Removal of Indium Ions from Aqueous Solutions Using Hydroxyapatite and Its Two Modifications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sorbents’ Preparation
2.3. Adsorption Experiments
2.4. Methods
2.5. Reusability of the Sorbents
3. Results and Discussion
3.1. Effect of pH on Indium Removal by HAP Adsorbents
3.2. Effect of Time on Indium Removal by HAP Adsorbents and Kinetics of Study
3.3. Effect of Indium Concentrations on Its Removal by HAP Adsorbents and Equilibrium of Study
3.4. Effect of Temperature on Indium Removal by HAP Adsorbents and Thermodynamics of the Study
3.5. Effect of Co-Existing Ions on Indium Removal by HAP Adsorbents
3.6. Adsorbents’ Reusability
3.7. Theoretical Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Varghese, A.G.; Paul, S.A.; Latha, M.S. Remediation of Heavy Metals and Dyes from Wastewater Using Cellulose-Based Adsorbents. Environ. Chem. Lett. 2019, 17, 867–877. [Google Scholar] [CrossRef]
- Swain, B.; Mishra, C.; Hong, H.S.; Cho, S.S. Selective Recovery of Pure Copper Nanopowder from Indium-Tin-Oxide Etching Wastewater by Various Wet Chemical Reduction Process: Understanding Their Chemistry and Comparisons of Sustainable Valorization Processes. Environ. Res. 2016, 147, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Liu, J.; Zhang, S.; Chen, X.; Liu, Q.; Zhu, L.; Guo, L.; Liu, X. Stoichiometry, Isotherms and Kinetics of Adsorption of In(III) on Cyanex 923 Impregnated HZ830 Resin from Hydrochloric Acid Solutions. Hydrometallurgy 2016, 164, 219–227. [Google Scholar] [CrossRef]
- Kwak, N.S.; Baek, Y.; Hwang, T.S. The Synthesis of Poly(Vinylphosphonic Acid-Co-Methacrylic Acid) Microbeads by Suspension Polymerization and the Characterization of Their Indium Adsorption Properties. J. Hazard. Mater. 2012, 203–204, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Kwak, N.S.; Park, H.M.; Hwang, T.S. Preparation of Ion-Exchangeable Nanobeads Using Suspension Polymerization and Their Sorption Properties for Indium in Aqueous Solution. Chem. Eng. J. 2012, 191, 579–587. [Google Scholar] [CrossRef]
- Yang, J.; Retegan, T.; Ekberg, C. Indium Recovery from Discarded LCD Panel Glass by Solvent Extraction. Hydrometallurgy 2013, 137, 68–77. [Google Scholar] [CrossRef]
- Xu, S.; Wang, G.; Fan, J.; Wang, Z.; Zhang, J.; Chen, J.; Zheng, L.; Pan, J.; Wang, R. Preparation of High Purity Indium by Chemical Purification: Focus on Removal of Cd, Pb, Sn and Removal Mechanism. Hydrometallurgy 2021, 200, 105551. [Google Scholar] [CrossRef]
- Medvecký, L.; Briančin, J. Possibilities of Simultaneous Determination of Indium and Gallium in Binary InGa Alloys by Anodic Stripping Voltammetry in Acetate Buffer. Chem. Pap. 2004, 58, 93–100. [Google Scholar]
- Zinicovscaia, I.; Yushin, N.; Humelnicu, D.; Grozdov, D.; Ignat, M.; Humelnicu, I. Adsorption Capacity of Silica SBA-15 and Titanosilicate ETS-10 toward Indium Ions. Materials 2023, 16, 3201. [Google Scholar] [CrossRef]
- Hwang, C.W.; Kwak, N.S.; Hwang, T.S. Preparation of Poly(GMA-Co-PEGDA) Microbeads Modified with Iminodiacetic Acid and Their Indium Adsorption Properties. Chem. Eng. J. 2013, 226, 79–86. [Google Scholar] [CrossRef]
