Adsorption Studies of Pb(II) and Cd(II) Heavy Metal Ions from Aqueous Solutions Using a Magnetic Biochar Composite Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MBC and Preparation of Aqueous Solutions of Lead and Cadmium
2.1.1. Preparation of Magnetite and Biochar
2.1.2. Synthesis of Magnetic Biochar Composite and Its Functionalization
2.1.3. Preparation of Synthetic Solutions of Lead and Cadmium Metals
2.2. Adsorption Experiment
2.3. Characterization Techniques
2.4. Zero Point Charge pH (pHzpc)
2.5. Adsorption Isotherms and Kinetics
- Removal% of metal ions:
- Metal removal using MBC
- Langmuir Adsorption Isotherm
3. Results and Discussion
3.1. Biochar Characterization
3.2. XRD Analysis of Magnetite Nanoparticles and Magnetic Biochar Composite
3.3. FTIR Analysis of Biochar (Raw, Magnetised, and Functionalized) and Metal-Loaded MBC
3.4. Effect of pH and Contact Time on the Adsorption Process
3.5. pHzpc Determination
3.6. Langmuir Adsorption Isotherms
3.7. SEM-EDX Study
Element | Weight% | Atomic% |
---|---|---|
C | 67.5 | 76.8 |
N | 7.0 | 6.8 |
O | 17.5 | 15.0 |
Fe | 3.7 | 0.9 |
3.8. FMBC Bonding Model and Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour.-Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Arfanuzzaman, M.; Rahman, A.A. Sustainable water demand management in the face of rapid urbanization and ground water depletion for social–ecological resilience building. Glob. Ecol. Conserv. 2017, 10, 9–22. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Z. Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut. 2016, 218, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Growth of BiOBr/ZIF-67 Nanocomposites on Carbon Fiber Cloth as Filter-Membrane-Shaped Photocatalyst for Degrading Pollutants in Flowing Wastewater. Adv. Fiber Mater. 2022, 4, 1620. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. High-Efficiency g-C3N4 Based Photocatalysts for CO2 Reduction: Modification Methods. Adv. Fiber Mater. 2022, 4, 342. [Google Scholar] [CrossRef]
- Han, Z.; Lv, M.; Shi, X.; Li, G.; Zhao, J.; Zhao, X. Regulating the Electronic Structure of Fe3+-Doped BiOClxI1−x Solid Solution by an Amidoxime-Functionalized Fibrous Support for Efficient Photocatalysis. Adv. Fiber Mater. 2023, 5, 266. [Google Scholar] [CrossRef]
- Cai, M.; Liu, Y.; Wang, C.; Lin, W.; Li, S. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment. Sep. Purif. Technol. 2023, 304, 122401. [Google Scholar] [CrossRef]
- Lee, A.; Elam, J.W.; Darling, S.B. Membrane materials for water purification: Design, development, and application. Environ. Sci. Water Res. Technol. 2016, 2, 17–42. [Google Scholar] [CrossRef]
- El-Shafey, E.I.; Cox, M.; Pichugin, A.A.; Appleton, Q. Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution. J. Chem. Technol. Biotechnol. 2002, 77, 429–436. [Google Scholar] [CrossRef]
- Thekkudan, V.N.; Vaidyanathan, V.K.; Ponnusamy, S.K.; Charles, C.; Sundar, S.L.; Vishnu, D.; Anbalagan, S.; Subramanian, S. Review on nanoadsorbents: A solution for heavy metal removal from wastewater. IET Nanobiotechnol. 2017, 11, 213–224. [Google Scholar] [CrossRef]
- Chauhan, D.; Talreja, N.; Ashfaq, M. Nanoadsorbents for Wastewater Remediation. In Aquananotechnology; Abd-Elsalam, K.A., Zahid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 273–290. [Google Scholar] [CrossRef]
