Anticorrosive Effects of Essential Oils Obtained from White Wormwood and Arâr Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Essential Oils
2.3. EO Chemical Analysis (GC-MS)
2.4. Anti-Corrosion Activity
2.4.1. Electrochemical Analysis
2.4.2. Theoretical Calculation
Density-Functional Theory (DFT) to Define B3LYP
Surface Analysis
3. Results and Discussion
3.1. Chemical Composition of Artemisia herba-alba and Juniperus phoenicea EOs
3.1.1. Essential Oils from Artemisia herba-alba
3.1.2. Essential Oils from Juniperus phoenicea
3.2. Anticorrosion Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lahsissene, H.; Kahouadji, A. Analyse ethnobotanique des plantes médicinales et aromatiques de la flore marocaine: Cas de la région de Zaër. Phythothérapie 2010, 8, 202–209. [Google Scholar] [CrossRef]
- Aimad, A.; Sanae, R.; Anas, F.; Abdelfattah, E.M.; Bourhia, M.; Mohammad Salamatullah, A.; Alzahrani, A.; Alyahya, H.K.; Albadr, N.A.; Abdelkrim, A.; et al. Chemical Characterization and Antioxidant, Antimicrobial, and Insecticidal Properties of Essential Oil from Mentha pulegium L. Evid.-Based Complement. Altern. Med. 2021, 2021, e1108133. [Google Scholar] [CrossRef]
- Boudjouref, M.; Zerrouk, M.M.; Sétif, U.F.A. Etude de L’activité Antioxydante et Antimicrobienne D’extraits D’artemisiacampestres L. Master’s Thesis, Université Ferhat Abbes, Sétif, Algeria, 2011. [Google Scholar]
- Revie, R.W. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Shreir, L.L.; Burstein, G.T.; Jarman, R.A. Corrosion, 3rd ed.; Butterworth-Heinemann: Oxford, UK; Boston, MA, USA, 1994. [Google Scholar]
- Sastri, V.S. Corrosion Inhibitors: Principles and Applications; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Bouyanzer, A.; Hammouti, B. Naturally occurring ginger as corrosion inhibitor for steel in molar hydrochloric acid at 353 K. Bull. Electrochem. 2004, 20, 63–65. [Google Scholar]
- Hammouti, B.; Kertit, S.; Melhaoui, A. Electrochemical behavior of bgugaine as a corrosion inhibitor of iron in 1 M HCl. Bull. Electrochem. 1997, 13, 97–98. [Google Scholar]
- Akrout, A. Etude des huiles essentielles de quelques plantes pastorales de la région de Matmata (Tunisie). Cah. Options Méditerranéennes 2004, 62, 289–292. [Google Scholar]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, A.; Yi, Y.-S.; Kim, M.-Y.; Cho, J.Y. Ethnopharmacological properties of Artemisia asiatica: A comprehensive review. J. Ethnopharmacol. 2018, 220, 117–128. [Google Scholar] [CrossRef]
- Benabid, A. Flore et Écosystèmes du Maroc: Evaluation et Préservation de la Biodiversité; Librairie et éditions Kalila Wa Dimna: Casablanca, Morocco, 2000. [Google Scholar]
- Fennane, M.; Ibn-Tattou, M. Flore Pratique du Maroc. Vol. 2. Angiospermae (Leguminosae-Lentibulariaceae); Inst. Scientifique, Université Mohammed V-Agdal: Rabat, Morocco, 2007. [Google Scholar]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- Meloni, M.; Perini, D.; Filigheddu, R.; Binelli, G. Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by inter-simple sequence repeat (ISSR) markers. Ann. Bot. 2006, 97, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Nedjimi, B.; Beladel, B.; Guit, B. Multi-element determination in medicinal Juniper tree (Juniperus phoenicea) by instrumental neutron activation analysis. J. Radiat. Res. Appl. Sci. 2015, 8, 243–246. [Google Scholar] [CrossRef]
- Le Floc’h, E. Contribution à Une étude Ethnobotanique de la Flore Tunisienne; Ministère de l’Enseignement Supériur et de la Recherche Scientifique: Tunis, Tunisia, 1983.
