Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate in Human Urine and Serum via UHPLC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Instrumentation
Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry
2.3. Study Design and Sampling of Urine and Serum
2.4. Determination of Urinary Concentrations
2.4.1. Sample Preparation
2.4.2. Matrix-Matched Calibration of Salbutamol, Formoterol, and Salbutamol-4′-O-Sulfate
2.4.3. Determination of the Specific Gravity of Urine
2.5. Determination of Serum Concentrations
2.5.1. Development of Sample Preparation Protocol
2.5.2. Final Study Sample Preparation Protocol
2.5.3. Matrix-Matched Calibration of Salbutamol, Formoterol, and Salbutamol-4′-O-Sulfate
2.6. Method Performance Characterization
2.6.1. Matrix Effect
2.6.2. Recovery
2.6.3. Limit of Quantitation and Limit of Detection
2.6.4. Carry Over
2.6.5. Retention Time Stability
3. Results
3.1. SPE Method Development
3.2. UHPLC-MS/MS Method Performance Characterization
3.2.1. Limit of Quantitation and Limit of Detection
3.2.2. Carry Over
3.2.3. Retention Time Stability
3.2.4. Performance of Hydrolysis in Urine Samples by β-Glucuronidase
3.2.5. Recovery
3.2.6. Matrix Effect
3.3. Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate
3.3.1. Serum Sample Analysis
3.3.2. Urine Sample Analysis
4. Discussion
4.1. UHPLC-MS/MS and Sample Preparation
4.2. Urine Analysis
4.3. Serum Analysis
4.4. Phase II Metabolites
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Step | HLB | HR-XC |
---|---|---|
Priming | 3 mL MeOH | 3 mL MeOH |
Conditioning | 3 mL H2O | 3 mL H2O |
Samples application (slowly) | 1.0 mL | 1.0 mL |
Washing | 1 mL water | 1 mL 0.1 M HCl in water, then 1 mL of MeOH |
Drying SPE for 10 min under vacuum | Do not let run dry | |
Elution into a conical vial | 1 mL MeOH | 5% NH3 in 1 mL MeOH |
Drying under a stream of nitrogen at 40 °C | ||
Reconstitution in the same conical vial | 50 μL 0.1% formic acid in water (0.1:100, v:v) | 50 μL 0.1% formic acid in water (0.1:100, v:v) |
References
- Griffin, J.; Lee, S.; Caiado, M.; Kesten, S.; Price, D. Comparison of tiotropium bromide and combined ipratropium/salbutamol for the treatment of COPD: A UK General Practice Research Database 12-month follow-up study. Prim. Care Respir. J. 2008, 17, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Aliverti, A. Effect of salbutamol on lung function and chest wall volumes at rest and during exercise in COPD. Thorax 2005, 60, 916–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Thomson, N.C. (R)-salbutamol in the treatment of asthma and chronic obstructive airways disease. Expert Opin. Pharmacother. 2011, 12, 1133–1141. [Google Scholar] [CrossRef]
- La Piana, G.E.; Corda, L.; Bertella, E.; Montemurro, L.T.; Pini, L.; Tantucci, C. Dose-response curve to salbutamol during acute and chronic treatment with formoterol in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2011, 6, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, R.C.; Smith, G.D. Albuterol: An Adrenergic Agent for Use in the Treatment of Asthma Pharmacology, Pharmacokinetics and Clinical Use. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1984, 4, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Santangelo, G.; Piccolo, A.; Salzillo, A.; Matera, M.G.; D’Amato, G.; Rossi, F. Effect of salmeterol and formoterol in patients with chronic obstructive pulmonary disease. Pulm. Pharmacol. 1994, 7, 103–107. [Google Scholar] [CrossRef]
- Nials, A.T.; Coleman, R.A.; Johnson, M.; Magnussen, H.; Rabe, K.F.; Vardey, C.J. Effects of β-adrenoceptor agonists in human bronchial smooth muscle. Br. J. Pharmacol. 1993, 110, 1112–1116. [Google Scholar] [CrossRef]
- World Anti-Doping Agency. The 2023 Prohibited List. Available online: https://www.wada-ama.org/sites/default/files/2022-09/2023list_en_final_9_september_2022.pdf (accessed on 11 February 2023).
