Comprehensive Metabolite Fingerprinting of Australian Black and Green Olives and Their Antioxidant and Pharmacokinetics Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Preparation and Extraction of Phenolic Compounds
2.3. Measurement of Phenolic Contents and Antioxidant Activities of Olives
2.4. LC–ESI–QTOF–MS/MS Characterization of Metabolites in Olives
2.5. Pharmacokinetic Properties of Metabolites in Olives
2.6. Data Analysis
3. Results and Discussion
3.1. Measurement of Phenolic Content and Antioxidant Activities
3.2. LC-MS/MS Screening and Characterization of Phenolic Compounds
3.2.1. Phenolic Acids
Hydroxybenzoic Acids
Hydroxycinnamic Acids
3.2.2. Flavonoids
Flavanols
Flavonols and Dihydroflavonols
Flavones
Flavanones
3.2.3. Isoflavonoids
3.2.4. Stilbenes and Lignans
3.2.5. Other Compounds
3.3. Pharmacokinetics (ADMET) Properties
3.3.1. Oral Bioavailability
3.3.2. Absorption and Distribution
3.3.3. Metabolism, Excretion, and Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cicerale, S.; Lucas, L.J.; Keast, R.S.J. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Vossen, P. Olive oil: History, production, and characteristics of the world’s classic oils. HortScience 2007, 42, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Parvaiz, M.; Hussain, K.; Shoaib, M.; William, G.; Tufail, M.; Hussain, Z.; Gohar, D.; Imtiaz, S. A review: Therapeutic significance of olive Olea europaea L.(oleaceae family). Glob. J. Pharm. 2013, 7, 333–336. [Google Scholar]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the mediterranean diet: A review of evidence of the role and sustainability of the mediterranean diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihailova, A.; Abbado, D.; Pedentchouk, N. Differences in n-alkane profiles between olives and olive leaves as potential indicators for the assessment of olive leaf presence in virgin olive oils. Eur. J. Lipid Sci. Technol. 2015, 117, 1480–1485. [Google Scholar] [CrossRef]
- Cottrell, J.J.; Le, H.H.; Artaiz, O.; Iqbal, Y.; Suleria, H.A.; Ali, A.; Celi, P.; Dunshea, F.R. Recent advances in the use of phytochemicals to manage gastrointestinal oxidative stress in poultry and pigs. Anim. Prod. Sci. 2022, 62, 1140–1146. [Google Scholar] [CrossRef]
- Boskou, D.; Blekas, G.; Tsimidou, M. Phenolic compounds in olive oil and olives. Curr. Top. Nutraceutical Res. 2005, 3, 125–136. [Google Scholar]
- Ali, A.; Zahid, H.F.; Cottrell, J.J.; Dunshea, F.R. A comparative study for nutritional and phytochemical profiling of Coffea arabica (C. arabica) from different origins and their antioxidant potential and molecular docking. Molecules 2022, 27, 5126. [Google Scholar] [CrossRef]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive profiling of most widely used spices for their phenolic compounds through lc-esi-qtof-ms2 and their antioxidant potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Identification and characterization of anthocyanins and non-anthocyanin phenolics from australian native fruits and their antioxidant, antidiabetic, and anti-alzheimer potential. Food Res. Int. 2022, 162, 111951. