Optimization of QuEChERS Method for Antibiotic Residue Analysis in Animal Foods via Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Stock Solutions
2.2. Reagents and Chemicals
2.3. Instrumentation and Software
2.4. Sample Collection and Processing
3. Results
3.1. Experimental Design
3.2. Optimization of QuEChERS Method Using the Response Surface Method (RSM)
3.3. Optimization of Chromatographic Conditions and Mass Spectrometry
3.4. Fragmentation Approach for Quinolones and Tetracyclines
3.5. Method Validation
3.5.1. Matrix Effect
3.5.2. Linearity and Sensitivity
3.5.3. Accuracy and Precision
3.6. Sample Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NO. | Step | Source | Output | Flow Rate (mL/min) | Volume (mL) | Time (min) |
---|---|---|---|---|---|---|
1 | Rinse sample path | CH3OH | 2.8 | |||
2 | Rinse sample path | H2O | 2.8 | |||
3 | Rinse plunger | CH3OH | Solvent | 10 | 6 | 1.1 |
4 | Rinse plunger | H2O | Solvent | 10 | 6 | 1.1 |
5 | Load sample | Waste | 2 | 20 | 22.3 | |
6 | Rinse | 5% CH3OH | Solvent | 3 | 3 | 4.3 |
7 | Rinse syringe | CH3OH | 10 | 10 | 1.6 | |
8 | Elute | CH3OH | Collect | 10 | 5 | 0.9 |
9 | Air push | Collect | 10 | 5 | 1.1 | |
10 | End |
Compound | Background μg/kg | Fortification μg/kg | Average Recovery Rate % | RSD n = 3 % | Compound | Background μg/kg | Fortification μg/kg | Average Recovery Rate % | RSD n = 3 % |
---|---|---|---|---|---|---|---|---|---|
Pipemidic acid | ND | 2.0 | 74.2 | 8.85 | Lomefloxacin | ND | 2.0 | 82.9 | 9.85 |
20.0 | 78.7 | 6.95 | 20.0 | 89.2 | 9.07 | ||||
200.0 | 77.8 | 5.86 | 200.0 | 86.3 | 8.41 | ||||
Enoxacin | ND | 2.0 | 73.9 | 9.12 | Enrofloxacin | ND | 2.0 | 90.2 | 5.87 |
20.0 | 79.1 | 7.63 | 20.0 | 98.5 | 6.15 | ||||
200.0 | 80.4 | 7.45 | 200.0 | 95.4 | 5.98 | ||||
Minocycline | ND | 2.0 | 73.8 | 9.92 | Doxycycline | ND | 2.0 | 86.2 | 12.4 |
20.0 | 82.6 | 8.43 | 20.0 | 88.4 | 10.7 | ||||
200.0 | 75.9 | 8.31 | 200.0 | 84.9 | 11.3 | ||||
Norfloxacin | ND | 2.0 | 80.5 | 9.01 | Demeclocycline | ND | 2.0 | 79.3 | 11.9 |
20.0 | 78.3 | 7.65 | 20.0 | 88.4 | 9.90 | ||||
200.0 | 85.4 | 6.14 | 200.0 | 89.0 | 10.2 | ||||
Ofloxacin | ND | 2.0 | 75.2 | 10.2 | Sarafloxacin | ND | 2.0 | 78.9 | 8.68 |
20.0 | 82.7 | 8.72 | 20.0 | 88.9 | 6.12 | ||||
200.0 | 86.4 | 6.96 | 200.0 | 78.5 | 5.99 | ||||
Pefloxacin | ND | 2.0 | 89.1 | 9.56 | Difloxacin | ND | 2.0 | 83.7 | 8.69 |
20.0 | 92.4 | 9.17 | 20.0 | 84.0 | 6.81 | ||||
200.0 | 88.5 | 7.88 | 200.0 | 85.9 | 7.04 | ||||
Tetracycline | ND | 2.0 | 78.6 | 12.1 | Chlortetracycline | ND | 2.0 | 78.4 | 11.7 |
20.0 | 83.0 | 10.7 | 20.0 | 88.1 | 8.94 | ||||
200.0 | 82.7 | 9.57 | 200.0 | 82.7 | 9.10 | ||||
Ciprofloxacin | ND | 2.0 | 82.2 | 9.07 | Cinoxacin | ND | 2.0 | 75.5 | 9.94 |
20.0 | 78.6 | 8.19 | 20.0 | 80.2 | 8.71 | ||||
200.0 | 89.5 | 7.54 | 200.0 | 83.4 | 8.07 | ||||
Methacycline | ND | 2.0 | 77.3 | 10.8 | Oxolinic acid | ND | 2.0 | 77.3 | 10.4 |
20.0 | 85.1 | 9.76 | 20.0 | 83.9 | 9.29 | ||||
200.0 | 86.4 | 8.33 | 200.0 | 79.8 | 9.38 | ||||