- World Anti-Doping Agency. WADA Technical Document TD2021DL. Available online: https://www.wada-ama.org/sites/default/files/resources/files/td2021dl_final_eng_0.pdf (accessed on 17 July 2021).
- von Berg, A.; Berdel, D. Formoterol and salbutamol metered aerosols: Comparison of a new and an established beta-2-agonist for their bronchodilating efficacy in the treatment of childhood bronchial asthma. Pediatr. Pulmonol. 1989, 7, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Bartow, R.A.; Brogden, R.N. Formoterol. Drugs 1998, 55, 303–322. [Google Scholar] [CrossRef]
- Maesen, F.P.V.; Smeets, J.J.; Gubbelmans, H.L.L.; Zweers, P.G.M.A. Bronchodilator Effect of Inhaled Formoterol vs. Salbutamol over 12 Hours. Chest 1990, 97, 590–594. [Google Scholar] [CrossRef]
- Anderson, G.P. Formoterol: Pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective β2-adrenoceptor agonist bronchodilator. Life Sci. 1993, 52, 2145–2160. [Google Scholar] [CrossRef]
- Vogelmeier, C.; Kardos, P.; Harari, S.; Gans, S.J.M.; Stenglein, S.; Thirlwell, J. Formoterol mono- and combination therapy with tiotropium in patients with COPD: A 6-month study. Respir. Med. 2008, 102, 1511–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennard, S.I.; Tashkin, D.P.; McElhattan, J.; Goldman, M.; Ramachandran, S.; Martin, U.J.; Silkoff, P.E. Efficacy and Tolerability of Budesonide/Formoterol in One Hydrofluoroalkane Pressurized Metered-Dose Inhaler in Patients with Chronic Obstructive Pulmonary Disease. Drugs 2009, 69, 549–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’byrne, P.M.; Barnes, P.J.; Rodriguez-Roisin, R.; Runnerstrom, E.; Sandstrom, T.; Svensson, K.; Tattersfield, A. Low Dose Inhaled Budesonide and Formoterol in Mild Persistent Asthma. Am. J. Respir. Crit. Care Med. 2001, 164, 1392–1397. [Google Scholar] [CrossRef]
- Spann, C.; Winter, M.E. Effect of clenbuterol on athletic performance. Ann. Pharmacother. 1995, 29, 75–77. [Google Scholar] [CrossRef]
- Martineau, L.; Horan, M.A.; Rothwell, N.J.; Little, R.A. Salbutamol, a beta 2-adrenoceptor agonist, increases skeletal muscle strength in young men. Clin. Sci. 1992, 83, 615–621. [Google Scholar] [CrossRef]
- Maria Kristina, P.; Anna, M.-S. Pharmacology of doping agents—Mechanisms promoting muscle hypertrophy. AIMS Mol. Sci. 2018, 5, 131–159. [Google Scholar] [CrossRef]
- Moore, N.G.; Pegg, G.G.; Sillence, M.N. Anabolic effects of the beta 2-adrenoceptor agonist salmeterol are dependent on route of administration. Am. J. Physiol. 1994, 267, E475–E484. [Google Scholar] [CrossRef]
- Ryall, J.G.; Sillence, M.N.; Lynch, G.S. Systemic administration of β 2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. Br. J. Pharmacol. 2006, 147, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, G.S.; Hinkle, R.T.; Faulkner, J.A. Power output of fast and slow skeletal muscles of mdx (dystrophic) and control mice after clenbuterol treatment. Exp. Physiol. 2000, 85, 295–299. [Google Scholar] [CrossRef]
- Kalsen, A.; Hostrup, M.; Bangsbo, J.; Backer, V. Combined inhalation of beta2-agonists improves swim ergometer sprint performance but not high-intensity swim performance. Scand. J. Med. Sci. Sports 2014, 24, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, Y.; McGlotten, J.; Morton, J.B.; Symchowicz, S. Isolation and identification of the major metabolite of albuterol in human urine. Drug Metab. Dispos. 1977, 5, 234–238. [Google Scholar] [PubMed]