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Song, S.; Ali, A.; Subbiah, V.; Taheri, Y.; Suleria, H.A.R. Lc-esi-qtof-ms/ms characterization of phenolic compounds from Pyracantha coccinea M. Roem. and their antioxidant capacity. Cell. Mol. Biol. 2021, 67, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Chou, O.; Ali, A.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Lc-esi-qtof-ms/ms characterisation of phenolics in herbal tea infusion and their antioxidant potential. Fermentation 2021, 7, 73. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder. Food Biosci. 2022, 50, 102011. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Ali, A.; BK, A.; Dunshea, F.R.; Suleria, H.A.R. Screening and characterization of phenolic compounds from australian grown bananas and their antioxidant capacity. Antioxidants 2021, 10, 1521. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Characterization, antioxidant potential, and pharmacokinetics properties of phenolic compounds from native australian herbs and fruits. Plants 2023, 12, 993. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Antioxidant, alpha-glucosidase inhibition activities, in silico molecular docking and pharmacokinetics study of phenolic compounds from native australian fruits and spices. Antioxidants 2023, 12, 254. [Google Scholar] [CrossRef]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Lc-ms/ms-qtof screening and identification of phenolic compounds from australian grown herbs and their antioxidant potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.B.; Guasmi, F.; Ali, S.B.; Radhouani, F.; Faghim, J.; Triki, T.; Kammoun, N.G.; Baffi, C.; Lucini, L.; Benincasa, C. The lc-ms/ms characterization of phenolic compounds in leaves allows classifying olive cultivars grown in south tunisia. Biochem. Syst. Ecol. 2018, 78, 84–90. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Hplc–esi–qtof–ms as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochem. Anal. 2013, 24, 213–223. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; Roldan, C.; Leon, L.; De la Rosa, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Chemometric analysis for the evaluation of phenolic patterns in olive leaves from six cultivars at different growth stages. J. Agric. Food Chem. 2015, 63, 1722–1729. [Google Scholar] [CrossRef]
- Rekik, O.; Ben Mansour, A.; Bouaziz, M. Evaluation of phenolic composition and antioxidant activity changes in olive flowers during development using hplc/dad and lc-ms/ms. Electrophoresis 2018, 39, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, M.; Jemai, H.; Khabou, W.; Sayadi, S. Oil content, phenolic profiling and antioxidant potential of tunisian olive drupes. J. Sci. Food Agric. 2010, 90, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Cáceres-Vélez, P.R.; Ali, A.; Fournier-Level, A.; Dunshea, F.R.; Jusuf, P.R. Phytochemical and safety evaluations of finger lime, mountain pepper, and tamarind in zebrafish embryos. Antioxidants 2022, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Phenolic extract obtained from steam-treated olive oil waste: Characterization and antioxidant activity. LWT-Food Sci. Technol. 2013, 54, 114–124. [Google Scholar] [CrossRef]
