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Abstract: Investigation of the change rate for contaminant parameters is important to characterize
dense non-aqueous phase liquid (DNAPL) transport and distribution in groundwater systems. In
this study, four experiments of perchloroethylene (PCE) migration are conducted in two-dimensional
(2D) sandboxes to characterize change rates of PCE saturation (So) and PCE–water interfacial area
(AOW) under different conditions of salinity, surface active agent, and heterogeneity. Associated
representative elementary volume (REV) of the change rate of So (So rate) and change rate of AOW

(AOW rate) is derived over the long-term transport process through light transmission techniques.
REV of So rate (SR-REV) and REV of AOW rate (AR-REV) are estimated based on the relative gradient
error (εi

g). Regression analysis is applied to investigate the regularity, and a model based on a
back-propagation (BP) neural network is built to simulate and predict the frequencies of SR-REV
and AR-REV. Experimental results indicated the salinity, surface active agent, and heterogeneity
are important factors that affect the So rate, AOW rate, SR-REV, and AR-REV of the PCE plume in
porous media. The first moment of the PCE plume along the vertical direction is decreased under
conditions of high salinity, surface active agent, and heterogeneity, while these factors have different
effects on the second moment of the PCE plume. Compared with the salinity and surface active
agent, heterogeneity has the greatest effect on the GTP, the distributions of the So rate and AOW rate
along the depth, and dM, dI. For SR-REV, the standard deviation is increased by the salinity, surface
active agent, and heterogeneity. Simultaneously, the salinity and heterogeneity lead to lower values
of the mean value of SR-REV, while the surface active agent increases the mean value of SR-REV.
However, the mean and standard deviation of AR-REV have no apparent difference under different
experimental conditions. These findings reveal the complexity of PCE transport and scale effect in the
groundwater system, which have important significance in improving our understanding of DNAPL
transport regularity and promoting associated prediction.

Keywords: representative elementary volume (REV); change rate; regression analysis; BP neural
network; regularity

1. Introduction

With the development of the social economy and urbanization, extensive use of
dense non-aqueous phase liquids (DNAPLs) in the industry has led to serious ground-
water environment deterioration, which has become one of the hotspots that attracted
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attracting global attention [1–8]. When these toxic, carcinogenic, and less easily degraded
DNAPLs cause groundwater contamination, the ecosystem and human health are seriously
threatened [9–12]. DNAPLs are heavier than water and usually migrate downward
through the saturated zone due to their greater density. DNAPLs can be trapped as resid-
ual ganglia and globules and accumulate pools at permeability barriers in groundwater
systems [13–15]. In this infiltration process, DNAPLs form the a heterogeneous distribution.
As a result, residual and pooled DNAPL become persistent contaminant sources, which can
cause long-term groundwater contamination and high risk for to ecosystems and human
health. Landrigan et al. [5] reported that nine million people died in 2015 caused bydue
to the influence of environmental contamination. Contamination caused by DNAPLs can
lead to various diseases such as heart disease, stroke, cancerr etc. [5,16]. Indeed, effective
remediation relies on understanding the characteristics of DNAPLs migration and dis-
tribution in the aquifer [8,12,17]. Therefore, investigation of the change rate of DNAPLs
concentration and its associated characteristics is fundamental to enhancing understanding
of the regularity of DNAPL transport and remediation [17].

Modeling contaminant transport in porous media is based on the continuum as-
sumption, by with the help of representative elementary volume (REV) [18,19]. REV is
indispensable for modeling contaminant transport in groundwater and deriving associated
effective macroscopic parameters. High High-quality experiments can improve our under-
standing of the characteristics of the REV for porous media and inner contaminants [20,21].
With the development of techniques, light transmission techniques (Figure 1a) gained
popularity for the measurement of parameters of translucent porous media, contaminants
migration behavior, and REV estimation [20–24]. Light transmission techniques can over-
come the limitations associated with X-ray measurement and gamma-ray radiation, such as
high costs, hazardous working environments, and the special requirement of high energy
sources, which facilitates REV estimation for the DNAPL plume [21]. Figure 2b presents a
conceptual representation of the REV curve to reveal the change of media parameters as
the measured scale increased. When the measured scale (L) (Figure 2c) is close to the REV
region (Lmin ≤ L ≤ Lmax), the value of the parameter is relatively constant and steady.
Upon further decrease (L < Lmin) and increase (L > Lmax) of the spatial scale, the value
of the parameter will become nonstationary and unsteady. However, the REV plateau in
region II is difficult to identify for a real porous media system, which causing the associated
study studies to be only limited to only a few natural porous media and for a single variable
due to various difficulties and complexity [18,19]. The REVs of the change rate of DNAPL
concentration and its associated characteristics during long-term transport periods under
different conditions have not been explored. As a result, it is very essential to study the
REVs of the change rate of DNAPL saturation and the DNAPL–water interfacial area over
a long time in the groundwater system for the improvement of in understanding DNAPL
behaviors and designing more effective remediation schemes.