- Adams, R.P. Identifcation of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry, 4th ed.; Carol Stream, Allured Pub. Corp.: Illinois, IL, USA, 2007. [Google Scholar]
- Arrousse, N.; Mabrouk, E.H.; IsmailyAlaoui, K.; El Hajjaji, F.; Rais, Z.; Taleb, M. Economical synthesis strategy, characterization and theoretical study of the organic dye 3-oxo-3H-spiro [isobenzofuran-1, 9′-xanthene]-3′, 6′-diyl dibenzoate. SN Appl. Sci. 2020, 2, 1019. [Google Scholar] [CrossRef]
- Abdellaoui, O.; Skalli, M.K.; Haoudi, A.; Rodi, Y.K.; Arrousse, N.; Taleb, M.; Ghibate, R.; Senhaji, O. Study of the inhibition of corrosion of mild steel in a 1 M HCl solution by a new quaternary ammonium surfactant. Moroc. J. Chem. 2021, 9, 44–56. [Google Scholar]
- Alaoui Mrani, S.; Ech-chihbi, E.; Arrousse, N.; Rais, Z.; El Hajjaji, F.; El Abiad, C.; Radi, S.; Mabrouki, J.; Taleb, M.; Jodeh, S. DFT and Electrochemical Investigations on the Corrosion Inhibition of Mild Steel by Novel Schiff’s Base Derivatives in 1 M HCl Solution. Arab. J. Sci. Eng. 2021, 46, 5691–5707. [Google Scholar] [CrossRef]
- Arrousse, N.; Mabrouk, E.; Hammouti, B.; El Hajjaji, F.; Rais, Z.; Taleb, M. Synthesis, characterization, anti-corrosion behavior and theoretical study of the new organic dye: 3-oxo-3H-spiro [isobenzofuran-1,9-xanthene]-3,6-diyl bis (3-methyl-benzenesulfonate). Int. J. Corros. Scale Inhib. 2020, 9, 661–687. [Google Scholar]
- Hudaib, M.M.; Aburjai, T.A. Composition of the essential oil from Artemisia herba-alba grown in Jordan. J. Essent. Oil Res. 2006, 18, 301–304. [Google Scholar] [CrossRef]
- Zaim, A.; El Ghadraoui, L.; Farah, A. Effets des huiles essentielles d’Artemisia herba-alba sur la survie des criquets adultes d’Euchorthippusalbolineatus (Lucas, 1849). Bull. L’institut Sci. Rabat Sect. Sci. Vie 2012, 34, 127–133. [Google Scholar]
- Ghanmi, M.; Satrani, B.; Aafi, A.; Isamili, M.R.; Houti, H.; El Monfalouti, H.; Benchakroun, K.H.; Aberchane, M.; Harki, L.; Boukir, A.; et al. Effet de la date de récolte sur le rendement, la composition chimique et la bioactivité des huiles essentielles de l’armoise blanche (Artemisia herba-alba) de la région de Guerçif (Maroc oriental). Phytothérapie 2010, 8, 295–301. [Google Scholar] [CrossRef]
- Bezza, L.; Mannarino, A.; Fattarsi, K.; Mikail, C.; Abou, L.; Hadji-Minaglou, F.; Kaloustian, J. Chemical composition of the essential oil of Artemisia herba-alba issued from the district of Biskra (Algeria). Phytothérapie 2010, 8, 277. [Google Scholar] [CrossRef]
- Dob, T.; Benabdelkader, T. Chemical composition of the essential oil of Artemisia herba-alba Asso grown in Algeria. J. Essent. Oil Res. 2006, 18, 685–690. [Google Scholar] [CrossRef]
- Dhifallah, A.; Rouissi, H.; Selmi, H. Evaluation of the antioxidant and antibacterial activities of Tunisian Artemisia herba-alba essential oil. Moroc. J. Agric. Sci. 2021, 2, 114–117. [Google Scholar]
- Elmhalli, F.; Garboui, S.S.; Karlson, A.K.B.; Mozūraitis, R.; Baldauf, S.L.; Grandi, G. Acaricidal activity against Ixodesricinus nymphs of essential oils from the Libyan plants Artemisia herba alba, Origanummajorana and Juniperus phoenicea. Vet. Parasitol. Reg. Stud. Rep. 2021, 24, 100575. [Google Scholar]