- De Bruno, A.; Romeo, R.; Fedele, F.L.; Sicari, A.; Piscopo, A.; Poiana, M. Antioxidant activity shown by olive pomace extracts. J. Environ. Sci. Health Part B 2018, 53, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Prior, R.L. Oxygen radical absorbance capacity (orac): New horizons in relating dietary antioxidants/bioactives and health benefits. J. Funct. Foods 2015, 18, 797–810. [Google Scholar] [CrossRef]
- Alkhalidy, H.; Wang, Y.; Liu, D. Dietary flavonoids in the prevention of t2d: An overview. Nutrients 2018, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Salam, M.A.; El-Tanbouly, G.S.; Bastos, J.K.; Metwaly, H.A. Novel antitumor activity of the combined treatment of galloylquinic acid compounds with doxorubicin in solid ehrlich carcinoma model via the notch signaling pathway modulation. Life Sci. 2022, 299, 120497. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Legione, A.R.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. Probiotic yoghurt enriched with mango peel powder: Biotransformation of phenolics and modulation of metabolomic outputs after in vitro digestion and colonic fermentation. Int. J. Mol. Sci. 2023, 24, 8560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, G.; Szeto, S.S.W.; Chong, C.M.; Quan, Q.; Huang, C.; Cui, W.; Guo, B.; Wang, Y.; Han, Y. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of parkinson disease. Free. Radic. Biol. Med. 2015, 84, 331–343. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Panzella, L. Natural phenolic compounds for health, food and cosmetic applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef]
- Aishwarya, V.; Solaipriya, S.; Sivaramakrishnan, V. Role of ellagic acid for the prevention and treatment of liver diseases. Phytother. Res. 2021, 35, 2925–2944. [Google Scholar] [CrossRef]
- Qiu, Z.-K.; He, J.-L.; Liu, X.; Zeng, J.; Xiao, W.; Fan, Q.-H.; Chai, X.-M.; Ye, W.-H.; Chen, J.-S. Anxiolytic-like effects of paeoniflorin in an animal model of post traumatic stress disorder. Metab. Brain Dis. 2018, 33, 1175–1185. [Google Scholar] [CrossRef]
- Chen, C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxidative Med. Cell. Longev. 2016, 2016, 3571614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Lc-ms/ms characterization of phenolic metabolites and their antioxidant activities from australian native plants. Metabolites 2022, 12, 1016. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, M.I.; Pasupuleti, V.R. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar] [CrossRef]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Abou Baker, D.H. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol. Rep. 2022, 9, 445–469. [Google Scholar] [CrossRef] [PubMed]
- Sharangi, A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—A review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Jesus, F.; Simões, M.; Silva, L.R. Phenolic compounds: Sources, properties and applications. In Bioactive Compounds: Sources, Properties and Applications; Porter, R., Parker, N., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 271–299. [Google Scholar]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef] [PubMed]
