Sunlight-Driven Degradation of Alprazolam and Amitriptyline by Application of Binary Zinc Oxide and Tin Oxide Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Synthesis and Characterization of Nanopowders
2.3. Measurements of Photocatalytic Activity
3. Results and Discussion
3.1. Characterization of the Photocatalysts
3.2. Efficiency of Photocatalytic Degradation of Amitriptyline
3.3. Efficiency of Photocatalytic Degradation of Alprazolam
4. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kotrotsiou, O.; Kiparissides, C. Water Treatment by Molecularly Imprinted Materials. In Nanoscale Materials in Water Purification; Elsevier: Oxford, UK, 2019; pp. 179–230. [Google Scholar]
- Schoeman, C.; Dlamini, M.; Okonkwo, O.J. The impact of a Wastewater Treatment Works in Southern Gauteng, South Africa on efavirenz and nevirapine discharges into the aquatic environment. Emerg. Contam. 2017, 3, 95–106. [Google Scholar] [CrossRef]
- Peng, Y.; Fang, W.; Krauss, M.; Brack, W.; Wang, Z.; Li, F.; Zhang, X. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk. Environ. Pollut. 2018, 241, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Puckowski, A.; Mioduszewska, K.; Lukaszewicz, P.; Borecka, M.; Caban, M.; Maszkowska, J.; Stepnowski, P. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. J. Pharm. Biomed. Anal. 2016, 127, 232–255. [Google Scholar] [CrossRef] [PubMed]
- Miller–Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health, Seventh Edition, Saunders, Elsevier, Inc. 2003. Available online: https://medical-dictionary.thefreedictionary.com/antidepressant (accessed on 23 November 2022).
- Grung, M.; Heimstad, E.S.; Moe, M.; Schlabach, M.; Svenson, A.; Thomas, K.; Woldegiorgis, A. Human and Veterinary Pharmaceuticals, Narcotics, and Personal Care Products in the Environment (Report 2325/2007); Statens Forurensningstilsyn: Oslo, Norway, 2007; pp. 30, 36, 47–48, 88–91. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/klif2/publikasjoner/2325/ta2325.pdf (accessed on 23 November 2022).
- Calisto, V.; Domingues, M.R.; Esteves, V.I. Photodegradation of psychiatric pharmaceuticals in aquatic environments—Kinetics and photodegradation products. Water Res. 2011, 45, 6097–6106. [Google Scholar] [CrossRef] [PubMed]
- Mezzelani, M.; Gorbi, S.; Regoli, F. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Mar. Environ. Res. 2018, 140, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Freire, I.; Brunetti, P.; Cabarcos-Fernandez, P.; Fernandez-Liste, A.; Tabernero-Duque, M.J.; Bermejo-Barrera, A.M. Determination of benzodiazepines in pericardial fluid by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Romeiro, A.; Freitas, D.; Emilia Azenha, M.; Canle, M.; Burrows, H.D. Effect of the calcination temperature on the photocatalytic efficiency of acidic sol-gel synthesized TiO(2) nanoparticles in the degradation of alprazolam. Photochem. Photobiol. Sci. 2017, 16, 935–945. [Google Scholar] [CrossRef]
- Richardson, M.L.; Bowron, J.M. The fate of pharmaceutical chemicals in the aquatic environment. J. Pharm. Pharmacol. 1985, 37, 1–12. [Google Scholar] [CrossRef]
- Mahy, J.G.; Wolfs, C.; Mertes, A.; Vreuls, C.; Drot, S.; Smeets, S.; Dircks, S.; Boergers, A.; Tuerk, J.; Lambert, S.D. Advanced photocatalytic oxidation processes for micropollutant elimination from municipal and industrial water. J. Environ. Manag. 2019, 250, 109561. [Google Scholar] [CrossRef]
- Chatzitakis, A.; Berberidou, C.; Paspaltsis, I.; Kyriakou, G.; Sklaviadis, T.; Poulios, I. Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water. Res. 2008, 42, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ray, A.K. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl. Catal. B 1999, 23, 143–157. [Google Scholar] [CrossRef]
- Kumar, S.; Ahlawat, W.; Bhanjana, G.; Heydarifard, S.; Nazhad, M.M.; Dilbaghi, N. Nanotechnology-based water treatment strategies. J. Nanosci. Nanotechnol. 2014, 14, 1838–1858. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar] [CrossRef]