- Boumhara, K.; Harhar, H.; Tabyaoui, M.; Bellaouchou, A.; Guenbour, A.; Zarrouk, A. Corrosion inhibition of mild steel in 0.5 M H2SO4 solution by Artemisia herba-alba oil. J. Bio-Tribo-Corros. 2019, 5, 8. [Google Scholar] [CrossRef]
- Tilaoui, M.; Ait Mouse, H.; Jaafari, A.; Zyad, A. Comparative phytochemical analysis of essential oils from different biological parts of Artemisia herba alba and their cytotoxic effect on cancer cells. PLoS ONE 2015, 10, e0131799. [Google Scholar] [CrossRef]
- Ennajar, M.; Bouajila, J.; Lebrihi, A.; Abderraba, M.F.; Raies, A.; Romdhane, A. Chemical Composition and Antimicrobial and Antioxidant Activities of EssentialOils and Various Extracts of Juniperus phoenicea L. (Cupressacees). J. Food Sci. 2009, 74, M364–M371. [Google Scholar] [CrossRef]
- Keskes, H.; Mnafgui, K.; Hamden, K.; Damak, M.; El Feki, A.; Allouche, N. In vitro anti-diabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pac. J. Trop. Biomed. 2014, 4, S649–S655. [Google Scholar] [CrossRef] [Green Version]
- Aafi, A.; Taleb, M.S.; Fechtal, M. Espèces Remarquables de la Flore du Maroc; CNRF: Mechanicsville, VA, USA, 2002; Volume 146. [Google Scholar]
- Ait-Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res. Int. 2012, 45, 313–319. [Google Scholar] [CrossRef]
- Bahri, F.; Romane, A.; Arjouni, Y.; Harrak, R.; Ahmed El Alaoui El Fels, M. Chemical composition and antibacterial activity of the essential oil of Moroccan Juniperus phoenicea. Nat. Prod. Commun. 2011, 6, 1515–1518. [Google Scholar]
- Bouzouita, N.; Kachouri, F.; Ben Halima, M.; Chaabouni, M.M. Composition chimique et activités antioxydante, antimicrobienne et insecticide de l’huile essentielle de Juniperusphoenicea. J. Soc. Chim. Tunis 2008, 10, 119–125. [Google Scholar]
- El-Sawi, S.; Motawae, H.; Ali, M. Chemical composition, cytotoxic activity and antimicrobialactivity of essential oils of leaves and berries of Juniperus phoenicea growin in Egypt. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P.; Barrero, A.F.; Lara, A. Comparisons of the leaf essential oils of Juniperus phoenicea, J. phoenicea subsp. eu-mediterranea Lebr. &Thiv. and J. phoenicea var. turbinata (Guss.) Parl. J. Essent. Oil Res. 1996, 8, 367–371. [Google Scholar]
- Ghouti, D.; Rached, W.; Abdallah, M.; Pires, T.C.; Calhelha, R.C.; Alves, M.J.; Abderrahmane, L.H.; Barros, L.; Ferreira, I.C. Phenolic profile and in vitro bioactive potential of Saharan Juniperus phoenicea L. and Cotula cinerea (Del) growing in Algeria. Food Funct. 2018, 9, 4664–4672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achak, N.; Romane, A.; Abbad, A.; Ennajar, M.; Romdhane, M.; Abderrabba, A. Essential oil composition of Juniperus phoenicea from Morocco and Tunisia. J. Essent. Oil Bear. Plants 2008, 11, 137–142. [Google Scholar] [CrossRef]