- Knoblauch, C.; Priyadarshani, S.R.; Haefele, S.M.; Schröder, N.; Pfeiffer, E. Impact of biochar on nutrient supply, crop yield and microbial respiration on sandy soils of northern Germany. Eur. J. Soil Sci. 2021, 72, 1885–1901. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Dave, P.N.; Chopda, L.V. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals. J. Nanotechnol. 2014, 2014, 398569. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.; Noya, I.; Feijoo, G. The prospective use of biochar as adsorption matrix—A review from a lifecycle perspective. Bioresour. Technol. 2017, 246, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.; Singh, J. Green Biocomposite Materials for Sustainable Remediation Application. In Sustainable Nanotechnology for Environmental Remediation; Karri, R.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 273–297. [Google Scholar] [CrossRef]
- Santhosh, C.; Daneshvar, E.; Tripathi, K.M.; Baltrėnas, P.; Kim, T.; Baltrėnaitė, E.; Bhatnagar, A. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32874–32887. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, B.; Mondal, S. Synthesis of Magnetic Biochar Using Agricultural Waste for the Separation of Cr(VI) From Aqueous Solution. Arab. J. Sci. Eng. 2021, 46, 10803–10818. [Google Scholar] [CrossRef]
- Che, N.; Liu, N.; Li, Y.; Li, C.; Liu, Y.; Li, C. Three dimensional BC/rGA aerogel: Preparation, characterization, and adsorption of Cr(VI). Biochar 2022, 4, 65. [Google Scholar] [CrossRef]
- Patra, J.M.; Panda, S.S.; Dhal, N.K. Biochar as a low-cost adsorbent for heavy metal removal: A review. Int. J. Res. Biosci. 2017, 6, 105081. [Google Scholar]
- Mandal, S.; Sharma, R.K.; Bhattacharya, T.K.; Tanna, H.; Haydary, J. Charring of pine needles using a portable drum reactor. Chem. Pap. 2022, 76, 1239–1252. [Google Scholar] [CrossRef]
- Anamika; Singh, V.; Yadav, B.K. Adsorption study of Heavy Metals from Aqueous Solutions using Magnetite Nanoparticles. J. Phys. Conf. Ser. 2020, 1504, 012011. [Google Scholar] [CrossRef]
- Nnadozie, E.C.; Ajibade, P.A. Adsorption, kinetic and mechanistic studies of Pb (II) and Cr (VI) ions using APTES functionalized magnetic biochar. Microporous Mesoporous Mater. 2020, 309, 110573. [Google Scholar] [CrossRef]
- Saruchi; Kumar, V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger. Arab. J. Chem. 2019, 12, 316–329. [Google Scholar] [CrossRef]
- Dong, H.; Deng, J.; Xie, Y.; Zhang, C.; Jiang, Z.; Cheng, Y.; Hou, K.; Zeng, G. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J. Hazard. Mater. 2017, 332, 79–86. [Google Scholar] [CrossRef]
- Manori, S.; Shah, V.; Soni, V.; Dutta, K.; Daverey, A. Phytoremediation of cadmium-contaminated soil by Bidens pilosa L.: Impact of pine needle biochar amendment. Environ. Sci. Pollut. Res. 2021, 28, 58872–58884. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.K.; Jacinthe, P.; Lal, R.; Lorenz, K.; Singh, M.P.; Demyan, S.M.; Ren, W.; Lindsey, L.E. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. J. Environ. Qual. 2023, 1–30. [Google Scholar] [CrossRef]
- Hussain, U.; Nazir, A.; Shafiq, M. Potential Application of Biochar Composite Derived from Rice Straw and Animal. Sustainability 2021, 13, 11104. [Google Scholar]
- Din, S.U.; Azeez, A.; Abdin, Z.U.; Haq, S.; Hafeez, M.; Imran, M.; Hussain, S.; Alarfaji, S.S. Investigation on Cadmium Ions Removal from Water by a Nanomagnetite Based Biochar Derived from Eleocharis Dulcis. J. Inorg. Organomet. Polym. Mater. 2021, 31, 415–425. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Lee, S.-M. Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 454, 96–103. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy, 3rd ed.; Cengage Learning: Boston, MA, USA, 2014; pp. 70–71. [Google Scholar]
- Kajjumba, G.W.; Emik, S.; Öngen, A.; Özcan, H.K.; Aydın, S. Modelling of Adsorption Kinetic Processes-Errors, Theory and Application. In Advanced Sorption Process Applications; Edebali, S., Ed.; Intech Open: London, UK, 2018; p. 187. [Google Scholar]