- Wang, H.; Baek, S.; Lee, J.; Lim, S. High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts. Chem. Eng. J. 2009, 146, 355–361. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Wang, H.; Wu, Y.; Wang, F.; Xia, M.; Chen, Q. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction. Chem. Eng. J. 2022, 430, 132806. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Hong, X.; Wang, D.; Wang, F.; Xia, M.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chem. Eng. J. 2022, 449, 137757. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Wang, F.; Xia, M.; Chen, Q.; Ju, X. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. J. Hazard. Mater. 2021, 420, 126613. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. g-C3N4-based 2D/2D composite heterojunction photocatalyst. Small Struct. 2021, 2, 2100086. [Google Scholar] [CrossRef]
- Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. Adv. Mater. 2021, 33, e2003521. [Google Scholar] [CrossRef]
- Tomić, N.; Grujić-Brojčin, M.; Finčur, N.; Abramović, B.; Simović, B.; Krstić, J.; Matović, B.; Šćepanović, M. Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route. Mater. Chem. Phys. 2015, 163, 518–528. [Google Scholar] [CrossRef]
- Finčur, N.L.; Šćepanović, M.J.; Grujić-Brojčin, M.; Abramović, B.F.; Krstić, J.B.; Kremenović, A.; Srećković, T.; Golubović, A. Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: Influence of tungsten and sodium content. J. Sol-Gel Sci. Technol. 2019, 90, 510–524. [Google Scholar] [CrossRef]
- Finčur, N.L.; Krstić, J.B.; Šibul, F.S.; Šojić, D.V.; Despotović, V.N.; Banić, N.D.; Agbaba, J.R.; Abramović, B.F. Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products. Chem. Eng. J. 2017, 307, 1105–1115. [Google Scholar] [CrossRef]
- Ivetić, T.B.; Finčur, N.L.; Abramović, B.F.; Dimitrievska, M.; Štrbac, G.R.; Čajko, K.O.; Miljević, B.B.; Đačanin, L.R.; Lukić-Petrović, S.R. Environmentally friendly photoactive heterojunction zinc tin oxide nanoparticles. Ceram. Int. 2016, 42, 3575–3583. [Google Scholar] [CrossRef]
- Pardeshi, S.K.; Patil, A.B. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J. Mol. Catal. A Chem. 2009, 308, 32–40. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.G.; Martens, W.N.; Brown, R.; Hashib, M.A. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 2010, 261, 3–18. [Google Scholar] [CrossRef]
- Hamrouni, A.; Moussa, N.; Parrino, F.; Di Paola, A.; Houas, A.; Palmisano, L. Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J. Mol. Catal. A Chem. 2014, 390, 133–141. [Google Scholar] [CrossRef]
Parameter | AMI | ALP |
---|---|---|
Chemical structure | ||
Chemical formula | C20H24ClN | C17H13ClN4 |
Molecular weight (g/mol) | 308.7 | 313.9 |
Absorption maximum (nm) | 206 | 222 |
Therapeutic group | tricyclic antidepressant | anxiolytic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finčur, N.; Šojić Merkulov, D.; Putnik, P.; Despotović, V.; Banić, N.; Bognár, S.; Jovanović, D.; Panić, S.; Ivetić, T.; Abramović, B. Sunlight-Driven Degradation of Alprazolam and Amitriptyline by Application of Binary Zinc Oxide and Tin Oxide Powders. Separations 2023, 10, 316. https://doi.org/10.3390/separations10050316
Finčur N, Šojić Merkulov D, Putnik P, Despotović V, Banić N, Bognár S, Jovanović D, Panić S, Ivetić T, Abramović B. Sunlight-Driven Degradation of Alprazolam and Amitriptyline by Application of Binary Zinc Oxide and Tin Oxide Powders. Separations. 2023; 10(5):316. https://doi.org/10.3390/separations10050316
Chicago/Turabian StyleFinčur, Nina, Daniela Šojić Merkulov, Predrag Putnik, Vesna Despotović, Nemanja Banić, Szabolcs Bognár, Dušica Jovanović, Sanja Panić, Tamara Ivetić, and Biljana Abramović. 2023. "Sunlight-Driven Degradation of Alprazolam and Amitriptyline by Application of Binary Zinc Oxide and Tin Oxide Powders" Separations 10, no. 5: 316. https://doi.org/10.3390/separations10050316
APA StyleFinčur, N., Šojić Merkulov, D., Putnik, P., Despotović, V., Banić, N., Bognár, S., Jovanović, D., Panić, S., Ivetić, T., & Abramović, B. (2023). Sunlight-Driven Degradation of Alprazolam and Amitriptyline by Application of Binary Zinc Oxide and Tin Oxide Powders. Separations, 10(5), 316. https://doi.org/10.3390/separations10050316