- Fernine, Y.; Ech-chihbi, E.; Arrousse, N.; El Hajjaji, F.; Bousraf, F.; Touhami, M.E.; Rais, Z.; Taleb, M. Ocimumbasilicium seeds extract as an environmentally friendly antioxidant and corrosion inhibitor for aluminium alloy 2024-T3 corrosion in 3 wt% NaCl medium. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127232. [Google Scholar] [CrossRef]
- Abdelahi, M.M.; Elmsellem, H.; Benchidmi, M.; Sebbar, N.K.; Belghiti, M.A.; El Ouasif, L.; Jilalat, A.E.; Kadmi, Y.; Essassi, E.M. A DFT and molecular dynamics study on inhibitory action of indazole derivative on corrosion of mild steel. J. Mater. Environ. Sci. 2017, 8, 1860–1876. [Google Scholar]
- Zaidi, S.Z.J.; Hassan, S.; Raza, M.; Walsh, F.C. Transition metal oxide as possible electrode materials for Li-ion batteries: A DFT Analysis. Int. J. Electrochem. Sci. 2021, 16, 210322. [Google Scholar] [CrossRef]
- Mrani, S.A.; Arrousse, N.; Haldhar, R.; Lahcen, A.A.; Amine, A.; Saffaj, T.; Kim, S.-C.; Taleb, M. In Silico Approaches for Some Sulfa Drugs as Eco-Friendly Corrosion Inhibitors of Iron in Aqueous Medium. Lubricants 2022, 10, 43. [Google Scholar] [CrossRef]
- Obot, I.B.; Haruna, K.; Saleh, T.A. Atomistic Simulation: A Unique and Powerful Computational Tool for Corrosion Inhibition Research. Arab. J. Sci. Eng. 2019, 44, 1–32. [Google Scholar] [CrossRef]
- Ricky, E.X.; Mpelwa, M.; Xu, X. The study of m-pentadecylphenol on the inhibition of mild steel corrosion in 1 M HCl solution. J. Ind. Eng. Chem. 2021, 101, 359–371. [Google Scholar] [CrossRef]
- Goyal, M.; Kumar, S.; Bahadur, I.; Verma, C.; Ebenso, E.E. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. J. Mol. Liq. 2018, 256, 565–573. [Google Scholar] [CrossRef]
- Galai, M.; Rbaa, M.; Ouakki, M.; Dahmani, K.; Kaya, S.; Arrousse, N.; Dkhireche, N.; Briche, S.; Lakhrissi, B.; Touhami, M.E. Functionalization effect on the corrosion inhibition of novel eco-friendly compounds based on 8-hydroxyquinoline derivatives: Experimental, theoretical, and surface treatment. Chem. Phys. Lett. 2021, 776, 138700. [Google Scholar] [CrossRef]
- Ayuba, A.M.; Abubakar, M. A Theoretical Study on Isolated Compounds from the Leaves Extract of Guiera Senegalensis as Aluminium Corrosion Inhibitor. J. Sci. Technol. 2021, 13, 47–56. [Google Scholar]
- Chile, N.E.; Haldhar, R.; Godffrey, U.K.; Chijioke, O.C.; Umezuruike, E.A.; Ifeoma, O.P.; Oke, M.O.; Ichou, H.; Arrousse, N.; Kim, S.-C.; et al. Theoretical Study and Adsorption Behavior of Urea on Mild Steel in Automotive Gas oil (AGO) Medium. Lubricants 2022, 10, 157. [Google Scholar] [CrossRef]
Peaks | Retention Time | Kovats Index | Compounds | Area (%) | ||
---|---|---|---|---|---|---|
Literature | Calculated | A. herba-alba | J. phoenicea | |||
1 | 3.435 | 737 | 733 | Norbornene | 0.70% | - |
2 | 7.989 | 939 | 939 | alpha-Pinene | - | 43.61% |
3 | 8. 999 | 930 | 925 | Thujene | 1.41% | - |
4 | 9. 138 | 975 | 976 | Sabinene | 0.75% | - |
5 | 10.433 | 1024 | 1024 | p-Cymene | 0.70% | - |
6 | 10.661 | 979 | 979 | p-Menthane, 1,8-epoxy | 2.53% | - |
8 | 10.761 | 1014 | 1014 | p-Cineole | 2.10% | - |
9 | 10.906 | 1031 | 1032 | 1,8-Cineole | 4.67% | - |
10 | 12.593 | 1096 | 1095 | Linalool | - | 0.83% |