- Smiljkovic, M.; Stanisavljevic, D.; Stojkovic, D.; Petrovic, I.; Vicentic, J.M.; Popovic, J.; Grdadolnik, S.G.; Markovic, D.; Sankovic-Babice, S.; Glamoclija, J. Apigenin-7-o-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 2017, 16, 795. [Google Scholar]
- Villalva, M.; Santoyo, S.; Salas-Pérez, L.; Siles-Sánchez, M.L.N.; Rodríguez García-Risco, M.; Fornari, T.; Reglero, G.; Jaime, L. Sustainable extraction techniques for obtaining antioxidant and anti-inflammatory compounds from the lamiaceae and asteraceae species. Foods 2021, 10, 2067. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.-T.; Li, H.-B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.-Y. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients 2020, 12, 2907. [Google Scholar] [CrossRef]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, D.; Alam, A. Pharmacology and phytochemistry of isoflavonoids from iris species. J. Pharmacol. Clin. Res. 2017, 3, 555609. [Google Scholar]
- Bisht, N.; Gupta, A.; Awasthi, P.; Goel, A.; Chandran, D.; Sharma, N.; Singh, N. Development of a rapid lc-ms/ms method for the simultaneous quantification of various flavonoids, isoflavonoids, and phytohormones extracted from Medicago truncatula leaves. J. Liq. Chromatogr. Relat. Technol. 2021, 44, 776–787. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Martins, N.; Chirumbolo, S.; Goh, B.H.; Smetanina, K.; Lysiuk, R. Brief challenges on medicinal plants: An eye-opening look at ageing-related disorders. Basic Clin. Pharmacol. Toxicol. 2018, 122, 539–558. [Google Scholar] [CrossRef] [Green Version]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Identification of phenolics profile in freeze-dried apple peel and their bioactivities during in vitro digestion and colonic fermentation. Int. J. Mol. Sci. 2023, 24, 1514. [Google Scholar] [CrossRef] [PubMed]
- Žugčić, T.; Abdelkebir, R.; Alcantara, C.; Collado, M.C.; García-Pérez, J.V.; Meléndez-Martínez, A.J.; Jambrak, A.R.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol. 2019, 83, 63–77. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Kiani, H.S.; Ali, A.; Zahra, S.; Hassan, Z.U.; Kubra, K.T.; Azam, M.; Zahid, H.F. Phytochemical composition and pharmacological potential of lemongrass (cymbopogon) and impact on gut microbiota. AppliedChem 2022, 2, 229–246. [Google Scholar] [CrossRef]
- Ali, A.; Kiloni, S.M.; Cáceres-Vélez, P.R.; Jusuf, P.R.; Cottrell, J.J.; Dunshea, F.R. Phytochemicals, antioxidant activities, and toxicological screening of native australian fruits using zebrafish embryonic model. Foods 2022, 11, 4038. [Google Scholar] [CrossRef]
Variables | Black Olives | Green Olives |
---|---|---|
TPC (mg GAE/g) | 10.94 ± 0.42 | 7.58 ± 0.35 |
TFC (mg QE/g) | 4.94 ± 0.34 | 3.13 ± 0.57 |
TCT (mg CE/g) | 1.11 ± 0.09 | 0.61 ± 0.03 |
DPPH (mg AAE/g) | 19.35 ± 2.83 | 10.71 ± 0.36 |
FRAP (mg AAE/g) | 2.63 ± 0.26 | 3.97 ± 0.61 |
ABTS (mg AAE/g) | 10.35 ± 1.54 | 9.55 ± 0.45 |
FICA (μg EDTA/g) | 1240 ± 31.09 | 750 ± 17.45 |
•OH-RSA (mg AAE/g) | 17.46 ± 0.67 | 9.62 ± 0.46 |
No. | Proposed Compounds | Molecular Formula | RT (min) | Mode of Ionization | Theoretical (m/z) | Observed (m/z) | Mass Error (ppm) | MS/MS Product Ions | Samples |
---|---|---|---|---|---|---|---|---|---|
Phenolic acids | |||||||||
Hydroxybenzoic acids | |||||||||
