Biomass Zilla spinosa Fruit Functionnalized Polyethyleneimine Polymer: Analysis and Application for the Elimination of Calmagite in Water
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Preparation of Zilla spinosa-Polyethyleneimine
2.3. Characterization
2.4. Adsorption Experiments
3. Results and Discussion
3.1. FT-IR Spectroscopy Analysis
3.2. SEM Analysis
3.3. XPS Analysis
3.4. Thermal Analysis
3.5. Application of Zilla spinosa and Zilla spinosa-Polyethyleneimine to the Adsorption of Calmagite
3.5.1. Influence of Experimental Conditions on the Adsorption Capacity
3.5.2. Kinetic Study
3.5.3. Isotherms and Thermodynamic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aziz, T.; Farid, A.; Chinnam, S.; Haq, F.; Kiran, M.; Alothman, Z.A.; Aljuwayid, A.M.; Habila, M.A.; Akhtar, M.S. Synthesis, characterization and adsorption behavior of modified cellulose nanocrystals towards different cationic dyes. Chemosphere 2023, 321, 137999. [Google Scholar] [CrossRef]
- Biswal, A.K.; Sahoo, M.; Suna, P.K.; Panda, L.; Lenka, C.; Misra, P.K. Exploring the adsorption efficiency of a novel cellulosic material for removal of food dye from water. J. Mol. Liq. 2022, 350, 118577. [Google Scholar] [CrossRef]
- Saad, E.M.; Elshaarawy, R.F.; Mahmoud, S.A.; El-Moselhy, K.M. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions. J. Bioresour. Bioprod. 2021, 6, 223–242. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J. Adsorption of heavy metal onto biomass-derived activated carbon: Review. RSC Adv. 2023, 13, 4275–4302. [Google Scholar] [CrossRef]
- Elewa, A.M.; Amer, A.A.; Attallah, M.F.; Gad, H.A.; Al-Ahmed, Z.A.M.; Ahmed, I.A. Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution. Materials 2023, 16, 1251. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, H.; Cheng, X.; Ling, Q.; Chen, H.; Barati, B.; Yao, Q.; Abomohra, A.; Hu, X.; Bartocci, P. A mechanism study of methylene blue adsorption on seaweed biomass derived carbon: From macroscopic to microscopic scale. Process Saf. Environ. Prot. 2023, 172, 1132–1143. [Google Scholar] [CrossRef]
- Cao, X.; Zhu, B.; Zhang, X.; Dong, H. Polymyxin B immobilized on cross-linked cellulose microspheres for endotoxin adsorption. Carbohydr. Polym. 2016, 136, 12. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Du, J.; Wang, A.; Yang, X.; Zhao, L. Removal of methyl orange and acid fuschin from aqueous solution by guanidinium functionalized cellulose prepared by radiation grafting. Radiat. Phys. Chem. 2022, 198, 110290. [Google Scholar] [CrossRef]
- Waly, A.I.; Khedr, M.A.; Ali, H.M.; Ahmed, I.M. Application of amino-functionalized cellulose-poly(glycidyl methacrylate) graft copolymer (AM-Cell-g-PGMA)adsorbent for dyes removal from wastewater. Clean. Eng. Technol. 2022, 6, 100374. [Google Scholar] [CrossRef]
- Misra, N.; Rawat, S.; Goel, N.K.; Shelkar, S.A.; Kumar, V. Radiation grafted cellulose fabric as reusable anionic adsorbent: A novel strategy for potential large-scale dye wastewater remediation. Carbohydr. Polym. 2020, 249, 116902. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef]
- Sebeia, N.; Jabli, M.; Ghith, A.; Elghoul, Y.; Alminderej, F.M. Production of cellulose from Aegagropila Linnaei macro-algae: Chemical modification, characterization and application for the bio-sorptionof cationic and anionic dyes from water. Int. J. Biol. Macromol. 2019, 135, 152–162. [Google Scholar] [CrossRef]
- Jabli, M.; Tka, N.; Salman, G.A.; Elaissi, A.; Sebeia, N.; Hamdaoui, M. Rapid interaction, in aqueous media, between anionic dyes and cellulosic Nerium oleander fibers modified with Ethylene-Diamine and Hydrazine. J. Mol. Liq. 2017, 242, 272–283. [Google Scholar] [CrossRef]
- Tka, N.; Jabli, M.; Saleh, T.A.; Salman, G.A. Amines modified fibers obtained from natural Populus tremula and their rapid biosorption of Acid Blue 25. J. Mol. Liq. 2018, 250, 423–432. [Google Scholar] [CrossRef]
- Farahat, E.; Linderholm, H.W. Linderholm. Effects of treated wastewater irrigation on size-structure, biochemical products and mineral content of native medicinal shrubs. Ecol. Eng. 2013, 60, 235–241. [Google Scholar] [CrossRef]