11 | 12.904 | 1096 | 1092 | Linalool | - | 2.88% |
12 | 12.949 | 1138 | 1140 | Thujanone | 0.84% | - |
13 | 13.152 | 1102 | 1102 | Isothujone | 13.12% | - |
14 | 13.310 | 1102 | 1004 | Alpha-thujone | 13.32% | 0.82% |
15 | 13.550 | 1114 | 1114 | Beta-thujone | 30.07% | - |
16 | 13.961 | 1141 | 1141 | cis-Verbenol | - | 0.68% |
17 | 14.105 | 1142 | 1142 | cis-Sabinol | 0.75% | - |
18 | 14.177 | 1141 | 1141 | 2-Pinen-4-ol, trans- | - | 1.04% |
19 | 14.312 | 1144 | 1144 | trans-Verbenol | - | 3.16% |
20 | 15.068 | 1169 | 1169 | endo-Borneol | 0.64% | - |
21 | 15.315 | 1177 | 1174 | Terpinen-4-ol | 2.09% | - |
22 | 15.750 | 1195 | 1196 | Myrtenal | - | 1.37% |
23 | 16.093 | 1205 | 1205 | Verbenone | - | 1.52% |
24 | 17.441 | 1363 | 1363 | cis-4-Decenol | - | 0.68% |
25 | 18.580 | 1290 | 1290 | Thymol | 0.71% | - |
26 | 20.833 | 1260 | 1262 | Benzyl propanoate | - | 1.22% |
27 | 21.128 | 1390 | 1390 | beta-Elemene | - | 1.18% |
28 | 21.955 | 1408 | 1410 | Caryophyllene | - | 2.01% |
29 | 22.152 | 1561 | 1561 | Germacrene B | - | 1.18% |
30 | 22.906 | 1288 | 1290 | Bornyl acetate | 0.76% | - |
31 | 23.040 | 1137 | 1135 | cis-p-Mentha-2,8-dienol | 0.69% | - |
32 | 23.205 | 1485 | 1488 | Germacrene D | 0.80% | - |
33 | 23.824 | 1290 | 1290 | Sabinyl acetate | 1.01% | - |
34 | 24.183 | 1689 | 1688 | Shyobunol | - | 0.82% |
35 | 24.866 | 1017 | 1017 | geranyl-.alpha.-terpinene | - | 1.55% |
36 | 25.022 | 1578 | 1574 | Spathulenol | - | 1.08% |
37 | 25.171 | 1549 | 1544 | Elemol | - | 2.31% |
38 | 25.855 | 1602 | 1602 | Ledol | 0.63% | 2.55% |
39 | 26.024 | 1578 | 1576 | Spathulenol | 1.08% | 1.22% |
40 | 26.200 | 1583 | 1583 | Caryophyllene oxide | 0.93% | 4.34% |
41 | 26.881 | 1590 | 1592 | Globulol | 1.93% | - |
42 | 27.025 | 1648 | 1644 | AgarospiroI | 2.95% | - |
43 | 27.339 | 1640 | 1640 | Alpha Cadinol | 0.96% | - |
44 | 27.526 | 1630 | 1630 | Iso-spathulenol | 4.45% | - |
45 | 27.596 | 1338 | 1332 | Gamma-Elemene | 4.45% | - |
46 | 27.738 | 1900 | 1900 | Columellarin | 1.89% | - |
47 | 28.242 | 1658 | 1655 | Bisabolol oxide B | 1.13% | - |
48 | 28.465 | 1675 | 1675 | alpha-Santalol | 0.78% | - |
49 | 29.816 | 2206 | 2202 | Isospathulenol | 0.83% | |
50 | 29.973 | 1702 | 1702 | beta-Santalol | 3.38% | - |
51 | 30.704 | 1685 | 1680 | alpha-Bisabololoxide A | 0.92% | - |
52 | 31.253 | 1460 | 1458 | Allo-aromadendrene oxide | - | 1.83% |
53 | 31.598 | 1490 | 1490 | 6-Eudesmen-4-α-ol | 1.15% | - |
54 | 32.286 | 1466 | 1466 | Caryophyllene epoxide | - | 1.41% |
55 | 32.410 | 1600 | 1662 | Rosifoliol | - | 0.61% |
56 | 32.605 | 1490 | 1485 | beta-Selinene | - | 0.63% |
57 | 32.685 | 1607 | 1603 | beta-Oplopenone | - | 0.96% |
58 | 36.392 | 2216 | 2214 | Manool oxide | - | 11.50% |
59 | 40.151 | 2468 | 2468 | Abictol | - | 0.94% |
60 | 43.429 | 1032 | 1030 | Hexanedioic acid | - | 4.41% |
Conc (g/L) | -Ecorr (mV/Ag/AgCl) | icorr (µA cm−2) | βc (mV dec−1) | ηPDP (%) | |
---|---|---|---|---|---|
1 M HCl | ** | 413 | 944 | 139 | 00 |
Juniperus phoenicea | 1 | 391 | 75 | 108 | 92 |
0.75 | 405 | 87 | 104 | 91 | |
0.5 | 381 | 97 | 107 | 90 | |