- Jeon, C.; Cha, J.H.; Choi, J.Y. Adsorption and Recovery Characteristics of Phosphorylated Sawdust Bead for Indium (III) in Industrial Wastewater. J. Ind. Eng. Chem. 2015, 27, 201–206. [Google Scholar] [CrossRef]
- Calagui, M.J.C.; Senoro, D.B.; Kan, C.C.; Salvacion, J.W.L.; Futalan, C.M.; Wan, M.W. Adsorption of Indium (III) Ions from Aqueous Solution Using Chitosan-Coated Bentonite Beads. J. Hazard. Mater. 2014, 277, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Y.; Lu, W.; Le, X.; Li, P.; Huang, L.; Zhang, J.; Yang, J.; Serpe, M.J.; Chen, D.; et al. Fluorescent Hydrogel-Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury (II) Detection. Adv. Mater. Technol. 2019, 4, 1800201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yao, Y.; Wu, J.; Protsak, I.; Lu, W.; He, X.; Xiao, S.; Zhong, M.; Chen, T.; Yang, J. Super Hydrophilic Semi-IPN Fluorescent Poly(N-(2-Hydroxyethyl)Acrylamide) Hydrogel for Ultrafast, Selective, and Long-Term Effective Mercury (II) Detection in a Bacteria-Laden System. ACS Appl. Bio Mater. 2019, 2, 906–915. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Gao, X.; Liu, C.; Guo, L.; Zhang, S.; Liu, X.; Liu, C. Adsorption Behavior of Indium (III) on Modified Solvent Impregnated Resins (MSIRs) Containing Sec-Octylphenoxy Acetic Acid. Hydrometallurgy 2012, 121–124, 60–67. [Google Scholar] [CrossRef]
- Li, M.; Meng, X.; Liang, X.; Yuan, J.; Hu, X.; Wu, Z.; Yuan, X. A Novel In(III) Ion-Imprinted Polymer (IIP) for Selective Extraction of In(III) Ions from Aqueous Solutions. Hydrometallurgy 2018, 176, 243–252. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Lopez, F.A.; Rodriguez, O.; Martinez-Ramirez, S.; Garcia-Diaz, I. Sorption of Indium (III) onto Carbon Nanotubes. Ecotoxicol. Environ. Saf. 2016, 130, 81–86. [Google Scholar] [CrossRef]
- Huang, C.C.; Huang, J.J. Adsorption of Indium and Zinc Ions from Aqueous Solutions by Carboxymethyl Chitosan/Poly(Acrylic Acid) Microbeads. Desalin. Water Treat. 2018, 118, 230–240. [Google Scholar] [CrossRef]
- Homhuan, N.; Bureekaew, S.; Ogawa, M. Efficient Concentration of Indium (III) from Aqueous Solution Using Layered Silicates. Langmuir 2017, 33, 9558–9564. [Google Scholar] [CrossRef]
- Li, Z.; Dotto, G.L.; Bajahzar, A.; Sellaoui, L.; Belmabrouk, H.; Ben Lamine, A.; Bonilla-Petriciolet, A. Adsorption of Indium (III) from Aqueous Solution on Raw, Ultrasound- and Supercritical-Modified Chitin: Experimental and Theoretical Analysis. Chem. Eng. J. 2019, 373, 1247–1253. [Google Scholar] [CrossRef]
- Roosen, J.; Mullens, S.; Binnemans, K. Multifunctional Alginate-Sulfonate-Silica Sphere-Shaped Adsorbent Particles for the Recovery of Indium (III) from Secondary Resources. Ind. Eng. Chem. Res. 2017, 56, 8677–8688. [Google Scholar] [CrossRef]
- Li, M.; Meng, X.; Huang, K.; Feng, J.; Jiang, S. A Novel Composite Adsorbent for the Separation and Recovery of Indium from Aqueous Solutions. Hydrometallurgy 2019, 186, 73–82. [Google Scholar] [CrossRef]