1 | 3-O-Galloylquinic acid | C14H16O10 | 4.339 | [M + H]+ | 345.0817 | 345.0826 | 2.6 | 327, 283, 153, 125 | BO, GO |
2 | 3-O-Methylgallic acid | C8H8O5 | 6.738 | [M + H]+ | 185.0445 | 185.0456 | 5.9 | 167, 141, 123 | GO, BO |
3 | Protocatechuic acid | C7H6O4 | 12.067 | [M − H]− | 153.0188 | 153.0170 | −1.8 | 109 | BO |
4 | Benzoic acid | C7H6O2 | 16.298 | [M + H]+ | 123.0446 | 123.0449 | 2.4 | 105 | BO, GO |
5 | p-Hydroxybenzoic acid | C7H6O3 | 17.529 | [M − H]− | 137.0239 | 137.0238 | −0.7 | 93 | GO, BO |
6 | Syringic acid | C9H10O5 | 22.488 | [M − H]− | 197.0450 | 197.0455 | 1.6 | 182, 163, 153 | BO, GO |
7 | Ellagic acid | C14H6O8 | 28.754 | [M − H]− | 300.9985 | 300.9951 | −5.3 | 284 | BO |
8 | Paeoniflorin | C23H28O11 | 33.967 | [M − H]− | 479.1554 | 479.1565 | 2.3 | 461, 317 | GO, BO |
Hydroxycinnamic acids | |||||||||
9 | Feruloyl tartaric acid | C14H14O9 | 4.339 | [M + H]+ | 327.0711 | 327.0690 | −6.4 | 309, 177, 163, 151 | GO |
10 | Feruloyl glucose | C16H20O9 | 4.488 | [M + H]+ | 357.1180 | 357.1175 | −1.4 | 195, 177, 149 | GO, BO |
11 | 3-p-Coumaroylquinic acid | C16H18O8 | 4.676 | [M + H]+ | 339.1080 | 339.1087 | 2.1 | 191, 119 | BO |
12 | 3-Sinapoylquinic acid | C18H22O10 | 4.676 | [M + H]+ | 399.1291 | 399.1293 | 0.5 | 223, 191 | BO |
13 | Sinapic acid | C11H12O5 | 10.234 | [M − H]− | 223.0612 | 223.0618 | 2.7 | 193, 179, 149, 134 | BO, GO |
14 | Dihydroferulic acid | C10H12O4 | 13.816 | [M − H]− | 195.0658 | 195.0656 | −1.0 | 177, 151, 135 | BO, GO |
15 | Caffeic acid 4-O-glucoside | C15H18O9 | 14.236 | [M − H]− | 341.0873 | 341.0859 | −4.1 | 179, 135 | GO |
16 | 3-Caffeoylquinic acid | C16H18O9 | 15.157 | [M − H]− | 353.0873 | 353.0875 | 0.6 | 191, 179, 161, 135 | BO, GO |
17 | p-Coumaric acid 4-O-glucoside | C15H18O8 | 16.453 | [M − H]− | 325.0924 | 325.0925 | 0.3 | 163 | GO, BO |
18 | Caffeic acid | C9H8O4 | 18.326 | [M − H]− | 179.0345 | 179.0343 | −1.1 | 135 | GO, BO |
19 | Cinnamic acid | C9H8O2 | 19.374 | [M + H]+ | 149.0602 | 149.0600 | −1.3 | 105 | BO, GO |
20 | 1,2-Disinapoylgentiobiose | C34H42O19 | 20.274 | [M − H]− | 753.2242 | 753.2244 | 0.3 | 529, 223, 205 | GO |
21 | 1-Sinapoyl-2-feruloylgentiobiose | C33H40O18 | 20.527 | [M − H]− | 723.2137 | 723.2103 | −4.7 | 529, 499 | GO, BO |
22 | Verbascoside | C29H36O15 | 20.632 | [M − H]− | 623.1976 | 623.1974 | −0.3 | 461, 161, 133 | BO, GO |
23 | 3,5-Diferuloylquinic acid | C27H28O12 | 21.675 | [M − H]− | 543.1503 | 543.1496 | −1.3 | 193, 191, 134 | GO |
24 | Hydroxycaffeic acid | C9H8O5 | 23.442 | [M − H]− | 195.0294 | 195.0305 | 5.6 | 177, 151 | BO |
25 | Ferulic acid | C10H10O4 | 26.363 | [M − H]− | 193.0501 | 193.0510 | 4.7 | 178, 149, 134 | GO, BO |
26 | Caffeic acid 3-O-glucuronide | C15H16O10 | 29.084 | [M − H]− | 355.0666 | 355.0687 | 5.9 | 179 | BO, GO |
27 | p-Coumaric acid | C9H8O3 | 29.725 | [M − H]− | 163.0395 | 163.0395 | 0.0 | 119 | BO, GO |
Flavonoids | |||||||||
Anthocyanins | |||||||||
28 | Petunidin 3-rhamnoside | C22H23O10 | 9.674 | [M]+ | 447.1291 | 447.1287 | −0.9 | 317 | BO |
29 | Delphinidin | C15H11O7 | 20.848 | [M]+ | 303.0505 | 303.0516 | 3.6 | 303 | BO |
30 | Cyanidin | C15H11O6 | 21.076 | [M]+ | 287.0556 | 287.0576 | 7.0 | 287 | BO |