Oxytetracycline | ND | 2.0 | 74.8 | 11.8 | Nalidixic acid | ND | 2.0 | 79.2 | 8.93 |
20.0 | 76.1 | 10.1 | 20.0 | 84.6 | 7.10 | ||||
200.0 | 75.5 | 9.78 | 200.0 | 81.7 | 5.81 | ||||
Danofloxacin | ND | 2.0 | 75.7 | 9.64 | Flumequine | ND | 2.0 | 87.4 | 8.94 |
20.0 | 82.3 | 8.78 | 20.0 | 92.1 | 5.89 | ||||
200.0 | 77.1 | 9.15 | 200.0 | 88.3 | 6.37 |
References
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Da, V. Origins and Evolution of Antibiotic Resistance. Microbiologia 1996, 12, 9. [Google Scholar]
- Do, K.-H.; Byun, J.-W.; Lee, W.-K. Antimicrobial Resistance, Adhesin and Toxin Genes of Porcine Pathogenic Escherichia coli Following the Ban on Antibiotics as the Growth Promoters in Feed. Pak. Vet. J. 2021, 41, 519–523. [Google Scholar]
- Hao, R.-Z.; Zhao, R.-T.; Qiu, S.-F.; Wang, L.-G.; Song, H.-B. Antibiotics crisis in China. Science 2015, 348, 1100–1101. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Rasool, F.; Khan, N.; Ali, S.; Sheikh, A.A. Antibiotic Resistance and its Gene Profile in Escherichia coli Isolated from Diseased FarmRaised Carps in Punjab, Pakistan. Pak. Vet. J. 2023, 41, 1–7. [Google Scholar]
- Ishaq, K. Occurrence and Antimicrobial Susceptibility of Proteus Mirabilis from Chicken Carcass. Pak. Vet. J. 2022, 42, 576–579. [Google Scholar] [CrossRef]
- Nawaz, Z.; Aslam, B.; Zahoor, M.A.; Siddique, A.B.; Rafique, A.; Aslam, R.; Qamar, M.U.; Ali, S.; Mubeen, M. Frequency of Extended Spectrum Beta Lactamase Producing Escherichia Coli in Fresh and Frozen Meat. Pak. Vet. J. 2021, 41, 102–106. [Google Scholar] [CrossRef]
- Anwar, M.A.; Aziz, S.; Ashfaq, K.; Aqib, A.I.; Shoaib, M.; Naseer, M.A.; Alvi, M.A.; Muzammil, I.; Bhutta, Z.A.; Sattar, H.; et al. Trends in Frequency, Potential Risks and Antibiogram of E. coli Isolated from Semi-Intensive Dairy Systems. Pak. Vet. J. 2022, 4, 167–172. [Google Scholar]
- Saeed, E.; Amer, A.A.; Keshta, H.G.; Khalifa, E.A. Prevalence and Antibiogram of Salmonella Enterica Isolated from Raw Dromedary Camel Milk in Matrouh Governorate, Egypt. Int. J. Vet. Sci. 2022, 11, 168–174. [Google Scholar]
- Abouelhag, H.A.; Khairy, E.A.; Marie, H.S.; Khalaf, D.D. Prevalence, Antibiogram Pattern and Virulence Genes Profile of Bacillus cereus Isolated from Buffalo Milk. Int. J. Vet. Sci. 2021, 10, 234–239. [Google Scholar]
- Bakry, N.M.; Awad, W.S.; Ahmed, S.A. Virulence Genes, Antibiotic Resistance and Phylotyping of Escherichia coli O157 Recovered from Diarrheic Calves. Int. J. Vet. Sci. 2021, 10, 1–7. [Google Scholar]
- Nelson, F.E.; Jensen, L.S.; Mcginns, J. Studies on the Stimulation of Growth by Dietary Antibiotics: 1. Changes in Growth Response of Chicks to Antibiotics over a three year Period. Poult. Sci. 1963, 42, 906–909. [Google Scholar] [CrossRef]
- Carlet, J.; Rambaud, C.; Pulcini, C. Save Antibiotics: A call for action of the World Alliance Against Antibiotic Resistance (WAAAR). BMC Infect. Dis. 2014, 14, 436–440. [Google Scholar] [CrossRef] [PubMed]
- The World Is Running out of Antibiotics, WHO Report Confirms. Available online: https://www.who.int/news/item/20-09-2017-the-world-is-running-out-of-antibiotics-who-report-confirms (accessed on 20 September 2017).