- Aissa, A.; Othmani, M. Heavy Metals Removal Using Nano-Hydroxyapatite Extracted from Cattle Bones. ChemistrySelect 2023, 8, e202300165. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. Hydroxyapatite as an Advanced Adsorbent for Removal of Heavy Metal Ions from Water: Focus on Its Applications and Limitations. In Proceedings of the Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2021; Volume 46, pp. 11029–11034. [Google Scholar]
- Andrew Ofudje, E.; Sodiya, E.F.; Olanrele, O.S.; Akinwunmi, F. Adsorption of Cd2+ onto Apatite Surface: Equilibrium, Kinetics and Thermodynamic Studies. Heliyon 2023, 9, e12971. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Du, M.; Jing, L.; Zhang, X.; Li, Q.; Yang, J. Green Synthesized Hydroxyapatite for Efficient Immobilization of Cadmium in Weakly Alkaline Environment. Environ. Res. 2023, 223. [Google Scholar] [CrossRef]
- Núñez, D.; Serrano, J.A.; Mancisidor, A.; Elgueta, E.; Varaprasad, K.; Oyarzún, P.; Cáceres, R.; Ide, W.; Rivas, B.L. Heavy Metal Removal from Aqueous Systems Using Hydroxyapatite Nanocrystals Derived from Clam Shells. RSC Adv. 2019, 9, 22883–22890. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Abdusamadzoda, D.; Grozdov, D.; Humelnicu, I.; Ignat, M.; Humelnicu, D. Removal of Vanadium Ions from Aqueous Solutions Using Different Type of Hydroxyapatites: Adsorption Isotherm, Kinetics and Thermodynamic Studies. Environ. Eng. Manag. J. 2021, 20, 871–881. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Humelnicu, I.; Humelnicu, D.; Mitina, T. Removal of Chromium (III) Ions from Aqueous Solutions Using Different Types of Hydroxyapatites. Desalin. Water Treat. 2020, 204, 297–305. [Google Scholar] [CrossRef]
- Arsad, M.S.M.; Lee, P.M. Synthesis and Characterization of Hydroxyapatite Nanoparticles and β-TCP Particles. 2nd Int. Conf. Biotechnol. Food Sci. 2011, 7, 184–188. [Google Scholar]
- Mohammad, N.F.; Othman, R.; YEOH, F.Y. Controlling the Pore Characteristics of Mesoporous Apatite Materials: Hydroxyapatite and Carbonate Apatite. Ceram. Int. 2015, 41, 10624–10633. [Google Scholar] [CrossRef]
- Sheha, R.R. Sorption Behavior of Zn (II) Ions on Synthesized Hydroxyapatites. J. Colloid Interface Sci. 2007, 310, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sairam Sundaram, C.; Viswanathan, N.; Meenakshi, S. Fluoride Sorption by Nano-Hydroxyapatite/Chitin Composite. J. Hazard. Mater. 2009, 172, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Xu, L.; Wang, Q.; Chen, C.; Fu, M. Adsorption of Indium (III) Ions from an Acidic Solution by Using UiO-66. Metals 2022, 12, 579. [Google Scholar] [CrossRef]
- Chou, W.L.; Wang, C.T.; Huang, K.Y.; Chang, Y.C.; Shu, C.M. Investigation of Indium Ions Removal from Aqueous Solutions Using Spent Coffee Grounds. Int. J. Phys. Sci. 2012, 7, 2445–2454. [Google Scholar] [CrossRef]
