Exploring the Chemical Composition and Antioxidant Properties of Apricot Kernel Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apricot Seeds
2.3. Apricot Kernel Oil Extraction
2.4. Volatile Compound Analysis by HS-SPME/GC-MS
2.5. Essential Oil
2.5.1. Extraction of Apricot Kernel Essential Oil
2.5.2. Essential Oil Analysis by GC-MS
2.6. Quality Indicators for AKO Samples
2.6.1. Fatty Acid Composition by GC-FID
2.6.2. Untargeted profiling by LC-MS/MS
2.6.3. Extraction Procedure of Water-Soluble Components
2.6.4. Total Polyphenol Content (TPC)
2.6.5. Total Flavonoid Content (TFC)
2.6.6. Reducing Power (PR, FRAP Assay)
2.6.7. Antiradical Activity (AAR, DPPH Assay)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Volatile Compounds (VCs) and Essential Oil Characterization
3.2. Fatty Acid Profile
3.3. Content of Polyphenols, Flavonoids, and Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Apricots (Prunus Armeniaca)—Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas; Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., Bhat, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 91–102. [Google Scholar]
- Caliskan, O.; Bayazit, S.; Sumbul, A. Fruit quality and phytochemical attributes of some apricot (Prunus armeniaca L.) cultivars as affected by genotypes and seasons. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 284–294. [Google Scholar] [CrossRef]
- Sharma, R.; Oberoi, H.S.; Dhillon, G.S. Fruit and Vegetable Processing Waste: Renewable Feed Stocks for Enzyme Production. In Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass; Sharma, R., Oberoi, H.S., Dhillon, G.S., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 23–59. ISBN 9780128026120. [Google Scholar]
- Corbett, D.B.; Kohan, N.; Machado, G.; Jing, C.; Nagardeolekar, A.; Bujanovic, B.M. Chemical composition of apricot pit shells and effect of hot-water extraction. Energies 2015, 8, 9640–9654. [Google Scholar] [CrossRef]
- Akhone, M.A.; Bains, A.; Tosif, M.M.; Chawla, P.; Fogarasi, M.; Fogarasi, S. Apricot Kernel: Bioactivity, Characterization, Applications, and Health Attributes. Foods 2022, 11, 2184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gu, H.D.; Zhang, L.; Tian, Z.J.; Zhang, Z.Q.; Shi, X.C.; Ma, W.H. Protective effects of apricot kernel oil on myocardium against ischemia-reperfusion injury in rats. Food Chem. Toxicol. 2011, 49, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, N.; Vidović, S.; Vladić, J.; Popović, L.; Moslavac, T.; Jakobović, S.; Jokić, S. Recovery of Tocopherols, Amygdalin, and Fatty Acids From Apricot Kernel Oil: Cold Pressing Versus Supercritical Carbon Dioxide. Eur. J. Lipid Sci. Technol. 2018, 120, 1800043. [Google Scholar] [CrossRef]
- Perdomo, L.; Beneit, N.; Otero, Y.F.; Escribano, Ó.; Díaz-Castroverde, S.; Gómez-Hernández, A.; Benito, M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 2015, 14, 75. [Google Scholar] [CrossRef]
- Froyen, E.; Burns-Whitmore, B. The effects of linoleic acid consumption on lipid risk markers for cardiovascular disease in healthy individuals: A review of human intervention trials. Nutrients 2020, 12, 2329. [Google Scholar] [CrossRef]
- Stryjecka, M.; Kiełtyka-Dadasiewicz, A.; Michalak, M.; Rachoń, L.; Głowacka, A. Chemical composition and antioxidant properties of oils from the seeds of five apricot (Prunus armeniaca L.) cultivars. J. Oleo Sci. 2019, 68, 729–738. [Google Scholar] [CrossRef]
- Sarolic, M.; Gugic, M.; Tuberoso, C.I.G.; Jerkovic, I.; Suste, M.; Marijanovic, Z.; Kus, P.M. Volatile profile, phytochemicals and antioxidant activity of virgin olive oils from croatian autochthonous varieties masnjaca and krvavica in comparison with italian variety leccino. Molecules 2014, 19, 881–895. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef]
- Commission Regulation (EC) Commission Regulation (EC) No 796/2002 of 6 May 2002 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis and the additional notes in the Annex to Council Regulation (EEC) No. Off. J. Eur. Communities 2002, L 128, 8–28.