31 | Cyanidin 3-glucoside | C21H21O11 | 21.662 | [M]+ | 449.1084 | 449.1121 | 8.2 | 287 | BO |
32 | Cyanidin 3-rutinoside | C27H31O15 | 22.092 | [M]+ | 595.1663 | 595.1657 | −0.9 | 287 | BO |
Flavanols | |||||||||
33 | (+)-Gallocatechin | C15H14O7 | 14.021 | [M − H]− | 305.0662 | 305.0671 | 3.0 | 139 | BO, GO |
34 | (+)-Catechin 3-O-gallate | C22H18O10 | 16.159 | [M − H]− | 441.0822 | 441.0844 | 5.0 | 289, 245 | GO |
35 | Prodelphinidin dimer B3 | C30H26O14 | 24.791 | [M − H]− | 609.1245 | 609.1273 | 4.6 | 591, 539 | BO |
36 | (−)-Epicatechin | C15H14O6 | 25.878 | [M − H]− | 289.0712 | 289.0727 | 5.2 | 245, 205 | BO, GO |
Flavonols and dihydroflavonols | |||||||||
37 | 3,7-Dimethylquercetin | C17H14O7 | 16.655 | [M − H]− | 329.0662 | 329.0673 | 3.3 | 301, 283, 165, 121 | GO |
38 | Quercetin 3-rutinoside (Rutin) | C27H30O16 | 20.779 | [M − H]− | 609.1456 | 609.1459 | 0.5 | 301 | BO |
39 | Myricetin 3-O-rhamnoside | C21H20O12 | 21.652 | [M − H]− | 463.0877 | 463.0900 | 5.0 | 317 | BO |
40 | Isorhamnetin 3-O-glucoside 7-O-rhamnoside | C28H32O16 | 21.675 | [M − H]− | 623.1612 | 623.1593 | −3.0 | 315 | GO, BO |
41 | Quercetin 3-O-arabinoside | C20H18O11 | 22.876 | [M − H]− | 433.0771 | 433.0773 | 0.5 | 301 | BO, GO |
42 | Dihydroquercetin (Taxifolin) | C15H12O7 | 23.076 | [M − H]− | 303.0505 | 303.0517 | 4.0 | 217, 125 | BO |
43 | Dihydromyricetin 3-O-rhamnoside | C21H22O12 | 24.626 | [M − H]− | 465.1033 | 465.1035 | 0.4 | 319, 301, 151 | BO |
44 | Myricetin 3-O-rutinoside | C27H30O17 | 26.545 | [M − H]− | 625.1405 | 625.1434 | 4.6 | 317 | GO |
45 | Quercetin | C15H10O7 | 32.243 | [M − H]− | 301.0348 | 301.0355 | 2.3 | 271, 179, 151, 121 | BO |
46 | Isorhamnetin | C16H12O7 | 32.321 | [M − H]− | 315.0505 | 315.0500 | −1.6 | 300, 151, 107 | BO |
47 | Kaempferol 7-O-glucoside | C21H19O11 | 53.800 | [M −H]− | 446.0849 | 446.0854 | 1.1 | 285 | GO |
Flavones | |||||||||
48 | Apigenin 6,8-di-C-glucoside | C27H30O15 | 20.999 | [M − H]− | 593.1507 | 593.1509 | 0.3 | 269 | BO, GO |
49 | Quercetin-3-rhamnoside (Quercitrin) | C21H20O11 | 21.604 | [M − H]− | 447.0928 | 447.0932 | 0.9 | 301 | BO, GO |
50 | 6-Hydroxyluteolin | C15H10O7 | 23.726 | * [M − H]− | 301.0348 | 301.0350 | 0.7 | 283, 257, 175 | BO |
51 | Apigenin 6-C-glucoside | C21H20O10 | 23.340 | [M − H]− | 431.0978 | 431.0981 | 0.7 | 269 | GO, BO |
52 | Luteolin | C15H10O6 | 24.651 | [M − H]− | 285.0399 | 285.0397 | −0.7 | 267, 151, 109 | GO, BO |
53 | Nobiletin | C21H22O8 | 27.296 | [M + H]+ | 403.1393 | 403.1404 | 2.7 | 373, 343, 211 | BO |
54 | Apigenin 7-O-glucoside | C21H24O9 | 28.452 | [M − H]− | 419.1342 | 419.1327 | −3.6 | 269 | GO |
Flavanones | |||||||||
55 | 8-Prenylnaringenin | C20H20O5 | 18.368 | [M + H]+ | 341.1384 | 341.1392 | 2.3 | 323, 221, 147 | GO |
56 | Neoeriocitrin | C27H32O15 | 24.067 | [M − H]− | 595.1663 | 595.1643 | −3.4 | 459, 287, 151 | BO |
57 | Naringin | C27H32O14 | 25.739 | [M − H]− | 579.1714 | 579.1730 | 2.8 | 271 | GO, BO |
58 | Eriodictyol | C15H12O6 | 28.080 | [M − H]− | 287.0556 | 287.0563 | 2.4 | 269, 151 | BO |
59 | Naringenin | C15H12O5 | 30.167 | [M − H]− | 271.0607 | 271.0601 | −2.2 | 253, 229, 151 | BO, GO |
60 | Hesperidin | C28H34O15 | 33.307 | [M − H]− | 609.1820 | 609.1828 | 1.3 | 301 | GO |