- Zhang, M.; Fawcett, J.P.; Shaw, J.P. Stereoselective urinary excretion of formoterol and its glucuronide conjugate in human. Br. J. Clin. Pharmacol. 2002, 54, 246–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenborg, J.; Larsson, P.; Tegnér, K.; Hallström, G. Mass balance and metabolism of [(3)H]Formoterol in healthy men after combined i.v. and oral administration-mimicking inhalation. Drug Metab. Dispos. 1999, 27, 1104–1116. [Google Scholar] [PubMed]
- Faulds, D.; Hollingshead, L.M.; Goa, K.L. Formoterol. A review of its pharmacological properties and therapeutic potential in reversible obstructive airways disease. Drugs 1991, 42, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Mazzarino, M.; Botrè, F. A fast liquid chromatographic/mass spectrometric screening method for the simultaneous detection of synthetic glucocorticoids, some stimulants, anti-oestrogen drugs and synthetic anabolic steroids. Rapid Commun. Mass Spectrom. 2006, 20, 3465–3476. [Google Scholar] [CrossRef] [PubMed]
- Mazzarino, M.; de la Torre, X.; Fiacco, I.; Pompei, C.; Calabrese, F.; Botrè, F. A simplified procedure for the analysis of formoterol in human urine by liquid chromatography-electrospray tandem mass spectrometry: Application to the characterization of the metabolic profile and stability of formoterol in urine. J. Chromatogr. B 2013, 931, 75–83. [Google Scholar] [CrossRef]
- Deventer, K.; Pozo, O.J.; Delbeke, F.T.; Van Eenoo, P. Quantitative detection of inhaled formoterol in human urine and relevance to doping control analysis. Drug Test. Anal. 2012, 4, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Thevis, M.; Opfermann, G.; Schänzer, W. Liquid chromatography/electrospray ionization tandem mass spectrometric screening and confirmation methods for beta2-agonists in human or equine urine. J. Mass Spectrom. 2003, 38, 1197–1206. [Google Scholar] [CrossRef]
- Sardela, V.F.; Deventer, K.; Pereira, H.M.; de Aquino Neto, F.R.; Van Eenoo, P. Development and validation of a ultra high performance liquid chromatography-tandem mass spectrometric method for the direct detection of formoterol in human urine. J. Pharm. Biomed. Anal. 2012, 70, 471–475. [Google Scholar] [CrossRef]
- Lee, K.M.; Kim, H.J.; Jeong, E.S.; Yoo, H.H.; Kwon, O.S.; Jin, C.; Kim, D.H.; Lee, J. Simple and accurate quantitative analysis of seven prohibited threshold substances in human urine by liquid chromatography/tandem mass spectrometry in doping control. Rapid Commun. Mass Spectrom. 2011, 25, 2261–2267. [Google Scholar] [CrossRef]
- Lee, K.M.; Kim, H.J.; Son, J.; Park, J.-H.; Kwon, O.-S.; Lee, J. Simple quantitation of formoterol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in human urine by liquid chromatography-tandem mass spectrometry in doping control. J. Chromatogr. B 2014, 967, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Alcántara-Durán, J.; Moreno-González, D.; Beneito-Cambra, M.; García-Reyes, J.F. Dilute-and-shoot coupled to nanoflow liquid chromatography high resolution mass spectrometry for the determination of drugs of abuse and sport drugs in human urine. Talanta 2018, 182, 218–224. [Google Scholar] [CrossRef]