A bBack-propagation (BP) neural network is a nonlinear learning system equipped
with self-learning capacity [25,26]. The basic principle is to use the error after the output
to estimate the error of the direct leader layer of the output layer, and then use this error
to estimate the error of the previous layer [24,27,28]. The application of the artificial
neural network theory has made remarkable progress, especially in the fields of artificial
intelligence, automatic control, computer science, information processing, robotics, and
pattern recognition [27,29,30]. In recent years, the BP neural network is has been applied in
the field of engineering, and achieved a series of research results. Ercanoglu [29] used a
BP artificial neural network to assess the sensitivity of the SE Bartin (Turkey) landslide in
the West Black Sea region. Polykretis et al. [30] found the average accuracy of prediction
of landslides based on artificial neural networks for the Creole River Basin reached 84%.
With the development of the artificial neural technique, the BP neural network has been
widely used in the evaluation and prediction for of multiphase flow in porous media [27],
data fusion for satellites [25], inverse modeling of groundwater flow [24], simulation of soil
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water dynamics [28], and dispersivity analysis [26]. However, few studies have addressed
the simulation and prediction of the REV of the DNAPL plume by the neural network.
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containing four input layers, five hidden layers, and one output layer; (c) the two-dimensional (2D)
sandbox system used by Experiments I~III; and (d) 2D sandbox system used by Experiment IV.
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Figure 2. (a) Conceptual schematic of DNAPL transport process in porous media; (b) cConceptual
representation of the measured value of the variable under different scales [19]; (c) tThe image
window geometry of core-centered cuboid used by REV estimation; and (d) PCE saturation of
Experiments I~IV derived from light transmission technique during the entire experimental period
and observation cells.
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The objective of this research is to estimate and simulate the REVs of the change rate
of DNAPL concentration and its associated characteristics under different conditions of
salinity, surface active agent, and heterogeneity in the groundwater system. Four PCE trans-
port experiments are performed in two-dimensional (2D) sandboxes packed by translucent
porous media. The change rates of PCE concentration (So), PCE–water interfacial area
(AOW), and associated REV sizes are quantified by light transmission techniques [20–23]
and relative gradient error (ε_gˆi). Afterward, a BP neural network is established to predict
mean values of REV for PCE plume under different experimental conditions.

2. Materials and Methods
2.1. Experiment Procedure

Four experiments are performed in two-dimensional sandboxes to study the So-rate
rate, AOW-rate rate, and associated REV under different conditions (Figure 1c,d). The
sandboxes used by in Experiments -I~III are packed by with single F20/30 mesh translucent
silica sand to create a homogeneous condition (Figure 1c), and the sandbox used by in
Experiment-Experiment IV is packed with six kinds of translucent silica sand to create
a heterogeneous condition (Figure 1d). F20/30 mesh translucent silica sand is used as
background porous media for Experiment-IV. Moreover, five lenses with low permeability
are added into the sandbox to create heterogeneity. For all experiments, water is pumped
into sandboxes through influent ports (I1-3 and I4-6) and flows out through the effluent
ports (E1-3 and E4-6) with the help of a peristaltic pump. The water flow velocity in
sandboxes is kept at a constant rate of 0.5 m/d along the horizontal direction, which is
similar to the natural groundwater flow rate. When the sandbox is fully saturated by
with water, a light source is placed on the side of the sandbox to let light transit through
translucent 2D porous media. A thermoelectrically air-cooled charge-coupled device (CCD)
camera is placed on the other side of the sandbox to capture the emergent light intensity.
Afterward, PCE is injected into the sandbox by a syringe pump to let PCE infiltrate and
transport in the 2D sandbox (Figure 2a). The parameters of translucent porous media, inner
PCE saturation (So), and So-rate rate of PCE plume are quantified using light transmission
techniques [20–23]. Experiment-I is conducted under the condition of homogeneous porous
media and low salinity. Experimental conditions of Experiments-II~IV are changed to study
the effect of salinity, surface active agent, and heterogeneity. The detailed experimental
conditions are given in Table S1.