61 | Liquiritigenin | C15H12O4 | 37.582 | [M − H]− | 255.0658 | 255.0648 | −3.9 | 237, 135, 93 | BO |
62 | 6-Geranylnaringenin | C25H28O5 | 45.281 | [M − H]− | 407.1859 | 407.1851 | −2.0 | 389, 287, 271 | BO |
Isoflavonoids | |||||||||
63 | Irilone | C16H10O6 | 4.887 | [M + H]+ | 299.0550 | 299.0544 | −2.0 | 299 | GO |
64 | Glycitin | C22H22O10 | 9.674 | [M + H]+ | 447.1291 | 447.1286 | −1.1 | 447 | BO, GO |
65 | 2’-Hydroxyformononetin | C16H12O5 | 11.048 | [M + H]+ | 285.0763 | 285.0762 | −0.4 | 277, 229 | BO |
66 | Daidzin 4’-O-glucuronide | C27H28O15 | 20.192 | [M − H]− | 591.1350 | 591.1375 | 4.2 | 429, 253 | BO |
67 | Dihydroformononetin | C16H14O4 | 23.855 | [M + H]+ | 271.0970 | 271.0958 | −4.4 | 271 | BO |
68 | Puerarin 4’-O-glucoside | C27H30O14 | 25.313 | [M − H]− | 577.1558 | 577.1560 | 0.3 | 415 | GO |
69 | Phloretin | C15H14O5 | 29.324 | [M − H]− | 273.0763 | 273.0763 | 0.0 | 255, 167, 147, 125, 119 | BO |
70 | Sativanone | C17H16O5 | 31.200 | [M − H]− | 299.0920 | 299.0924 | 1.3 | 283, 255, 163 | BO, GO |
71 | 3’-Hydroxymelanettin | C16H12O6 | 32.039 | [M − H]− | 299.0556 | 299.0554 | −0.7 | 284 | BO, GO |
72 | Violanone | C17H16O6 | 34.200 | [M − H]− | 315.0869 | 315.0864 | −1.6 | 297, 163 | BO, GO |
Stilbenes | |||||||||
73 | 3’-Hydroxy-3,4,5,4’-tetramethoxystilbene | C17H18O5 | 30.043 | [M − H]− | 301.1076 | 301.1070 | −2.0 | 283, 255 | BO, GO |
74 | Resveratrol 3-O-glucoside (Polydatin) | C20H22O8 | 32.392 | [M − H]− | 389.1237 | 389.1237 | 0.0 | 227 | BO, GO |
75 | 4’-Hydroxy-3,4,5-trimethoxystilbene | C17H18O4 | 33.113 | [M − H]− | 285.1127 | 285.1118 | −3.2 | 269, 253, 241, 211 | BO, GO |
Lignans | |||||||||
76 | Secoisolariciresinol | C20H26O6 | 24.726 | [M − H]− | 361.1651 | 361.1653 | 0.6 | 343, 331, 315, 165 | BO, GO |
77 | 7-Hydroxymatairesinol | C20H22O7 | 24.825 | [M − H]− | 373.1288 | 373.1281 | −1.9 | 343, 313, 298, 285 | GO |
78 | Lariciresinol | C20H24O6 | 26.023 | [M + H]+ | 361.1651 | 361.1658 | 1.9 | 343, 237, 137 | BO, GO |
79 | Matairesinol | C20H22O6 | 30.607 | [M + H]+ | 359.1494 | 359.1498 | 1.1 | 341, 299, 235, 137 | BO, GO |
80 | Syringaresinol | C22H26O8 | 30.607 | [M + H]+ | 419.1706 | 419.1708 | 0.5 | 419 | BO, GO |
81 | Schisantherin A | C30H32O9 | 30.665 | [M − H]− | 535.1968 | 535.1969 | 0.2 | 535 | GO, BO |
82 | Medioresinol | C21H24O7 | 31.405 | [M + H]+ | 389.1600 | 389.1601 | 0.3 | 389 | BO, GO |
83 | Schisandrol B | C23H28O7 | 35.575 | [M + H]+ | 417.1913 | 417.1916 | 0.7 | 399, 383, 369 | BO |
Other compounds | |||||||||
84 | Quinic Acid | C7H12O6 | 4.218 | [M − H]− | 191.0556 | 191.0566 | 5.2 | 127, 93 | GO, BO |
85 | Melatonin | C13H16N2O2 | 4.281 | [M + H]+ | 233.1284 | 233.1284 | 0.0 | 185, 152, 93 | BO, GO |
86 | Hydroxytyrosol 4-O-glucoside | C14H20O8 | 4.898 | [M − H]− | 315.1080 | 315.1081 | 0.3 | 153 | GO, BO |
87 | Pyrogallol | C6H6O3 | 8.893 | [M + H]+ | 127.0395 | 127.0399 | 3.1 | 107, 97 | BO, GO |
88 | Hydroxytyrosol | C8H10O3 | 10.964 | [M − H]− | 153.0552 | 153.0551 | 0.3 | 123 | BO, GO |
89 | 4-Ethylguaiacol | C9H12O2 | 13.816 | * [M − H]− | 151.0759 | 151.076 | 0.7 | 135, 119, 107 | BO, GO |