- Haase, C.B.; Backer, V.; Kalsen, A.; Rzeppa, S.; Hemmersbach, P.; Hostrup, M. The influence of exercise and dehydration on the urine concentrations of salbutamol after inhaled administration of 1600 µg salbutamol as a single dose in relation to doping analysis. Drug Test. Anal. 2016, 8, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, G.A.; Yee, K.C.; Wood-Baker, R.; Walters, E.H. SULT 1A3 single-nucleotide polymorphism and the single dose pharmacokinetics of inhaled salbutamol enantiomers: Are some athletes at risk of higher urine levels? Drug Test. Anal. 2015, 7, 109–113. [Google Scholar] [CrossRef]
- Elers, J.; Pedersen, L.; Henninge, J.; Hemmersbach, P.; Dalhoff, K.; Backer, V. The pharmacokinetic profile of inhaled and oral salbutamol in elite athletes with asthma and nonasthmatic subjects. Clin. J. Sport Med. 2012, 22, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Mascher, D.G.; Zech, K.; Nave, R.; Kubesch, K.M.; Mascher, H.J. Ultra-sensitive determination of Formoterol in human serum by high performance liquid chromatography and electrospray tandem mass spectrometry. J. Chromatogr. B 2006, 830, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.K.; Dow, J.; Dallow, N.; Eynott, P.; Milleri, S.; Ventresca, G.P. Enantiomeric disposition of inhaled, intravenous and oral racemic-salbutamol in man—No evidence of enantioselective lung metabolism. Br. J. Clin. Pharmacol. 2000, 49, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Saleh, M.I.; Koh, Y.M.; Tan, S.C.; Aishah, A.L. Clean-up, detection and determination of salbutamol in human urine and serum. Analyst 2000, 125, 1569–1572. [Google Scholar] [CrossRef]
- Schmekel, B.; Rydberg, I.; Norlander, B.; Sjosward, K.N.; Ahlner, J.; Andersson, R.G. Stereoselective pharmacokinetics of S-salbutamol after administration of the racemate in healthy volunteers. Eur. Respir. J. 1999, 13, 1230. [Google Scholar] [CrossRef] [Green Version]
- Ventura, R.; Damasceno, L.M.; Ramirez, R.; Farre, M.; Berges, R.; Segura, J. Evaluation of the urinary threshold concentration of formoterol in sports drug testing. Drug Test. Anal. 2013, 5, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Romero, J.C.; García-Reyes, J.F.; Martínez-Romero, R.; Martínez-Lara, E.; Del Moral-Leal, M.L.; Molina-Díaz, A. Detection of main urinary metabolites of β2-agonists clenbuterol, salbutamol and terbutaline by liquid chromatography high resolution mass spectrometry. J. Chromatogr. B 2013, 923–924, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Elers, J.; Pedersen, L.; Henninge, J.; Lund, T.K.; Hemmersbach, P.; Dalhoff, K.; Backer, V. Blood and urinary concentrations of salbutamol in asthmatic subjects. Med. Sci. Sports Exerc. 2010, 42, 244–249. [Google Scholar] [CrossRef]
- Hostrup, M.; Kalsen, A.; Auchenberg, M.; Rzeppa, S.; Hemmersbach, P.; Bangsbo, J.; Backer, V. Urine concentrations of oral salbutamol in samples collected after intense exercise in endurance athletes. Drug Test. Anal. 2014, 6, 528–532. [Google Scholar] [CrossRef]
- Hostrup, M.; Narkowicz, C.K.; Habib, S.; Nichols, D.S.; Jacobson, G.A. Beta2-adrenergic ligand racemic formoterol exhibits enantioselective disposition in blood and skeletal muscle of humans, and elicits myocellular PKA signaling at therapeutic inhaled doses. Drug Test. Anal. 2019, 11, 1048–1056. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zeng, J.; Liu, S.; Zhao, T.; Wu, J.; Lai, W.; He, M.; Xu, B.; Qu, S.; Xu, L.; et al. Study on the determination and chiral inversion of R-salbutamol in human plasma and urine by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2015, 1002, 218–227. [Google Scholar] [CrossRef]