- Merkatoris, P.; Schleining, J.; Kruil, A.; Borts, D.; Fajt, V. In vitro Elution of Penicillin, Ampicillin, Tetracycline, Tulathromycin, and Florfenicol From Plaster of Paris Beads. Front. Vet. Sci. 2020, 7, 585423. [Google Scholar] [CrossRef] [PubMed]
- Woman Killed by a Superbug Resistant to Every Available Antibiotic—Scientific American. Available online: https://www.scientificamerican.com/article/woman-killed-by-a-superbug-resistant-to-every-available-antibiotic/ (accessed on 13 January 2017).
- Commission Regulation. Commission Decision (EU) No 37/2010 of December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, 15, 1–72. [Google Scholar]
- Codex Alimentatius Commission; Food and Agriculture Organization of the United Nations; World Health Organization. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods. (CX/MRL 2-2021). Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/ (accessed on 27 July 2023).
- Getahun, M.; Abebe, R.B.; Sendekie, A.K.; Woldeyohanis, A.E.; Kasahun, A.E.; Regmi, B. Evaluation of Antibiotics Residues in Milk and Meat Using Different Analytical Methods. Int. J. Anal. Chem. 2023, 2023, 1–13. [Google Scholar] [CrossRef]
- Chung, H.-H.; Lee, J.-B.; Chung, Y.-H.; Lee, K.-G. Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography. Food Chem. 2009, 113, 297–301. [Google Scholar] [CrossRef]
- Hernandez-Arteseros, J.A.; Barbosa, J.; Compaó, R.; Prat, M. Analysis of quinolone residues in edible animal products. J. Chromatogr. A 2002, 945, 1–24. [Google Scholar] [CrossRef]
- Muscarella, M.; Magro, S.L.; Palermo, C.; Centonze, D. Validation according to European Commission Decision 2002/657/EC of a confirmatory method for aflatoxin M 1 in milk based on immunoaffinity columns and high performance liquid chromatography with fluorescence detection. Anal. Chim. Acta 2007, 594, 257–264. [Google Scholar] [CrossRef]
- Önal, A. Overview on liquid chromatographic analysis of tetracycline residues in food matrice. Food Chem. 2011, 127, 197–203. [Google Scholar] [CrossRef]
- Sinem, R.; Sezer, A.; Zge, E.; Emir, A.S. Validation of two UHPLC-MS/MS methods for fast and reliable determination of quinolone residues in honey. Food Addit. Contam. Part A 2021, 38, 807–819. [Google Scholar]
- Yamaguchi, T.; Okihashi, M.; Harada, K.; Uchida, K.; Konishi, Y.; Kajimura, K.; Hirata, K.; Yamamoto, Y. Rapid and easy multiresidue method for the analysis of antibiotics in meats by ultrahigh-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2015, 63, 5133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, L.; He, Q.; Li, Y. A rapid multiclass method for antibiotic residues in goat dairy products by UPLC-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry. J. Anal. Sci. Technol. 2021, 12, 14. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, J.; Gao, W.; Lv, S.; Ge, M. Quantification and Confirmation of Fifteen Carbamate Pesticide Residues by Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes via LC-MS/MS QTRAP System. Molecules 2018, 23, 2496. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Wang, H.; Zhao, C.; Huang, Y.-Q.; Tang, X. Identification and Characterization of Kukoamine Metabolites by Multiple Ion Monitoring Triggered Enhanced Product Ion Scan Method with a Triple-Quadruple Linear Ion Trap Mass Spectrometer. J. Agric. Food Chem. 2015, 63, 10785–10790. [Google Scholar] [CrossRef]