2.2. REV Evaluation

Porosity of translucent porous media and PCE saturation (So) of PCE plume are
quantified by light transmission techniques [20–23]:

θ =
lnIs − β

γ
. (1)

So =
lnIs − lnI

lnIs − lnIoil
. (2)

where θ is porosity; Is is the emergent light intensity when light transmits through 2D
translucent silica sand fully saturated with water; β and γ are two constant parameters [21];
I is the light intensity after light penetration through 2D porous media system including
water, PCE, and solid; Ioil is the light intensity after light penetration through 2D translucent
silica sand fully saturated with PCE; and So is PCE saturation. The assumption that the
translucent silica sand surfaces are fully wetted by water allows the surface area of the PCE
phase to be taken as the total PCE–water interface. PCE–water interfacial area (AOW) is
normalized by the associated system volume (cm−1).
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Based on the quantification of light transmission techniques, So-rate rate and AOW-
rate rate are obtained as follows:

So−rate =
Sk+1

o − Sk
o

tk+1 − tk . (3)

AOW−rate =
Ak+1

OW − Ak
OW

tk+1 − tk . (4)

where Sk
o and Sk+1

o are PCE saturation at times tk and tk+1, respectively; Ak
o and Ak+1

o are
PCE–water interfacial area at times tk and tk+1, respectively. Details about the spatial mo-
ment, GTP analysis, and REV estimation method are provided in Supplementary Materials.

2.3. BP Neural Network

Artificial neural network is a research direction in the field of artificial intelligence,
which simulates the response of the brain through several neurons [24]. The BP neural
network structure is a multi-layer feed-forward model in which many neural units are
linked to each other to form a simulated biological neural network [26–30]. The neural
network is a nonlinear learning system equipped with self-learning capacity [25,26,28].
It uses the mathematical modeling method, when the external information is obtained,
the information is simply processed, and the processed result is input to the next layer of
neurons until the output result.

The structure between layers is divided into three layers: an input layer that accepts
external information, an intermediate hidden layer for information transmission and
processing, and an output layer that outputs the final result [24–28]. Each layer is generally
composed of one or more neurons, and each layer of neurons only receives the information
transmitted by the neurons of the previous layer. The input layer accepts input information
from the outside world. The nodes of the hidden layer only accept the input of information
from the input layer. This structure determines that the BP neural network is sensitive to
the neurons in the upper and lower layers, and among them, it has a greater impact on the
information transmitted by the superior neurons [24,26,28]. To predict the REV of the PCE
plume, a BP neural network is built, which includes four input layers, five hidden layers,
and one output layer (Figure 1b).