0.25 | 396 | 105 | 102 | 89 | |
Artemisia herba-alba | 1.00 | 392 | 81 | 138 | 91 |
0.75 | 394 | 96 | 135 | 90 | |
0.50 | 389 | 105 | 130 | 89 | |
0.25 | 404 | 162 | 128 | 83 |
Conc. | Rs | Rct | Cdl | ndl | Q | ƞimp | |
---|---|---|---|---|---|---|---|
(g/L) | (Ω cm2) | (Ωcm2) | (µF·cm−2) | (µF·Sn−1) | % | ||
1 M HCl | ** | 1.76 | 33.2 | 89.10 | 0.784 | 312.7 | 00 |
Juniperusphoenicea | 1 | 0.94 | 425.4 | 32.78 | 0.781 | 83.23 | 92 |
0.75 | 1.06 | 379.9 | 41.03 | 0.806 | 91.76 | 91 | |
0.5 | 0.53 | 277.2 | 46.80 | 0.791 | 116.1 | 88 | |
0.25 | 1.04 | 258.0 | 53.79 | 0.773 | 141.6 | 87 | |
Artemisia herba-alba | 1 | 1.7 | 375.3 | 31.6 | 0.777 | 85 | 91 |
0.75 | 2.2 | 314.7 | 31.9 | 0.753 | 99 | 89 | |
0.5 | 0.9 | 284.4 | 43.7 | 0.784 | 113 | 88 | |
0.25 | 1.2 | 188.2 | 51.2 | 0.787 | 137 | 82 |
EOs | Descriptors | EHOMO (eV) | ELUMO (eV) | ∆Egap (eV) | η (eV) | σ (eV−1) | χ (eV) | ∆N (eV) |
---|---|---|---|---|---|---|---|---|
Artemisia herba-alba | Thujone | −6.860 | -0.829 | 6.031 | 3.015 | 0.331 | 3.845 | 0.161 |
Eucalyptol | −6.601 | 0.873 | 7.474 | 3.737 | 0.267 | 2.863 | 0.261 | |
Beta-santalol | −6.428 | -0.909 | 5.519 | 2.759 | 0.362 | 3.668 | 0.208 | |
Juniperusphoenicea | Pinene | −6.1964 | 0.4729 | 6.6693 | 3.3346 | 0.2998 | 2.8617 | 0.2936 |
Manoyl oxide | −6.7698 | 0.1404 | 6.9102 | 3.4551 | 0.2894 | 3.3146 | 0.2178 | |
Hexanedioicacid | −7.7058 | 0.0897 | 7.7956 | 3.8978 | 0.2565 | 3.8080 | 0.1298 | |
Caryophylleneoxide | −6.6356 | 0.0059 | 6.6416 | 3.3208 | 0.3011 | 3.3148 | 0.2266 |
Element | Juniperusphoenicea | Artemisia herba-alba | Blank |
---|---|---|---|
C | 7.94 | 7.36 | 0.30 |
O | 6.61 | 6.02 | 7.53 |
Si | 0.24 | 0.44 | 0.00 |
Cr | 0.35 | 0.29 | 0.25 |
Mn | 0.83 | 0.79 | 0.60 |
Fe | 84.02 | 85.09 | 77.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beniaich, G.; Beniken, M.; Salim, R.; Arrousse, N.; Ech-chihbi, E.; Rais, Z.; Sadiq, A.; Nafidi, H.-A.; Bin Jardan, Y.A.; Bourhia, M.; et al. Anticorrosive Effects of Essential Oils Obtained from White Wormwood and Arâr Plants. Separations 2023, 10, 396. https://doi.org/10.3390/separations10070396
Beniaich G, Beniken M, Salim R, Arrousse N, Ech-chihbi E, Rais Z, Sadiq A, Nafidi H-A, Bin Jardan YA, Bourhia M, et al. Anticorrosive Effects of Essential Oils Obtained from White Wormwood and Arâr Plants. Separations. 2023; 10(7):396. https://doi.org/10.3390/separations10070396
Chicago/Turabian StyleBeniaich, Ghada, Mustapha Beniken, Rajae Salim, Nadia Arrousse, Elhachmia Ech-chihbi, Zakia Rais, Asmae Sadiq, Hiba-Allah Nafidi, Yousef A. Bin Jardan, Mohammed Bourhia, and et al. 2023. "Anticorrosive Effects of Essential Oils Obtained from White Wormwood and Arâr Plants" Separations 10, no. 7: 396. https://doi.org/10.3390/separations10070396
APA StyleBeniaich, G., Beniken, M., Salim, R., Arrousse, N., Ech-chihbi, E., Rais, Z., Sadiq, A., Nafidi, H. -A., Bin Jardan, Y. A., Bourhia, M., & Taleb, M. (2023). Anticorrosive Effects of Essential Oils Obtained from White Wormwood and Arâr Plants. Separations, 10(7), 396. https://doi.org/10.3390/separations10070396