki, K. A fluorous biphasic solvent extraction system for lanthanides with a fluorophilic β-diketone type extractant. Anal. Sci. 2015, 31, 923. [Google Scholar] [CrossRef]
- Schmit, V. Ekstraktziya Aminami; Atomizdat: Moscow, Russia, 1980. (In Russian) [Google Scholar]
- Hong, S.-W.; Chang, Y.; Hwang, M.-J.; Rhee, I.-S.; Kang, D.-S. Determination of Electron Spin Relaxation Time of the Gadolinium-Chealted MRI Contrast Agents by Using an X-band EPR Technique. J. Korean Soc. Magn. Reson. Med. 2000, 4, 27. [Google Scholar]
- Yordanov, N. Quantitative EPR spectrometry—“State of the Art”. Appl. Magn. Reson. 1994, 6, 241. [Google Scholar] [CrossRef]
Cu2+−[C1C4im+][Tf2N−] 100K | Cu2+−[C1C10im+][Tf2N−] 100K | Cu2+−[C1C4im+][Tf2N−] 295K | Cu2+−[C1C10im+][Tf2N−] 295K |
---|---|---|---|
g1 = 2.0575, g2 = 2.0636 g3 = 2.3034 A‖ = 17.62 mT g1 = 2.0526, g2 = 2.0662 g3 = 2.31057 A‖ = 15.53 mT | g1 = 2.0583, g2 = 2.0645 g3 = 2.2980 A‖ = 17.66 mT g1 = 2.0625, g2 = 2.0663 g3 = 2.3155 A‖ = 15.16 mT | g1 = 2.0746, g2 = 2.0596 g3 = 2.2975 A‖ = 14.45 mT | g1 = 2.0692 g2 = 2.0560 g3 = 2.2952 A‖ = 15.00 mT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassova, M.; Kukeva, R. Improvement of Gd(III) Solvent Extraction by 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one: Non-Aqueous Systems. Separations 2023, 10, 286. https://doi.org/10.3390/separations10050286
Atanassova M, Kukeva R. Improvement of Gd(III) Solvent Extraction by 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one: Non-Aqueous Systems. Separations. 2023; 10(5):286. https://doi.org/10.3390/separations10050286
Chicago/Turabian StyleAtanassova, Maria, and Rositsa Kukeva. 2023. "Improvement of Gd(III) Solvent Extraction by 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one: Non-Aqueous Systems" Separations 10, no. 5: 286. https://doi.org/10.3390/separations10050286
APA StyleAtanassova, M., & Kukeva, R. (2023). Improvement of Gd(III) Solvent Extraction by 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one: Non-Aqueous Systems. Separations, 10(5), 286. https://doi.org/10.3390/separations10050286