- Lode, H. Development of clinically important resistance to quinolones and other antibiotic groups. J. Int. Med. Res. 1990, 18, 27–36. [Google Scholar]
- Roberts, M.C. Tetracyclines: Mode of Action and Their Bacterial Mechanisms of Resistance, (Bacterial Resistance to Antibiotics—From Molecules to Man); Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 101–124. [Google Scholar]
- Yan, M.; Chen, X.; Huang, Y.; Nie, H.; Wang, J. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 631–632, 840–848. [Google Scholar] [CrossRef]
- Shao, B.; Jia, X.; Wu, Y.; Hu, J.; Tu, X.; Zhang, J. Multi-class confirmatory method for analyzing trace levels of tetracyline and quinolone antibiotics in pig tissues by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3487–3496. [Google Scholar] [CrossRef]
- Ajibola, A.S.; Tisler, S.; Zwiener, C. Simultaneous determination of multiclass antibiotics in sewage sludge based on QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal. Methods 2020, 12, 576–586. [Google Scholar] [CrossRef]
- Chen, L.; Qi, W.Y.; Zhao, Z.Y.; Zhao, X.Y.; Zhou, C.Y. Rapid Determination of 19 Fluoroquinolones Antibiotic Residues in Soil by QuEChERS/Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Instrum. Anal. 2019, 38, 194–200. [Google Scholar]
- Frenich, A.G.; Romero-González, R.; Gómez-Pérez, M.; Vidal, J. Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. J. Chromatogr. A 2011, 1218, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, T.; Huang, S.; Lin, X.; Chen, M. Screening of 49 antibiotic residues in aquatic products using modified QuEChERS sample preparation and UPLC-QToFMS analysis. PeerJ Anal. Chem. 2021, 3, e8. [Google Scholar] [CrossRef]
- Wilkowska, A.; Biziuk, M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011, 125, 803–812. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, Y.; Zheng, J.; Zhang, Y.; Luo, A. The Application of the QuEChERS Methodology in the Determination of Antibiotics in Food: A review. TrAC Trends Anal. Chem. 2019, 118, 517–537. [Google Scholar] [CrossRef]
- Andre, I.K.; Siuli, M. Response Surface Methodology. Comput. Stat. 2010, 2, 128–149. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P.; Portugal, L.A.; Reis, P.S.; Souza, A.S.; et al. Box-Behnken design An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Li, Y.W.; Mo, C.H.; Zhao, N.; Zhang, R.J.; Yi, R.H. Determination of Sulfonamides Antibiotics in Water and Soil Using High Performance Liquid Chromatography. Chin. J. Anal. Chem. 2008, 36, 954–958. [Google Scholar]