3. Results and Discussion
3.1. So Rate and AOW Rate of PCE Plume

When PCE is injected into 2D translucent silica sand, PCE infiltrates vertically from
the upper layer to the lower layer like a drop of water at in the first few minutes (Figure 2d).
Afterward, PCE continues to infiltrate along a vertical direction for Experiments-I~III
under homogeneous conditions. However, PCE pools on top of the five lenses in the
heterogeneous porous media for Experiment -IV (Figure 2d). As PCE migration progresses,
PCE cascades over the sides of lenses and reaches the bottom. The So-rate rate and AOW-
rate rate of the PCE plume during the entire experimental period are derived based on
light transmission techniques (Figure 3a,b). Through the distribution of the So-rate rate
and AOW-rate rate, the place where migration is active can be identified. Before t = 80 min,
the So-rate rate and AOW-rate rate of the PCE plume are relatively high. After t = 80 min,
the So-rate rate and AOW-rate rate are kept at a low level, while PCE plumes have slight
movement at in some places, such as the lower part of the PCE plume (Figure 3b). Then
Then, migration becomes slower, and the PCE plumes are kept in a steady state for a long
time until t = 1523 min (Figure 3b).
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Figure 3. (a) The change rate of PCE saturation for four experiments; (b) the change rate of PCE–water
interfacial area during the entire experimental period.
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The moment analysis, the results of the contaminated plume area, the GTP, and
the associated regression analysis are presented in Figure 4a–f. In Figure 4a, there is a
positive correlation between infiltration depth and injected PCE volume. The Salinity
salinity has no obvious influence on the relationship between infiltration depth and in-
jected PCE volume, while the surface active agent and heterogeneity have an apparent
influence. When the injected PCE volume is the same, the infiltration depth of the PCE
plume in Experiment-Experiment III (surface active agent) becomes lower, and Experiment-
Experiment IV (heterogeneity) further reduces the infiltration depth of the PCE plume.
Similarly, the surface active agent and heterogeneity also lower the σz of the PCE plume
(Figure 4b). In Figure 4c, compared with Experiment-Experiment I, σxx of PCE plume is
increased by heterogeneity (Experiment-Experiment IV) and is decreased when the surface
active agent exists (Experiment-Experiment III). Moreover, σzz of the PCE plume has a
larger value in Experiment-Experiment II when the salinity is high (Figure 4d), while
surface active agent and heterogeneity all decrease the value of σzz. For the plume area,
there is no obvious difference among Experiments-I, II, and IV, while the plume area is
slightly small for Experiment-Experiment III under the condition of high concentration of
surface active agent (Figure 4e). BesidesIn addition, the most important factor that affects
the GTP of the PCE plume is heterogeneity (Figure 4f).

The change of the So-rate rate and AOW-rate rate along the depth for location
x = 0.30 m is shown in Figure 5a. The peak value of the So-rate rate moves from top
to bottom as time goes on. However, the change of the So-rate rate with the depth is very
different for Experiment-IV (heterogeneity). The peak of the So-rate rate is very apparent
at t = 21 min and t = 80 min for Experiment -IV. In addition, the AOW-rate rate has no
apparent change as the depth increases for Experiment-IV, while the AOW-rate rate curves
have some peaks for Experiments-I~III. These phenomena indicate that heterogeneity has
the biggest influence on the distribution of the So-rate rate and AOW-rate rate along the
depth for location x = 0.30 m.

Mass The mass center coordinate of the PCE plume (the first moments) can be obtained
based on Equations (S2) and (S3). Eventually, the change of average So-rate rate and AOW-
rate rate with the distance (dI) from the injection point to the considered point in the PCE
plume are presented in Figure 5b. The So-rate rate changes obviously when dI increases
before t = 80 min. The AOW-rate rate decreases as dI increases at t = 21 min, while the
AOW-rate rate keeps remains at a low level for Experiment-Experiment IV (heterogeneity).
Simultaneously, the change of average So-rate rate and AOW-rate rate with dM (the distance
from the mass center to the considered point contained in the PCE plume) is illustrated
in Figure 5c. According to the results presented in Figure 5b,c, the average So-rate rate
appears at a peak and then decreases with the increase of in dM and dI for all experiments
at t = 2 min. The average So-rate rate decreases with increasing ofthe increase in dM and
dI for all experiments at t = 21 min, while the value of the So-rate rate is very low for
heterogeneous conditions (Experiment-Experiment IV). After t = 80 min, the shape of the
average So-rate rate along dM and dI is very different for Experiment-Experiment IV, which
suggests heterogeneity has an important effect on the distribution of the So-rate rate and
AOW-rate rate along dM and dI.
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Figure 4. Moment analysis of PCE plume and fitted models: (a) infiltration depth; (b) vertical first-
order moment; (c) horizontal second-order moment; (d) vertical second-order moment; (e) plume
area; and (f) GTP.
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rate as dI increases; and (c) tThe change of average So-rate rate and AOW-rate rate as dM increases.