- Bozzolino, C.; Leporati, M.; Gani, F.; Ferrero, C.; Vincenti, M. Development and validation of an UHPLC–MS/MS method for β2-agonists quantification in human urine and application to clinical samples. J. Pharm. Biomed. Anal. 2018, 150, 15–24. [Google Scholar] [CrossRef]
- Jacobson, G.A.; Hostrup, M.; Narkowicz, C.K.; Nichols, D.S.; Walters, E.H. Enantioselective disposition of (R,R)-formoterol, (S,S)-formoterol and their respective glucuronides in urine following single inhaled dosing and application to doping control. Drug Test. Anal. 2019, 11, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Eibye, K.; Elers, J.; Pedersen, L.; Henninge, J.; Hemmersbach, P.; Dalhoff, K.; Backer, V. Formoterol concentrations in blood and urine: The World Anti-Doping Agency 2012 regulations. Med. Sci. Sports Exerc. 2013, 45, 16–22. [Google Scholar] [CrossRef]
- Bergés, R.; Segura, J.; de la Torre, X.; Ventura, R. Analytical methodology for enantiomers of salbutamol in human urine for application in doping control11Presented at the 27th International Meeting of the Spanish Group of Chromatography and Related Techniques, Lugo, July 8–10, 1998. J. Chromatogr. B Biomed. Sci. Appl. 1999, 723, 173–184. [Google Scholar] [CrossRef]
- Abdelrahman, M.M. Solid-Phase Extraction and HPLC-DAD for Determination of Salbutamol in Urine Samples. Anal. Chem. Lett. 2018, 8, 35–45. [Google Scholar] [CrossRef]
- Ventura, R.; Segura, J.; Bergés, R.; Fitch, K.D.; Morton, A.R.; Berruezo, S.; Jiménez, C. Distinction of inhaled and oral salbutamol by urine analysis using conventional screening procedures for doping control. Ther. Drug Monit. 2000, 22, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, J.; Hu, J.; Chester, N.; Loosemore, M.; Whyte, G. Impact of ethnicity, gender, and dehydration on the urinary excretion of inhaled salbutamol with respect to doping control. Clin. J. Sport Med. 2014, 24, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Bergés, R.; Segura, J.; Ventura, R.; Fitch, K.D.; Morton, A.R.; Farré, M.; Mas, M.; de La Torre, X. Discrimination of prohibited oral use of salbutamol from authorized inhaled asthma treatment. Clin. Chem. 2000, 46, 1365–1375. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.H.; Lee, W.; Asmawi, M.Z.; Tan, S.C. Chiral liquid chromatography–mass spectrometry (LC–MS/MS) method development for the detection of salbutamol in urine samples. J. Chromatogr. B 2016, 1025, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Joyce, K.B.; Jones, A.E.; Scott, R.J.; Biddlecombe, R.A.; Pleasance, S. Determination of the enantiomers of salbutamol and its 4-O-sulphate metabolites in biological matrices by chiral liquid chromatography tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1899–1910. [Google Scholar] [CrossRef]
- Jacobson, G.A.; Raidal, S.; Robson, K.; Narkowicz, C.K.; Nichols, D.S.; Haydn Walters, E. Bronchopulmonary pharmacokinetics of (R)-salbutamol and (S)-salbutamol enantiomers in pulmonary epithelial lining fluid and lung tissue of horses. Br. J. Clin. Pharmacol. 2017, 83, 1436–1445. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Tang, C.; Meng, Q.; Du, W.; Bo, T.; Zhao, Q.; Liang, X.; Liu, S.; Zhang, Z.; Zhang, J. Residues of Salbutamol and Identification of Its Metabolites in Beef Cattle. J. Agric. Food Chem. 2017, 65, 2867–2875. [Google Scholar] [CrossRef]