- Luo, H.T.; Huang, X.L.; Wu, H.Q.; Zhu, Z.X.; Lin, X.S. Simultaneous Determination of 33 Medicine Residues in Aquatic Products by Rapid Resolution Liquid Chromatography-Tandem Mass Spectrometry. Chin. J. Anal. Chem. 2012, 40, 273–279. [Google Scholar] [CrossRef]
- Yue, Z.; Qiu, Y.; Liu, X.; Ji, C. Determination of Multi-Residues of Tetracyclines and Their Metabolites in Milk by High Performance Liquid Chromatography-Tandem Positive-ion Electrospray Ionization Mass Spectrometry. Chin. J. Anal. Chem. 2006, 34, 1255–1259. [Google Scholar] [CrossRef]
- Sapadin, A.N.; Fleischmajer, R. Tetracyclines: Nonantibiotic properties and their clinical implications. J. Am. Acad. Dermatol. 2006, 54, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, H.; Li, Q.J.; Feng, X.H.; Li, S. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresour. Technol. 2010, 101, 7076–7082. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; Weng, L.P.; Zhang, Q.L.; Xu, H.; Ji, L.N. Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology. World J. Microbiol. Biotechnol. 2003, 19, 317–323. [Google Scholar] [CrossRef]
- Amin, M.K.; Hassan, G.F.; Phyllis, R.B.; Burnaby, M. Mass spectral characterization of tetracyclines by electrospray ionization, H/D exchange, and multiple stage mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 543–557. [Google Scholar]
- Bin, M.; Yuming, S.; Chen, X. Analysis of fluroquinolones by electrosprayion trap mass spectrometry. J. Chin. Mass Spectrom. Soc. 2006, 27, 163–167. [Google Scholar]
- Matraszek-Zuchowska, I.; Wozniak, B.; Posyniak, A. Comparison of the Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes for Confirmation of Stilbenes in Bovine Urine Samples Using LC–MS/MS QTRAP®System. Chromatographia 2016, 79, 1003–1012. [Google Scholar] [CrossRef]
- GB/T 27404-2008; Criterion on Quality Control of Laboratories. Chemical Testing of Food. National Certification and Accreditation Standardization Technical Committee: Beijing, China, 2008.
- Treiber, F.M.; Beranek-Knauer, H. Antimicrobial Residues in Food from Animal Origin-a Review of the Literature Focusing on Products Collected in Stores and Markets Worldwide. Antibiotics 2021, 10, 534. [Google Scholar] [CrossRef]
- GB 31650-2019; National Food Safety Standard Maximum Residue Limits for Veterinary Drugs in Foods. Ministry of Agriculture and Rural Affairs; National Health Commission; State Administration for Market Regulation: Beijing, China, 2019.
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 12,099.48 | 14 | 864.25 | 15.79 | <0.0001 |
A-MeCN | 5538.40 | 1 | 5538.40 | 101.21 | <0.0001 |
B-HCOOH | 664.54 | 1 | 664.54 | 12.14 | 0.0036 |
C-EDTA | 690.08 | 1 | 690.08 | 12.61 | 0.0032 |
D-Time | 845.04 | 1 | 845.04 | 15.44 | 0.0015 |
A2 | 3171.17 | 1 | 3171.17 | 57.95 | <0.0001 |
B2 | 622.75 | 1 | 622.75 | 11.38 | 0.0045 |
C2 | 356.24 | 1 | 356.24 | 6.51 | 0.0231 |
D2 | 1354.08 | 1 | 1354.08 | 24.74 | 0.0002 |
Cor total | 12,865.58 | 28 |
No. | Compound | Retention Time (min) | CAS No. | Precursor Ion (m/z) | Product Ion (m/z) | Declustering Potential (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|---|