3.2. The REV of So Rate and AOW Rate

The 2D sandbox domain for all experiments is discretized into 1200 cells with dimen-
sions of 0.015 m × 0.015 m. The measured scale is increasingncreases from the center of
every cell to calculate the So-rate rate and AOW-rate rate. Afterward, the corresponding
ε_gˆi is calculated to estimate REV based on Equation (S6). To facilitate the observation of
REV estimation for characteristics of the So-rate rate and AOW-rate rate, 4 four observation
cells are selected from four experiments (Figure 3a). Figure 6a,b show the change of So-rate
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rate and AOW-rate rate as measured size increases at t = 1523 min for observation cells
selected from the four experiments. In most cases, the REV plateau delineating REV region
II is not observed from the curves of the So-rate rate and AOW-rate rate, indicating that
direct So-rate and AOW-rate curves areit is impossible to directly identify the REV plateau
from the So rate and AOW rate curves in realistic experimental conditions. The ε_gˆi
calculated using Equation (S6) generally results in a more explicit REV plateau (Figure 6a,b).
Erratic variation at small window size was observed for incremental growth in measured
size, which is consistent with micro scales in the region I (Figure 2b). As the measured scale
becomes larger, the variability and magnitude of ε_gˆi decrease obviously.
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The REVs of all cells contained in the PCE plume are estimated for all experiments.
Afterward, distributions of the So-rate rate REV (SR-REV) and AOW-rate rate REV (AR-
REV) of the PCE plume during the entire experimental period are presented in Figure 7a,b,
respectively. Due to the large number of cells contained in the PCE plume, the statistical
power is yielded by the greater number of SR-REV and AR-REV data, and the prediction
based on the BP neural network is conducted. The cCorresponding results of the BP neural
network for SR-REV and AR-REV are shown in Figure 8a,b.

At the beginning of the experiment, at t = 5 min, little PCE is injected into the sandbox,
and the shapes of frequency of SR-REV and AR-REV are very irregular (Figure 8a,b). As
more and more PCE comes into the 2D sandbox, the PCE plume is expanded, and the
frequency of SR-REV and AR-REV is changed. The results of frequency suggest SR-REV
and AR-REV distribute in 3.0 mm–15.0 mm after t = 80 min. At t = 1523 min, the frequency
and cumulative frequency of SR-REV and AR-REV remain at a steady state.



Separations 2023, 10, 446 12 of 17

Separations 2023, 10, x FOR PEER REVIEW 12 of 17 
 

 

The REVs of all cells contained in the PCE plume are estimated for all experiments. 
Afterward, distributions of the So-rate rate REV (SR-REV) and AOW-rate rate REV (AR-
REV) of the PCE plume during the entire experimental period are presented in Figure 
7a,b, respectively. Due to the large number of cells contained in the PCE plume, the sta-
tistical power is yielded by the greater number of SR-REV and AR-REV data, and the pre-
diction based on the BP neural network is conducted. The cCorresponding results of the 
BP neural network for SR-REV and AR-REV are shown in Figure 8a,b. 

 
Figure 7. The distributions of SR-REV (a) and AR-REV (b) during the entire experiment period. Figure 7. The distributions of SR-REV (a) and AR-REV (b) during the entire experiment period.



Separations 2023, 10, 446 13 of 17Separations 2023, 10, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 8. The temporal change of fFrequency (histograms), cumulative frequency (solid lines) of SR-
REV (a) and AR-REV (b) sizes, and associated prediction results of the BP neural network (dashed 
lines) are fitted during the entire experiment period for Experiments I~IV. 

At the beginning of the experiment, at t = 5 min, little PCE is injected into the sandbox, 
and the shapes of frequency of SR-REV and AR-REV are very irregular (Figure 8a,b). As 
more and more PCE comes into the 2D sandbox, the PCE plume is expanded, and the 
frequency of SR-REV and AR-REV is changed. The results of frequency suggest SR-REV 
and AR-REV distribute in 3.0 mm–15.0 mm after t = 80 min. At t = 1523 min, the frequency 
and cumulative frequency of SR-REV and AR-REV remain at a steady state.  