- Zhan, W.; Xu, C.; Qian, G.; Huang, G.; Tang, X.; Lin, B. Adsorption of Cu(ii), Zn(ii), and Pb(ii) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine. RSC Adv. 2018, 8, 18723–18733. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Reguyal, F.; Praneeth, S.; Sarmah, A.K. A novel green synthesized magnetic biochar from white tea residue for the removal of Pb(II) and Cd(II) from aqueous solution: Regeneration and sorption mechanism. Environ. Pollut. 2023, 330, 121806. [Google Scholar] [CrossRef]
- Yang, Y.; Shan, R.; Xiao, Y.; Zhao, F.; Yuan, H.; Chen, Y. Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. Int. J. Mol. Sci. 2023, 24, 1974. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Qu, Y.; Yang, Y.; Qu, B.; Shan, R.; Yuan, H.; Sun, Y. Study on Efficient Adsorption Mechanism of Pb2+ by Magnetic Coconut Biochar. Int. J. Mol. Sci. 2022, 23, 14053. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, Y.; Brookes, P.C.; Wang, F.; Zhang, Q.; Xu, J.; Liu, X. Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects. Sci. Total Environ. 2021, 750, 141672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, J.; Huang, X.; Wang, W.; Sun, P.; Li, Y.; Han, J. Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(ii) and Cd(ii). RSC Adv. 2019, 9, 365–376. [Google Scholar] [CrossRef]
- Sun, C.; Chen, T.; Huang, Q.; Wang, J.; Lu, S.; Yan, J. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification. Environ. Sci. Pollut. Res. 2019, 26, 8902–8913. [Google Scholar] [CrossRef]
- Zhu, S.; Ho, S.-H.; Huang, X.; Wang, D.; Yang, F.; Wang, L.; Wang, C.; Cao, X.; Ma, F. Magnetic Nanoscale Zerovalent Iron Assisted Biochar: Interfacial Chemical Behaviors and Heavy Metals Remediation Performance. ACS Sustain. Chem. Eng. 2017, 5, 9673–9682. [Google Scholar] [CrossRef]
Properties | Pinus roxburghii | Pine Needles Char |
---|---|---|
Water content (% wb) | 7.78 | 4.7 |
Volatile matter (% db) | 71.58 | 21.1 |
Ash content (% db) | 2.08 | 7.6 |
Fixed carbon (% db) | 26.34 | 71.3 |
Elemental analysis (wt%) | ||
C | 44.99 | 77.7 |
H | 5.46 | 3.2 |
N | 0.99 | 2.4 |
O | 48.55 | 9.1 |
H/C | 1.46 | 0.50 |
O/C | 0.81 | 0.09 |
Empirical formula | CH1.46N0.02O0.81 | CH0.50N0.03O0.09 |
HHV (MJ kg−1) | 17.67 | 28.1 |
pH | - | 8.4 |
EC(dSm−1) | - | 2.15 |
Iodine Number | - | 291 |
Crystallite Size | Interplanar Spacing | Lattice Parameter | X-ray Density |
---|---|---|---|
10.16 nm | 2.51 Å | 8.35 Å | 5.27 g/cm3 |
FTIR SPECTRA | Band Peak Positions | Band Assignments |
---|---|---|
BC | 3322 cm−1 | –OH group |
1189 cm−1 | C–O bending vibration | |
1622 cm−1 | C=O carboxylic group. | |
1333 cm−1 | CH2 streching vibration | |
Magnetic Biochar Composite (MBC) | 3322 cm−1 | –OH group |
1189 cm−1 | C–O bending vibration | |
1622 cm−1 | C=O carboxylic group. | |
570 cm−1 | Fe-O stretching | |
680 cm−1 | FeOOH stretching vibration | |
FMBC | 741 cm−1 | Si-C vibration or SiO-C |
921 cm−1 | Si-O-C bond | |
1354 cm−1 | Si-O-Fe | |
1622 cm−1 | N-H bending of the –NH2 group. |
Contact Time (min) | Acidic | Basic | ||||
---|---|---|---|---|---|---|
Ct (mg/L) | Qt (mg/g) | % Removal | Ct (mg/L) | Qt (mg/g) | % Removal | |
5 | 41.30 ± 0.3000 | 19.56 ± 0.0800 | 58.70 | 5.42 ± 0.0153 | 32.86 ± 0.0100 | 94.58 |
15 | 40.90 ± 0.3477 | 19.70 ± 0.0208 | 59.10 | 4.37 ± 0.0173 | 32.87 ± 0.0321 | 95.63 |
30 | 40.60 ± 0.2443 | 19.80 ± 0.0458 | 59.40 | 4.17 ± 0.0404 | 32.90 ± 0.1216 | 95.83 |
45 | 39.90 ± 0.2570 | 20.03 ± 0.0808 | 60.10 | 3.75 ± 0.0252 | 33.08 ± 0.0513 | 96.25 |
Contact Time (min) | Acidic | Basic | ||||