- Lalas, S.; Gortzi, O.; Athanasiadis, V.; Dourtoglou, E.; Dourtoglou, V. Full characterisation of Crambe abyssinica Hochst. seed oil. J. Am. Oil Chem. Soc. 2012, 89, 2253–2258. [Google Scholar] [CrossRef]
- Mantzourani, C.; Batsika, C.S.; Kokotou, M.G.; Kokotos, G. Free fatty acid profiling of Greek yogurt by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis. Food Res. Int. 2022, 160, 111751. [Google Scholar] [CrossRef] [PubMed]
- Kalantzakis, G.; Blekas, G.; Pegklidou, K.; Boskou, D. Stability and radical-scavenging activity of heated olive oil and other vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 329–335. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. Combined Effects of Deep Eutectic Solvents and Pulsed Electric Field Improve Polyphenol-Rich Extracts from Apricot Kernel Biomass. Biomass 2023, 3, 66–77. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, J.; Qi, L.; Qiu, Y.; Liu, H.; Zhang, Y.; Wang, X. A Comparative Study of Apricot Kernel Oil Yield Using Different Extraction Methods. BioResources 2022, 17, 5146–5163. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Kang, J.; Zhong, H.; Prenzler, P.D. The quality and volatile-profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil-producing processes. Eur. J. Lipid Sci. Technol. 2016, 118, 236–243. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin olive oil volatile compounds: Composition, sensory characteristics, analytical approaches, quality control, and authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef]
- Paula Dionísio, A.; Molina, G.; Souza de Carvalho, D.; dos Santos, R.; Bicas, J.L.; Pastore, G.M. Natural flavourings from biotechnology for foods and beverages. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Sawston, Cambridge, USA, 2012; pp. 231–259. [Google Scholar]
- Jaszczak-Wilke, E.; Polkowska, Ż.; Koprowski, M.; Owsianik, K.; Mitchell, A.E.; Bałczewski, P. Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds. Molecules 2021, 26, 2253. [Google Scholar] [CrossRef]
- Farag, M.A.; Ramadan, N.S.; Shorbagi, M.; Farag, N.; Gad, H.A. Profiling of Primary Metabolites and Volatiles in Apricot (Prunus armeniaca L.) Seed Kernels and Fruits in the Context of Its Different Cultivars and Soil Type as Analyzed Using Chemometric Tools. Foods 2022, 11, 1339. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA J. 2016, 14, e04424. [Google Scholar] [CrossRef]
- Matthaus, B.; Özcan, M.M.; Al Juhaimi, F. Fatty acid composition and tocopherol content of the kernel oil from apricot varieties (Hasanbey, Hacihaliloglu, Kabaasi and Soganci) collected at different harvest times. Eur. Food Res. Technol. 2016, 242, 221–226. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Grover, S.; Kumari, P.; Kumar, A.; Soni, A.; Sehgal, S.; Sharma, V. Preparation and Quality Evaluation of Different Oil Blends. Lett. Appl. NanoBioScience 2020, 10, 2126–2137. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimized Isolation Procedure for the Extraction of Bioactive Compounds from Spent Coffee Grounds. Appl. Sci. 2023, 13, 2819. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. An Investigation into Apricot Pulp Waste as a Source of Antioxidant Polyphenols and Carotenoid Pigments. Biomass 2022, 2, 334–347. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
A/A | VCs (%) | RT (min) | 2020 | 2021 |
---|---|---|---|---|
1 | Toluene | 4.329 | 1.02 ± 0.07 | 1.01 ± 0.04 |
2 | 2,3-Butanediol | 4.8 | 0.54 ± 0.02 | 0.53 ± 0.01 |
3 | Ethylbenzene | 8.845 | 3.23 ± 0.21 | 3.58 ± 0.15 |
4 | 2-methyl-propanal | 9.569 | 15.09 ± 0.62 | 15.03 ± 0.41 |
5 | 1,3-Dimethyl-benzene | 11.333 | 5.12 ± 0.19 | 5.18 ± 0.15 |
6 | Nonane | 14.755 | 0.18 ± 0.01 | 0.18 ± 0.01 |
7 | Benzaldehyde | 17.713 | 22.85 ± 1.33 | 22.23 ± 0.49 |
8 | 1,2,4-Trimethyl-benzene | 27.268 | 0.94 ± 0.07 | 0.9 ± 0.03 |
9 | 1,2,3-Trimethyl-Benzene | 33.125 | 0.84 ± 0.06 | 0.8 ± 0.04 |
10 | Decane | 35.078 | 0.44 ± 0.03 | 0.44 ± 0.02 |
11 | Benzyl alcohol | 36.379 | 15.35 ± 1.14 | 15.13 ± 0.73 |
12 | Butyl-cyclohexane | 37.948 | 0.12 ± 0 | nd |
13 | 1,2-Diethyl-benzene | 39.132 | 0.54 ± 0.02 | 0.57 ± 0.02 |
14 | 1-Methyl-3-propyl-benzene | 39.534 | 1.3 ± 0.05 | 1.27 ± 0.04 |
15 | 1-Methyl-2-propyl-benzene | 39.922 | 1.08 ± 0.02 | 1.15 ± 0.08 |
16 | 1-Ethyl-3,5-dimethyl-benzene | 40.606 | 1.47 ± 0.04 | 1.49 ± 0.1 |
17 | 2-Ethyl-1,3-dimethyl-benzene | 42.835 | 3.16 ± 0.21 * | 3.53 ± 0.07 |
18 | o-Cymene | 43.598 | 0.37 ± 0.01 * | 2.91 ± 0.09 |
19 | 2-Ethyl-1,4-dimethyl-benzene | 45.493 | 0.73 ± 0.04 | 0.69 ± 0.04 |
20 | Decahydro-2-methyl-naphthalene | 46.433 | 0.29 ± 0.01 | 0.29 ± 0.01 |
21 | 1,2,3,5-tetramethyl-benzene | 46.945 | 2.47 ± 0.13 | 2.46 ± 0.13 |
22 | 1,2,4,5-tetramethyl-benzene | 47.252 | 3.26 ± 0.07 | 3.55 ± 0.25 |
23 | Undecane | 48.315 | 1.2 ± 0.08 | 1.2 ± 0.09 |
24 | 2,3-Dihydro-4-methyl-1H-indene | 48.46 | 0.55 ± 0.04 | 0.54 ± 0.03 |
25 | 1-Phenyl-1-butene | 49.29 | 0.64 ± 0.03 | 0.7 ± 0.04 |
26 | 1,2,3,4-Tetramethyl-5-methylene-1,3-cyclopentadiene | 49.978 | 0.82 ± 0.02 | 0.83 ± 0.06 |
27 | 1-Phenyl-1,2-propanedione | 50.308 | 2.23 ± 0.07 | 2.2 ± 0.04 |
28 | Benzyl acetate | 50.903 | 0.53 ± 0.02 | 0.5 ± 0.02 |
29 | Azulene | 51.367 | 0.29 ± 0.02 | 0.29 ± 0.02 |
30 | Ethyl benzoate | 51.547 | nd | 0.29 ± 0.01 |
31 | 2,4-Diethyl-1-methyl-benzene | 52.145 | nd | 0.1 ± 0.01 |
32 | 1-Methyl-4-(1-methylpropyl)-benzene | 52.728 | nd | 0.12 ± 0 |
33 | 6-Methyl-undecane | 53.436 | 0.1 ± 0 | nd |
34 | 2-Methyl-undecane | 54.202 | 0.2 ± 0.01 | nd |
35 | Benzoin | 55.174 | nd | 0.1 ± 0.01 |
36 | Dodecane | 57.111 | 0.93 ± 0 | 0.95 ± 0.04 |
37 | 2,6-Dimethyl-undecane | 58.311 | 0.19 ± 0.01 | 0.19 ± 0.01 |
38 | Tridecane | 64.438 | 0.11 ± 0.01 | nd |
A/A | Compounds (%) | RT (min) | 2020 | 2021 |