Figure 8. The temporal change of fFrequency (histograms), cumulative frequency (solid lines) of
SR-REV (a) and AR-REV (b) sizes, and associated prediction results of the BP neural network (dashed
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3.3. Predicting REV Based on BP Neural Network

The change in the average SR-REV and AR-REV as dI and dM increase is shown in
Figure 9a. Regression analysis is conducted for the average SR-REV, AR-REV, and dI, dM to
derive fitted models (Table S2). The average SR-REV first decreases and then increases when
dI is increased for Experiments I~III. Compared with the relationship between average
SR-REV and dI for Experiment I, the average SR-REVs are all reduced for Experiment II
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(high salinity) and Experiment IV (heterogeneity). When the concentration of the surface
active agent is increased (Experiment III), the average SR-REV increases as dI increases. A
similar phenomenon also appears for the relationship between the average SR-REV and
dM. However, the average AR-REV shows a declining tendency as dI and dM increase
for Experiment I. When the experimental condition is changed, the relationship between
AR-REV and dI and dM is clearly changed, suggesting the salinity, concentration of the
surface active agent, and heterogeneity have an important influence on the distribution of
AR-REV for the PCE plume.
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The BP neural network is built to predict the change of the mean and standard
deviation of SR-REV and AR-REV as time goes on (Figure 1b). The BP neural network
contains four input layers, five hidden layers, and one output layer. The four input
layers are time (tk) and the three REV values before the considered time (REVk−3, REVk−2,
REVk−1); the one output layer represents the REV value at the considered time (REVk).
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After training, the BP neural network can be used to simulate and predict the mean
and standard deviation of SR-REV and AR-REV. According to the prediction of the BP
neural network, the mean and standard deviation of SR-REV remain at a steady level
after t = 630 min, and the mean and standard deviation of AR-REV reach a steady state
after t = 1523 min. The mean and standard deviation of SR-REV, AR-REV (point), and the
predicted result based on the BP neural network (line) of the PCE plume for all experiments
are presented in Figure 9b.

Simultaneously, the models are built based on the Gaussian equation to predict the
frequency of SR-REV and AR-REV. The model used to predict the frequency of SR-REV
and AR-REV is given by the following:

F = ϕ +
1√
2πδ

e−
REV−υ

2δ2 . (5)

where F is the frequency of SR-REV or AR-REV; υ and δ are parameters predicted by the BP
neural network. The models of the frequency of SR-REV and AR-REV are derived from the
BP neural network and Gaussian equation (Tables S3 and S4). Most models can simulate
the frequency and cumulative frequency of SR-REV and AR-REV with good agreement
(Figure 8a,b).

It is obvious that the mean value of SR-REV is reduced under conditions of high
salinity and heterogeneity, while the mean value is increased under the condition of a high
concentration of the surface active agent. However, mean values of AR-REV appear to
have no apparent difference under different experimental conditions. Interestingly, the
standard deviation of SR-REV has a higher value under conditions of high salinity, high
concentration of the surface active agent, and heterogeneity, while the standard deviation
of AR-REV is not affected by these conditions. These phenomena suggest experimental
conditions have a larger effect on SR-REV.

4. Conclusions

In this study, four experiments are performed to explore the effects of salinity, surface
active agent, and heterogeneity on the So rate, AOW rate, and associated REV for the PCE
plume. Regression analysis is utilized to derive models of the frequency of SR-REV and
AR-REV and the change of REVs as dI, dM increase. Moreover, a BP neural network is built
to predict the frequency of SR-REV and AR-REV. Experimental results suggest the salinity,
surface active agent, and heterogeneity have an important influence on the So rate, AOW
rate SR-REV, and AR-REV for PCE transport in porous media. The salinity, surface active
agent, and heterogeneity lower the σz of the PCE plume. For the second moment of the
PCE plume, the salinity increases σxx, while the surface active agent and heterogeneity all
decrease σzz. Heterogeneity has the biggest influence on the GTP, the distribution of the So
rate and AOW rate along the depth for location x = 0.30 m, and the distribution of the So
rate and AOW rate along dM, dI. High salinity and heterogeneity reduce SR-REV, while the
high concentration of the surface active agent increases SR-REV. The salinity, surface active
agent, and heterogeneity all increase the standard deviation of SR-REV, while these factors
have no apparent influence on the mean and standard deviation of AR-REV. Significantly,
the frequency and cumulative frequency of SR-REV and AR-REV are predicted by the BP
neural network and Gaussian equation with good agreement. These findings are significant
in improving our understanding of PCE characteristics of the transport process and help
to predict contaminants’ migration behavior and the associated REVs in aquifers with
higher accuracy, which is the basis of the design of an effective remediation scheme for
groundwater contamination.
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