---|---|---|---|---|---|---|
Ct (mg/L) | Qt (mg/g) | % Removal | Ct (mg/L) | Qt (mg/g) | % Removal | |
5 | 48.50 ± 0.0721 | 17.10 ± 0.0252 | 51.50 | 4.88 ± 0.0404 | 33.23 ± 0.0473 | 95.12 |
15 | 47.70 ± 0.0265 | 17.43 ± 0.0173 | 52.30 | 4.12 ± 0.0321 | 33.31 ± 0.0300 | 95.88 |
30 | 47.50 ± 0.0493 | 17.50 ± 0.0529 | 52.50 | 3.72 ± 0.0600 | 33.33 ± 0.0462 | 96.28 |
45 | 46.20 ± 0.0404 | 17.93 ± 0.0153 | 53.80 | 2.82 ± 0.0321 | 33.33 ± 0.0321 | 97.12 |
Medium | Pb | Cd | ||
---|---|---|---|---|
Qm (mg/g) | R2 | Qm (mg/g) | R2 | |
Acidic (3 pH) | 26.32 | 0.95 | 23.26 | 0.97 |
Basic (11 pH) | 142.86 | 0.95 | 125.00 | 0.99 |
Feedstock | Pyrolysis Temperature (°C) | Modification Reagent | Target Contaminant | Removal Capacity | Reference |
---|---|---|---|---|---|
White tea residue | 450 | Fe3O4 | Pb(II) and Cd(II) | Pb(II):81.6 mg/g and Cd(II):38.6 mg/g | Zhang et al. [36] |
Coconut skin fibre | 600 | Ce(NO3)3/Fe(NO3)3 | Pb(II) | Pb(II): 140.83 mg/g | Yang et al. [37] |
Coconut peel | 600 | Fe(NO3)3 and KMnO4 | Pb(II) | Pb(II):170.668 mg/g | Xu et al. [38] |
Rice straw | 500 | Fe3O4 | Cd(II) and As(III) | Cd(II): 25.04 mg/g and As(III): 4.58 mg/g | Wang et al. [39] |
Pine bark | 800 | Fe3O4@/APTES | Pb(II) and Cr(VI) | Pb(II): 64.92 mg/g and Cr(VI): 48.86 mg/g | Nnadozie and Ajibade [24] |
Egg white, corn straw | 500 | Fe(NO3)3·9H2O, Mn(NO3)2, | Pb(II) and Cr(VI) | Pb(II): 154.94 mg/g and Cd(II): 127.83 mg/g | Zhang et al. [40] |
Rice husk | 600 | Fe(NO3)3·9H2O, KMnO4 | Pb(II) and Cd(II) | Pb(II): 148 mg/g and Cd(II): 79 mg/g | Sun et al. [41] |
Wetland plant reed | 500 | NaBH4, FeSO4 | Pb(II), Cd(II), Cr (VI), Cu(II), Ni(II), and Zn(II) | Pb(II): 38.31 mg/g; Cu(II): 30.37 mg/g; Cr(VI): 23.09 mg/g; Cd(II): 39.53 mg/g; Ni(II): 47.85 mg/g and Zn(II): 111.11 mg/g | Zhu et al. [42] |
Pine bark | Co(NO3)2·6H2O, Fe(NO3)3·9H2O | Pb(II) and Cd(II) | Pb(II): 25.294 mg/g and Cd(II): 14.960 mg/g | Reddy and Lee [31] | |
Pine bark | APTES functionalized nano Fe3O4-Biochar composite | Pb(II) and Cd(II) | Pb(II): 26.23 mg/g in acidic aqua medium and 142.86 mg/g in basic aqua medium Cd(II): 23.26 mg/g in acidic aqua medium and 125.00 mg/g in basic aqua medium | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Pant, N.; Sharma, R.K.; Padalia, D.; Rawat, P.S.; Goswami, R.; Singh, P.; Kumar, A.; Bhandari, P.; Tabish, A.; et al. Adsorption Studies of Pb(II) and Cd(II) Heavy Metal Ions from Aqueous Solutions Using a Magnetic Biochar Composite Material. Separations 2023, 10, 389. https://doi.org/10.3390/separations10070389
Singh V, Pant N, Sharma RK, Padalia D, Rawat PS, Goswami R, Singh P, Kumar A, Bhandari P, Tabish A, et al. Adsorption Studies of Pb(II) and Cd(II) Heavy Metal Ions from Aqueous Solutions Using a Magnetic Biochar Composite Material. Separations. 2023; 10(7):389. https://doi.org/10.3390/separations10070389
Chicago/Turabian StyleSingh, Virendra, Nidhi Pant, Rajat Kumar Sharma, Diwakar Padalia, Pankaj Singh Rawat, Rabina Goswami, Praveen Singh, Akhilesh Kumar, Prabhakar Bhandari, Alam Tabish, and et al. 2023. "Adsorption Studies of Pb(II) and Cd(II) Heavy Metal Ions from Aqueous Solutions Using a Magnetic Biochar Composite Material" Separations 10, no. 7: 389. https://doi.org/10.3390/separations10070389
APA StyleSingh, V., Pant, N., Sharma, R. K., Padalia, D., Rawat, P. S., Goswami, R., Singh, P., Kumar, A., Bhandari, P., Tabish, A., & Deifalla, A. M. (2023). Adsorption Studies of Pb(II) and Cd(II) Heavy Metal Ions from Aqueous Solutions Using a Magnetic Biochar Composite Material. Separations, 10(7), 389. https://doi.org/10.3390/separations10070389