- Wu, S.T.; Xing, J.; Apedo, A.; Wang-Iverson, D.B.; Olah, T.V.; Tymiak, A.A.; Zhao, N. High-throughput chiral analysis of albuterol enantiomers in dog plasma using on-line sample extraction/polar organic mode chiral liquid chromatography with tandem mass spectrometric detection. Rapid Commun. Mass Spectrom. 2004, 18, 2531–2536. [Google Scholar] [CrossRef]
- Sun, Y.; Harps, L.C.; Bureik, M.; Parr, M.K. Human Sulfotransferase Assays with PAPS Production in situ. Front. Mol. Biosci. 2022, 9, 827638. [Google Scholar] [CrossRef]
- Jendretzki, A.L.; Harps, L.C.; Sun, Y.; Bredendiek, F.; Bureik, M.; Girreser, U.; De la Torre, X.; Botrè, F.; Parr, M.K. Urinary Excretion Kinetics of Salbutamol and Its Sulfoconjugated Main Metabolite After Oral and Inhalative Administration of Racemic Salbutamol or Levosalbutamol. Preprints 2023, 2023020447. [Google Scholar] [CrossRef]
- Zügel, M.; Bizjak, D.A.; Nussbaumer, D.; Winkert, K.; Takabayashi, K.; Kirsten, J.; Washington, M.; Treff, G.; Dreyhaupt, J.; Steeb, L.; et al. The ELSA trial: Single versus combinatory effects of non-prohibited beta-2 agonists on skeletal muscle metabolism, cardio-pulmonary function and endurance performance-study protocol for a randomized 4-way balanced cross-over trial. Trials 2021, 22, 903. [Google Scholar] [CrossRef] [PubMed]
- World Anti-Doping Agency. World Anti-Doping Code: International Standard Testing and Investigations. 2021. Available online: https://www.wada-ama.org/sites/default/files/resources/files/international_standard_isti_-_2021.pdf (accessed on 8 May 2023).
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- Xhaferaj, M.; Naegele, E.; Parr, M.K. Ion exchange in supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS): Application for polar and ionic drugs and metabolites in forensic and anti-doping analysis. J. Chromatogr. A 2020, 1614, 460726. [Google Scholar] [CrossRef]
- World Anti-Doping Agency. WADA Technical Document TD2021IDCR. Available online: https://www.wada-ama.org/sites/default/files/resources/files/td2021idcr_final_eng_0.pdf (accessed on 21 July 2021).
- Mareck, U.; Guddat, S.; Schwenke, A.; Beuck, S.; Geyer, H.; Flenker, U.; Elers, J.; Backer, V.; Thevis, M.; Schanzer, W. Determination of salbutamol and salbutamol glucuronide in human urine by means of liquid chromatography-tandem mass spectrometry. Drug Test. Anal. 2011, 3, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.J.; Paull, J.D.; Richmond, B.H.; Wilson-Evered, E.; Ziccone, S.P. Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate. Br. J. Clin. Pharmacol. 1986, 22, 587–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henze, M.K.; Opfermann, G.; Spahn-Langhuth, H.; Schänzer, W. Screening of beta-2-agonists and confirmation of fenoterol, reproterol, orciprenaline and terbutaline after cyclisation with formaldehyde. In Recent Advances in Doping Analysis (8); Schänzer, W., Geyer, H., Gotzmann, A., Mareck, U., Eds.; Sport und Buch Strauß: Köln, Germany, 2000; pp. 59–68. [Google Scholar]
- Sporer, B.C.; Sheel, A.W.; Taunton, J.; Rupert, J.L.; McKenzie, D.C. Inhaled salbutamol and doping control: Effects of dose on urine concentrations. Clin. J. Sport Med. 2008, 18, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.; Kurogi, K.; Davidson, G.; Liu, M.Y.; Sakakibara, Y.; Suiko, M.; Liu, M.C. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases. J. Biochem. 2012, 152, 275–283. [Google Scholar] [CrossRef]