- Pennesi, C.; Amato, A.; Occhialini, S.; Critchley, A.T.; Totti, C.; Giorgini, E.; Conti, C.; Beolchini, F. Adsorption of Indium by Waste Biomass of Brown Alga Ascophyllum Nodosum. Sci. Rep. 2019, 9, 16763. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.H.; Lu, B.W.; Wang, Y.J. Sorption Behavior and Mechanism of Indium (III) onto Amino Methylene Phosphonic Acid Resin. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2002, 17, 47–50. [Google Scholar] [CrossRef]
- El-Shazly, E.A.A.; Moussa, S.I.; Dakroury, G.A. Recovery of Some Rare-Earth Elements by Sorption Technique onto Graphene Oxide. J. Sustain. Metall. 2022, 8, 715–731. [Google Scholar] [CrossRef]
- Jiang, J.; Long, Y.; Hu, X.; Hu, J.; Zhu, M.; Zhou, S. A Facile Microwave-Assisted Synthesis of Mesoporous Hydroxyapatite as an Efficient Adsorbent for Pb2+ Adsorption. J. Solid. State Chem. 2020, 289, 121491. [Google Scholar] [CrossRef]
- Billah, R.E.K.; Khan, M.A.; Park, Y.K.; Am, A.; Majdoubi, H.; Haddaji, Y.; Jeon, B.H. A Comparative Study on Hexavalent Chromium Adsorption onto Chitosan and Chitosan-Based Composites. Polymers 2021, 13, 3427. [Google Scholar] [CrossRef]
- Sen, T.K.; Gomez, D. Adsorption of Zinc (Zn2+) from Aqueous Solution on Natural Bentonite. Desalination 2011, 267, 286–294. [Google Scholar] [CrossRef]
- Wakamura, M.; Kandori, K.; Ishikawa, T. Surface Composition of Calcium Hydroxyapatite Modified with Metal Ions. Colloids Surf. A Physicochem. Eng. Asp. 1998, 142, 107–116. [Google Scholar] [CrossRef]
- El-Maghrabi, H.H.; Younes, A.A.; Salem, A.R.; Rabie, K.; El-shereafy, E. Magnetically Modified Hydroxyapatite Nanoparticles for the Removal of Uranium (VI): Preparation, Characterization and Adsorption Optimization. J. Hazard. Mater. 2019, 378, 120703. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.; Bulut, Y.; Yerlikaya, Ç. Removal of Copper (II) from Aqueous Solution by Adsorption onto Low-Cost Adsorbents. J. Environ. Manag. 2008, 87, 37–45. [Google Scholar] [CrossRef]
- Li, G.; Zhang, B.; Ma, Z.; Wang, Z. Facile Synthesis of Hydroxyl- and Amine-Riched Porous Polymer for Indium Recovery in Water. Microporous Mesoporous Mater. 2021, 323, 111162. [Google Scholar] [CrossRef]
- Díez, E.; Gómez, J.M.; Rodríguez, A.; Bernabé, I.; Sáez, P.; Galán, J. A New Mesoporous Activated Carbon as Potential Adsorbent for Effective Indium Removal from Aqueous Solutions. Microporous Mesoporous Mater. 2020, 295. [Google Scholar] [CrossRef]
- Sepehri, S.; Kanani, E.; Abdoli, S.; Rajput, V.D.; Minkina, T.; Asgari Lajayer, B. Pb (II) Removal from Aqueous Solutions by Adsorption on Stabilized Zero-Valent Iron Nanoparticles—A Green Approach. Water 2023, 15, 222. [Google Scholar] [CrossRef]
- Kohn, W.; Becke, A.D.; Parr, R.G. Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100, 12974–12980. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Becke, A.D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. JChPh 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
Kinetics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sorbent | Pseudo-First Order | Pseudo-Second Order | Elovich | ||||||
qe | k1 | R2 | qe | k2 | R2 | α | β | R2 | |
HAP | 7.85 ± 0.07 | 2.24 ± 0.19 | 0.99 | 7.98 ± 0.03 | 0.88 ± 0.07 | 0.99 | 1.1E14 ± 6.4 | 4.67 ± 0.73 | 0.99 |