90 | Oleoside 11-methylester | C17H24O11 | 14.554 | [M − H]− | 403.1241 | 403.1244 | 0.7 | 223, 165 | BO, GO |
91 | Tyrosol | C8H10O2 | 16.262 | [M − H]− | 137.0603 | 137.0605 | 1.5 | 119, 107, 93 | BO, GO |
92 | 1,3,5-Trimethoxybenzene | C9H12O3 | 17.593 | [M − H]− | 167.0708 | 167.0711 | 1.8 | 137, 121, 111 | BO, GO |
93 | Esculetin | C9H6O4 | 17.873 | [M − H]− | 177.0188 | 177.0197 | 5.1 | 133 | GO, BO |
94 | p-Anisaldehyde | C8H8O2 | 18.326 | [M − H]− | 135.0446 | 135.0447 | 0.7 | 119 | GO, BO |
95 | Umbelliferone | C9H6O3 | 20.622 | * [M − H]− | 161.0239 | 161.0242 | 1.9 | 133, 117 | GO, BO |
96 | Ligstroside | C25H32O12 | 21.295 | [M − H]− | 523.1816 | 523.1816 | 0 | 505, 361, 319, 277 | BO |
97 | Urolithin B | C13H8O3 | 21.798 | [M − H]− | 211.0395 | 211.0398 | 1.4 | 183, 167 | BO, GO |
98 | p-HPEA-AC | C10H12O3 | 22.831 | [M + H]+ | 181.0864 | 181.0859 | −2.8 | 163, 139, 121 | BO, GO |
99 | Oleuropein | C25H32O13 | 23.922 | [M − H]− | 539.1765 | 539.1750 | −2.8 | 521, 377 | BO, GO |
100 | Coumarin | C9H6O2 | 24.189 | [M + H]+ | 147.0446 | 147.0450 | 2.7 | 119, 103 | BO, GO |
101 | 3,4-DHPEA-EDA | C17H20O6 | 24.626 | [M − H]− | 319.1182 | 319.1185 | 0.9 | 275, 195 | BO |
102 | Salvianolic acid G | C20H18O10 | 24.651 | [M − H]− | 417.0822 | 417.0820 | −0.5 | 399, 373, 237, 219 | GO |
103 | Mellein | C10H10O3 | 30.515 | [M − H]− | 177.0552 | 177.0557 | 2.8 | 133, 105 | BO, GO |
104 | Acetyl eugenol | C12H14O3 | 35.444 | [M + H]+ | 207.1021 | 207.1021 | 0.0 | 189, 174, 109 | BO, GO |
105 | Ricinoleic acid | C18H34O3 | 48.542 | [M − H]− | 297.2430 | 297.2439 | 4.9 | 279, 185 | BO, GO |
106 | Corosolic acid | C30H48O4 | 49.217 | [M − H]− | 471.3475 | 471.3475 | 0.0 | 453, 427 | BO, GO |
107 | Carvacrol | C10H14O | 49.840 | [M − H]− | 149.0967 | 149.0967 | 0.0 | 133, 105 | GO, BO |
108 | Kaurenoic acid | C20H30O2 | 50.365 | [M − H]− | 301.2168 | 301.2175 | 2.3 | 283, 255 | BO |
109 | Oleic acid | C18H34O2 | 56.431 | [M − H]− | 281.2481 | 281.2491 | 3.3 | 263, 237, 59 | BO, GO |
110 | Linoleic acid | C18H32O2 | 58.572 | [M − H]− | 279.2324 | 279.2329 | 1.6 | 221, 204, 131, 127 | BO, GO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Ahmadi, F.; Cottrell, J.J.; Dunshea, F.R. Comprehensive Metabolite Fingerprinting of Australian Black and Green Olives and Their Antioxidant and Pharmacokinetics Properties. Separations 2023, 10, 354. https://doi.org/10.3390/separations10060354
Ali A, Ahmadi F, Cottrell JJ, Dunshea FR. Comprehensive Metabolite Fingerprinting of Australian Black and Green Olives and Their Antioxidant and Pharmacokinetics Properties. Separations. 2023; 10(6):354. https://doi.org/10.3390/separations10060354
Chicago/Turabian StyleAli, Akhtar, Farhad Ahmadi, Jeremy J. Cottrell, and Frank R. Dunshea. 2023. "Comprehensive Metabolite Fingerprinting of Australian Black and Green Olives and Their Antioxidant and Pharmacokinetics Properties" Separations 10, no. 6: 354. https://doi.org/10.3390/separations10060354
APA StyleAli, A., Ahmadi, F., Cottrell, J. J., & Dunshea, F. R. (2023). Comprehensive Metabolite Fingerprinting of Australian Black and Green Olives and Their Antioxidant and Pharmacokinetics Properties. Separations, 10(6), 354. https://doi.org/10.3390/separations10060354