1 | Pipemidic acid | 2.88 | 51940-44-4 | 304.3 | 217.1 * | 70 | 18 |
189.0 | 70 | 27 | |||||
2 | Enoxacin | 3.32 | 74011-58-8 | 321.4 | 303.3 * | 80 | 22 |
233.9 | 80 | 33 | |||||
3 | Minocycline | 3.59 | 10118-90-8 | 458.5 | 441.4 * | 80 | 20 |
352.4 | 80 | 30 | |||||
4 | Norfloxacin | 3.64 | 70458-96-7 | 320.3 | 302.3 * | 80 | 26 |
276.3 | 80 | 35 | |||||
5 | Ofloxacin | 3.66 | 82419-36-1 | 362.2 | 318.3 * | 80 | 26 |
261.2 | 80 | 38 | |||||
6 | Pefloxacin | 3.70 | 70458-92-3 | 334.3 | 290.3 * | 80 | 27 |
233.2 | 80 | 25 | |||||
7 | Tetracycline | 3.74 | 60-54-8 | 445.4 | 410.4 * | 80 | 24 |
427.7 | 80 | 19 | |||||
8 | Ciprofloxacin | 3.75 | 85721-33-1 | 332.2 | 314.3 * | 80 | 25 |
288.3 | 80 | 33 | |||||
9 | Methacycline | 3.77 | 914-00-1 | 443.3 | 426.4 * | 60 | 18 |
201.2 | 60 | 10 | |||||
10 | Oxytetracycline | 3.78 | 79-57-2 | 461.4 | 426.4 * | 80 | 25 |
443.6 | 80 | 17 | |||||
11 | Danofloxacin | 3.82 | 112398-08-0 | 358.3 | 340.3 * | 80 | 12 |
82.0 | 80 | 35 | |||||
12 | Lomefloxacin | 3.87 | 98079-51-7 | 352.3 | 265.2 * | 80 | 33 |
308.3 | 80 | 28 | |||||
13 | Enrofloxacin | 3.96 | 93106-60-6 | 360.3 | 316.4 * | 80 | 25 |
342.3 | 80 | 35 | |||||
14 | Doxycycline | 4.00 | 564-25-0 | 445.5 | 428.5 * | 80 | 24 |
154.0 | 80 | 35 | |||||
15 | Demeclocycline | 4.07 | 64-73-3 | 465.3 | 430.4 * | 75 | 23 |
448.4 | 75 | 28 | |||||
16 | Sarafloxacin | 4.38 | 98105-99-8 | 386.3 | 342.3 * | 80 | 25 |
299.3 | 80 | 38 | |||||
17 | Difloxacin | 4.51 | 98106-17-3 | 400.1 | 356.1 * | 80 | 28 |
299.1 | 80 | 41 | |||||
18 | Chlortetracycline | 5.13 | 57-62-5 | 479.3 | 444.4 * | 80 | 24 |
462.3 | 80 | 28 | |||||
19 | Cinoxacin | 5.29 | 28657-80-9 | 263.1 | 244.1 * | 80 | 25 |
188.8 | 80 | 35 | |||||
20 | Oxolinic acid | 5.53 | 14698-29-4 | 262.1 | 244.1 * | 70 | 26 |
155.9 | 70 | 40 | |||||
21 | Nalidixic acid | 7.09 | 389-08-2 | 233.1 | 187.0 * | 68 | 18 |
244.1 | 68 | 34 | |||||
22 | Flumequine | 7.43 | 42835-25-6 | 262.2 | 244.1 * | 70 | 19 |
202.1 | 70 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Lin, Y.; Zhang, X.; Ouyang, N.; Zhou, Y. Optimization of QuEChERS Method for Antibiotic Residue Analysis in Animal Foods via Response Surface Methodology. Separations 2023, 10, 459. https://doi.org/10.3390/separations10080459
Wu X, Lin Y, Zhang X, Ouyang N, Zhou Y. Optimization of QuEChERS Method for Antibiotic Residue Analysis in Animal Foods via Response Surface Methodology. Separations. 2023; 10(8):459. https://doi.org/10.3390/separations10080459
Chicago/Turabian StyleWu, Xiaoqiong, Yun Lin, Xiang Zhang, Nan Ouyang, and Ying Zhou. 2023. "Optimization of QuEChERS Method for Antibiotic Residue Analysis in Animal Foods via Response Surface Methodology" Separations 10, no. 8: 459. https://doi.org/10.3390/separations10080459
APA StyleWu, X., Lin, Y., Zhang, X., Ouyang, N., & Zhou, Y. (2023). Optimization of QuEChERS Method for Antibiotic Residue Analysis in Animal Foods via Response Surface Methodology. Separations, 10(8), 459. https://doi.org/10.3390/separations10080459