- Al-Qahtani, H.; Alfarhan, A.H.; Al-Othman, Z.M. Changes in chemical composition of Zilla spinosa Forssk. medicinal plants grown in Saudi Arabia in response to spatial and seasonal variations. Saudi J. Biol. Sci. 2020, 27, 2756–2769. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Xue, L.; Sun, H.; Guo, Z.; Zhang, Y.; Yang, L. Carboxylic acid functionalized sesame straw: A sustainable cost-effective bio adsorbent with superior dye adsorption capacity. Bioresour. Technol. 2017, 238, 675–683. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; Oliveira, F.C.S.; Passos, T.M.; Quility, B.; Thire, R.M.S.; Mcguiness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Rev. Matéria 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 2012, 126, E337–E344. [Google Scholar] [CrossRef]
- Chen, X.; Xu, R.; Xu, Y.; Hu, H.; Pan, S.; Pan, H. Natural adsorbent based on sawdust for removing impurities in waste lubricants. J. Hazard. Mater. 2018, 350, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. 2013, 95, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Oun, A.A.; Rhim, J.W. Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose 2018, 25, 2143–2149. [Google Scholar] [CrossRef]
- Nasuha, N.; Hameed, B.H.; Din, A.T. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J. Hazard. Mater. 2010, 175, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Gucek, A.; Sener, S.; Bilgen, S.; Mazmanci, A. Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. J. Coll. Interf. Sci. 2005, 286, 53–60. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Guo, J.-Z.; Li, B.; Liu, L.; Lv, K. Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere 2014, 111, 225–231. [Google Scholar] [CrossRef]
- Treybal, R.E. Mass-Transfer Operations, 3rd ed.; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
Kinetic equation | Constants | Calmagite concentration (mg/L) | Isotherms | Parameters | Temperature (°C) | |||
Pseudo first order | 30 | 75 | 20 | 40 | 50 | |||
K1 (min−1) | 0.027 | 0.029 | qm (mg·g−1) | 10.31 | 9.52 | 9.83 | ||
q (mg·g−1) | 2.57 | 4.34 | Langmuir | KL (L·g−1) | 0.008 | 0.007 | 1.37 | |
R2 | 0.99 | 0.98 | R2 | 0.99 | 0.99 | 0.97 | ||
Pseudo second order | K2 | 0.03 | 0.018 | Thermodynamic parameters | ΔH° (KJ·mol−1) | −5.53 | ||
q | 3.09 | 4.42 | ΔS° (J·mol−1) | −54.20 | ||||
R2 | 0.99 | 0.99 | ΔG° (KJ·mol−1) | 15.88 | 16.97 | 17.51 | ||
Freundlich | KF (L·g−1) | 10.02 | 31.62 | 210.77 | ||||
Elovich | α (mg·g−1·min−1) | 0.93 | 1.27 | n | 1.93 | 1.71 | 1.42 | |
β (mg·g−1·min−1) | 3.44 | 2.40 | R2 | 0.96 | 0.96 | 0.96 | ||
R2 | 0.97 | 0.98 | Temkin | bT (J·mol−1) | 1135 | 1314 | 1428 | |
Intra-particular-Diffusion | K (mg·g−1·min1/2) | 0.30 | 0.42 | A (L·g−1) | 9.99 | 11.90 | 15.14 | |
R2 | 0.90 | 0.93 | R2 | 0.97 | 0.97 | 0.97 |
Kinetic equation | Constants | Calmagite concentration (mg/L) | Isotherms | Parameters | Temperature (°C) | |||
Pseudo first order | 30 | 75 | 20 | 40 | 50 | |||
K1 (min−1) | 0.038 | 0.04 | qm (mg·g−1) | 113.64 | 102.04 | 89.29 | ||
q (mg·g−1) | 20.28 | 43.15 | Langmuir | KL (L·g−1) | 0.16 | 0.12 | 0.11 | |
R2 | 0.99 | 0.99 | R2 | 0.99 | 0.99 | 0.99 | ||
Pseudo second order | K2 | 0.01 | 0.004 | Thermodynamic parameters | ΔH° (KJ·mol−1) | −6.09 | ||
q | 28.57 | 45.87 | ΔS° (J·mol−1) | −33.84 | ||||
ΔG°(KJ·mol−1) | 9.91 | 10.59 | 10.93 | |||||
Elovich | α (mg·g−1·min−1) | 61.61 | 35.43 | n | 2.27 | 2.08 | 1.92 | |
β (mg·g−1·min−1) | 0.38 | 0.23 | R2 | 0.98 | 0.98 | 0.98 | ||
R2 | 0.94 | 0.94 | Temkin | bT (J·mol−1) | 83.68 | 96.63 | 110.60 | |
Intra-particular-Diffusion | K (mg·g−1·min1/2) | 2.61 | 4.42 | A (L·g−1) | 9.75 | 11.70 | 13.59 | |
R2 | 0.75 | 0.83 | R2 | 0.98 | 0.98 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabli, M.; Elaissi, A.; Altwala, A. Biomass Zilla spinosa Fruit Functionnalized Polyethyleneimine Polymer: Analysis and Application for the Elimination of Calmagite in Water. Separations 2023, 10, 296. https://doi.org/10.3390/separations10050296
Jabli M, Elaissi A, Altwala A. Biomass Zilla spinosa Fruit Functionnalized Polyethyleneimine Polymer: Analysis and Application for the Elimination of Calmagite in Water. Separations. 2023; 10(5):296. https://doi.org/10.3390/separations10050296
Chicago/Turabian StyleJabli, Mahjoub, Arwa Elaissi, and Afnan Altwala. 2023. "Biomass Zilla spinosa Fruit Functionnalized Polyethyleneimine Polymer: Analysis and Application for the Elimination of Calmagite in Water" Separations 10, no. 5: 296. https://doi.org/10.3390/separations10050296
APA StyleJabli, M., Elaissi, A., & Altwala, A. (2023). Biomass Zilla spinosa Fruit Functionnalized Polyethyleneimine Polymer: Analysis and Application for the Elimination of Calmagite in Water. Separations, 10(5), 296. https://doi.org/10.3390/separations10050296