---|---|---|---|---|
1 | Benzaldehyde | 7.223 | 87.25 ± 5.41 | 86.52 ± 2.51 |
2 | Benzyl alcohol | 11.096 | 1.59 ± 0.04 | 1.53 ± 0.06 |
3 | Benzoic acid | 20.868 | 0.67 ± 0.03 | 0.64 ± 0.03 |
4 | Mandelonitrile | 28.59 | 10.49 ± 0.49 | 11.31 ± 0.76 |
Fatty Acid | 2020 | 2021 |
---|---|---|
Palmitic (C16:0) | 4.74 ± 0.27 | 4.91 ± 0.12 |
Stearic (C18:0) | 1.28 ± 0.04 | 1.24 ± 0.03 |
∑Saturated (SFA) | 6.02 ± 0.3 | 6.15 ± 0.15 |
Palmitoleic (C16:1) | 0.84 ± 0.03 | 0.9 ± 0.05 |
Oleic (C18:1, ω-9) | 65.71 ± 1.64 | 62.31 ± 1.24 * |
∑Monounsaturated (MUFA) | 66.55 ± 1.67 | 63.21 ± 1.29 |
Linoleic (C18:2, ω-6) | 28.16 ± 1.66 | 28.61 ± 0.94 |
∑Polyunsaturated (PUFA) | 28.16 ± 1.66 | 28.61 ± 0.94 |
PUFA:SFA ratio | 4.68 ± 0.04 | 4.65 ± 0.04 |
MUFA:PUFA ratio | 2.37 ± 0.08 | 2.21 ± 0.04 * |
A/A | Compounds | Exact Mass | [M-H]- |
---|---|---|---|
1 | Methyl palmitate | 270.2559 | 269.2486 |
2 | Methyl myristate | 242.2246 | 241.2173 |
3 | Methyl palmitoleate | 268.2402 | 267.2329 |
4 | 12-Methyl-tetradecanoic acid | 242.2246 | 241.2173 |
5 | Heptadecanoic acid | 270.2559 | 269.2486 |
6 | 9-Octadecenoic acid | 282.2559 | 281.2486 |
7 | Caprylic acid | 172.1463 | 171.1390 |
8 | 9,12-Octadecadienoic acid | 280.2402 | 279.2329 |
9 | 4-Cyclopropylcarbonyloxytridecane | 268.2402 | 267.2329 |
10 | 2-Hexyl-1,3-dioxolane | 158.1307 | 157.1234 |
Assays | 2020 | 2021 |
---|---|---|
TPC (mg GAE/kg dw) | 8.18 ± 0.41 | 7.94 ± 0.23 |
TFC (mg RtE/kg dw) | 3.08 ± 0.06 | 2.57 ± 0.09 * |
PR (μmoL AAE/kg dw) | 90.47 ± 2.17 | 86.58 ± 1.82 |
AAR (μmoL DPPH/kg dw) | 42.1 ± 2.11 | 40.02 ± 2.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makrygiannis, I.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Mantzourani, C.; Chatzilazarou, A.; Makris, D.P.; Lalas, S.I. Exploring the Chemical Composition and Antioxidant Properties of Apricot Kernel Oil. Separations 2023, 10, 332. https://doi.org/10.3390/separations10060332
Makrygiannis I, Athanasiadis V, Chatzimitakos T, Bozinou E, Mantzourani C, Chatzilazarou A, Makris DP, Lalas SI. Exploring the Chemical Composition and Antioxidant Properties of Apricot Kernel Oil. Separations. 2023; 10(6):332. https://doi.org/10.3390/separations10060332
Chicago/Turabian StyleMakrygiannis, Ioannis, Vassilis Athanasiadis, Theodoros Chatzimitakos, Eleni Bozinou, Christiana Mantzourani, Arhontoula Chatzilazarou, Dimitris P. Makris, and Stavros I. Lalas. 2023. "Exploring the Chemical Composition and Antioxidant Properties of Apricot Kernel Oil" Separations 10, no. 6: 332. https://doi.org/10.3390/separations10060332
APA StyleMakrygiannis, I., Athanasiadis, V., Chatzimitakos, T., Bozinou, E., Mantzourani, C., Chatzilazarou, A., Makris, D. P., & Lalas, S. I. (2023). Exploring the Chemical Composition and Antioxidant Properties of Apricot Kernel Oil. Separations, 10(6), 332. https://doi.org/10.3390/separations10060332