- Bairam, A.F.; Rasool, M.I.; Alherz, F.A.; Abunnaja, M.S.; El Daibani, A.A.; Gohal, S.A.; Alatwi, E.S.; Kurogi, K.; Liu, M.-C. Impact of SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of phenylephrine and salbutamol by human SULT1A3 allozymes. Pharm. Genom. 2019, 29, 99–105. [Google Scholar] [CrossRef]
Analytes | Salbutamol and Formoterol | Formoterol | Salbutamol-4′-O-Sulfate | Salbutamol and Salbutamol-4′-O-Sulfate |
---|---|---|---|---|
Specimen | Urine | Serum | Urine | Serum |
Column | Poroshell 120 EC-C18 (2.1 mm I.D. × 50 mm; 1.9 μm) | Poroshell 120 phenyl-hexyl (3.0 mm I.D. × 100 mm; 1.9 μm) | ||
Flow rate | 0.3 mL/min | 0.4 mL/min | ||
Column temperature | 35 °C | 35 °C | ||
Injection volume | 1 μL (30 μL) | 15 μL | 2 μL | 5 μL |
Solvent A | 0.1% formic acid and 10 mM ammonium formate in water (1:0.63:1000, v:m:v) | 20 mM ammonium formate in water (1.26:1000, m:v) | ||
Solvent B | 0.1% formic acid and 10 mM ammonium formate in water/ACN (1:0.63:120:900, v:m:v:v) | 20 mM ammonium formate in methanol (1.26:1000, m:v) | ||
Gradient | 0 min: 0% B | 0 min: 5% B | 0 min: 5% B | |
2 min: 7.5% B | 2 min: 5% B | 1 min: 5% B | ||
5 min: 40% B | 5 min: 40% B | 5 min: 40% B | ||
6 min: 95% B | 6 min: 100% B | 6 min: 95% B | ||
7.4 min: 95% B | 7.4 min: 100% B | 7.90 min: 95% B | ||
7.5 min: 0% B | 7.5 min: 5% B | 8 min: 5% B | ||
Post time | 3 min | 2.5 min | ||
Ion source parameters | ||||
Gas temperature | 290 °C | 170 °C | ||
Gas flow | 20 L/min | 17 L/min | ||
Nebulizer | 25 psi | 10 psi | ||
Sheath gas temperature | 400 °C | 400 °C | ||
Sheath gas flow | 12 | 12 | ||
Capillary | 6000 V | 4000 V | ||
Nozzle voltage | 500 V | 500 V |
Analyte/ISTD | Precursor Ion (m/z) | Product Ion (m/z) | Collision Energy (V) |
---|---|---|---|
Formoterol | 345 | 327.1 | 12 |
345 | 149 | 20 | |
345 | 121.1 | 32 | |
345 | 91.1 | 76 | |
345 | 77.1 | 80 | |
Salbutamol | 240 | 222 | 8 |
240 | 166 | 12 | |
240 | 147.9 | 16 | |
240 | 91 | 48 | |
240 | 77.1 | 56 | |
Salbutamol-4′-O-sulfate | 320 | 240 | 4 |
320 | 222 | 16 | |
320 | 166 | 16 | |
320 | 148 | 32 | |
320 | 77 | 80 | |
d3-Salbutamol | 243.2 | 225.2 | 8 |
243.2 | 151 | 20 | |
d3-Testosterone-glucuronide | 468.3 | 109 | 40 |
468.3 | 97 | 32 | |
468.3 | 84.9 | 84.9 | |
d3-Testosterone | 292.2 | 109 | 20 |
292.2 | 97 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harps, L.C.; Bizjak, D.A.; Girreser, U.; Zügel, M.; Steinacker, J.M.; Diel, P.; Parr, M.K. Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate in Human Urine and Serum via UHPLC-MS/MS. Separations 2023, 10, 368. https://doi.org/10.3390/separations10070368
Harps LC, Bizjak DA, Girreser U, Zügel M, Steinacker JM, Diel P, Parr MK. Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate in Human Urine and Serum via UHPLC-MS/MS. Separations. 2023; 10(7):368. https://doi.org/10.3390/separations10070368
Chicago/Turabian StyleHarps, Lukas C., Daniel A. Bizjak, Ulrich Girreser, Martina Zügel, Jürgen M. Steinacker, Patrick Diel, and Maria Kristina Parr. 2023. "Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate in Human Urine and Serum via UHPLC-MS/MS" Separations 10, no. 7: 368. https://doi.org/10.3390/separations10070368
APA StyleHarps, L. C., Bizjak, D. A., Girreser, U., Zügel, M., Steinacker, J. M., Diel, P., & Parr, M. K. (2023). Quantitation of Formoterol, Salbutamol, and Salbutamol-4′-O-Sulfate in Human Urine and Serum via UHPLC-MS/MS. Separations, 10(7), 368. https://doi.org/10.3390/separations10070368