HAP P123 | 8.06 ± 0.28 | 0.52 ± 0.09 | 0.96 | 8.62 ± 0.54 | 0.09 ± 0.04 | 0.914 | 105.9 ± 24.3 | 0.98 ± 0.36 | 0.81 |
HAP F127 | 13.32 ± 4.40 | 0.01 ± 0.008 | 0.96 | 21.8 ± 8.7 | 4.8 ± 0.00 | 0.96 | 0.24 ± 0.05 | 0.11 ± −0.05 | 0.96 |
Isotherms | ||||||
---|---|---|---|---|---|---|
Sorbent | Langmuir | Freundlich | ||||
qm | b | R2 | KF | n | R2 | |
HAP | 11,071 ± 1712 | 9.04 × 10−6 | 0.99 | 0.98 ± 0.011 | 0.99 ± 0.002 | 0.99 |
HAP P123 | 11,035 ± 907 | 9.07 × 10−6 | 0.99 | 0.99 ± 0.004 | 0.99 ± 6.9 × 10−4 | 1.0 |
HAP F127 | 10,799 ± 713 | 9.28× 10−6 | 1.00 | 0.99 ± 0.003 | 0.99 ± 5.4 × 10−4 | 1.0 |
Adsorbent | Conditions/Kinetic | q, mg/g | References |
---|---|---|---|
HAP | pH = 4, t = 22 °C/PSO | 11,071 | Present study |
HAP P123 | pH = 5, t = 22 °C/PSO | 11,035 | Present study |
HAP F127 | pH = 4, t = 22 °C/PSO | 10,799 | Present study |
Poly(vinylphosphonic acid-co-acrylic acid) nanobeads | pH = 8, t = 25 °C | 59.71 | [6] |
Mesoporous silica SBA-15 | pH = 6, t = 22 °C/PSO | 2267 | [10] |
Titanosilicate ETS-10 | pH = 3, t = 22 °C/PSO | 367 | [10] |
Powdered phosphorylated sawdust | pH = 3.5 | 1.121 | [12] |
Solvent-impregnated resins | t = 25 °C/PSO | 29.45 | [16] |
Ion Imprinted Polymer | t = 25 °C/PSO | 60.62 | [17] |
Supercritical modified chitin | t = 25 °C/PSO | 137.69 | [21] |
SiO2@GO-PO3H2 | pH = 3, t = 25 °C/PSO | 149.83 | [23] |
Poly (melamine-formic acid) network | pH = 4, t = 30 °C/PSO | 206.3 | [46] |
Mesoporous activated carbon | pH = 3.5, t = 25 °C/PSO | 9.81 | [47] |
Sorbent | Temperature, K | ΔG°, kJ/mol | ΔH°, kJ/mol | ΔS°, J/mol·K |
---|---|---|---|---|
HAP | 293 | −13.5 | −19.0 | −18.7 |
303 | −13.3 | |||
313 | −13.1 | |||
323 | −12.9 | |||
HAP P123 | 293 | −12.7 | −46.1 | −113.8 |
303 | −11.6 | |||
313 | −10.5 | |||
323 | −9.3 | |||
HAP F127 | 293 | −11.7 | −24.1 | −42.1 |
303 | −11.3 | |||
313 | −10.9 | |||
323 | −10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinicovscaia, I.; Yushin, N.; Humelnicu, D.; Ignat, M.; Humelnicu, I.; Grozdov, D.; Vershinina, T. Removal of Indium Ions from Aqueous Solutions Using Hydroxyapatite and Its Two Modifications. Separations 2023, 10, 401. https://doi.org/10.3390/separations10070401
Zinicovscaia I, Yushin N, Humelnicu D, Ignat M, Humelnicu I, Grozdov D, Vershinina T. Removal of Indium Ions from Aqueous Solutions Using Hydroxyapatite and Its Two Modifications. Separations. 2023; 10(7):401. https://doi.org/10.3390/separations10070401
Chicago/Turabian StyleZinicovscaia, Inga, Nikita Yushin, Doina Humelnicu, Maria Ignat, Ionel Humelnicu, Dmitrii Grozdov, and Tatyana Vershinina. 2023. "Removal of Indium Ions from Aqueous Solutions Using Hydroxyapatite and Its Two Modifications" Separations 10, no. 7: 401. https://doi.org/10.3390/separations10070401
APA StyleZinicovscaia, I., Yushin, N., Humelnicu, D., Ignat, M., Humelnicu, I., Grozdov, D., & Vershinina, T. (2023). Removal of Indium Ions from Aqueous Solutions Using Hydroxyapatite and Its Two Modifications. Separations, 10(7), 401. https://doi.org/10.3390/separations10070401