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Abstract: The present study employed a modified QuEChERS method to systematically analyze
the presence of fifteen quinolone and seven tetracycline antibiotic residues in local animal food.
Additionally, a multi-level four-factor Box–Behnken design (BBD) within the framework of response
surface methodology (RSM) was utilized to evaluate the factors impacting the detection efficiency
of the sample pretreatment procedure. Optimization was performed via Design Expert® 10.0.3,
and the factors, including the volume of the acetonitrile, the addition of formic acid, the duration
of the extraction, and the addition of EDTA, were combined with experimental design until an
optimal solution was reached. Finally, the sample was tested via ultra-high performance liquid
chromatography-quadrupole-linear ion trap mass spectrometry (UPLC/MS/MS) in both multiple
reaction monitoring (MRM) and enhanced product ion (EPI) scan modes on a QTRAP® 5500 instru-
ment (AB SCIEX instruments, Framingham, MA, USA). The overall average recoveries from actual
samples fortified with 22 antibiotics at three levels ranged from 73.8% to 98.5% based on the use of
matrix-fortified calibration, with variations ranging from 5.80 to 12.4% (n = 6). The limits of detection
and quantification were 0.3 µg kg−1 and 1.0 µg kg−1, respectively. Lastly, the modified method was
applied to practical sample analysis in the daily risk monitoring and assessment of food safety with
satisfactory stability and robustness.

Keywords: antibiotics residue; response surface methodology (RSM); quinolones; tetracyclines;
multiple reaction monitoring (MRM)

1. Introduction

Antibiotic resistance, the ability of bacteria to withstand antibiotics, is now recognized
as one of the most serious global threats to human health [1–3]. Naturally occurring
resistance that can ultimately lead to incurable bacterial infections could be accelerated by
the improper use of antibiotics in human beings and animals [4]. Except for the misuse of
antibiotics in human medicine, antibiotics’ misuse in livestock is also a major contributor to
the emergence of antibiotic resistance [5,6]. To satisfy the growing global demand for animal
protein, antibiotics have been massively and increasingly used in farmed animal industries
for different purposes, including overdoses for disease prevention and subtherapeutic
doses for growth stimulation [7–13]. In September 2017, a report from the World Health
Organization (WHO) corroborated that the world is running out of antibiotics [14–17].
Antibiotic misuse, if left unchecked, can drag human beings into a post-antibiotic era
whereby minor injuries or common infections become fatal diseases again [18].

To protect the public from health risks, nations and related organizations had to
establish broader maximum-residue limits (MRLs) for further surveillance of antibiotic
residues in animal food [19,20]. Therefore, more efficient and robust detection methods
were promptly developed in the past few years to satisfy increasingly rigorous regula-
tory requirements [21–27]. Triple quadrupole mass spectrometer with multiple reaction
monitoring (MRM) scan modes that follow the requirement of ECD 2002/657/EC should
be the preferred method of detection of antibiotic residues in animal food [28–30]. The
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Qtrap system (AB Sciex) with the scan mode of multiple reaction monitoring—information-
dependent acquisition—enhanced product ion scan mode (MRM—IDA—EPI) was found to
efficiently gather comprehensive information from samples in a single run. Consequently,
the identification of antibiotic residues in locally sourced animal-derived food was reaf-
firmed through the successful comparison of antibiotic spectra from the samples with
reference spectra. Quinolones and tetracyclines, being the most extensively employed
veterinary antibiotics, have contributed to the development of antibiotic resistance, thereby
adversely impacting the treatment of severe bacterial infections [31–33]. In this study, a
diverse range of samples, fortified with fifteen quinolone and seven tetracycline antibiotics
at the recommended concentration (RC) of 1 µg L−1, were subjected to analysis using liquid
chromatography-tandem mass spectrometry with a QTRAP 5500 instrument.

Sample pretreatment for the separation and concentration of antibiotic residues is
also a critical step in the whole analysis process of quinolone and tetracycline detection.
There are, alternatively, two purification methods, including QuEChERS and solid-phase
extraction. The latter, using commercial cartridges, has been widely used in daily work
based on former research (Figure A1) [34]. It can be performed in an automated SPE system
(e.g., Reeko, Fotector plus, USA) during non-working hours and minimize human involve-
ment (Table A1), but high-fat or high-protein samples should be excluded, given that they
frequently cause blockage in SPE cartridges and heavily prolong the pretreatment process.
Since its development in 2003, QuEChERS has gained widespread acceptance for various
sample preparation techniques [35–40]. It was initially introduced as a cost-effective and
time-efficient method for analyzing multi-residue samples containing relatively polar com-
pounds. During the extraction process, the efficiency of the QuEChERS sample preparation
method is known to be influenced by several factors. Thus, it is imperative to compre-
hensively optimize this method for the detection of quinolone and tetracycline residues
in this study. As a collection of statistical and mathematical techniques, response surface
methodology (RSM) has vital applications in the design, development, and improvement of
novel or existing product designs [41,42], especially in multi-variable analysis [43,44]. In the
present study, response surface methodology with a multi-level four-factor Box–Behnken
design (BBD) was applied to simultaneously evaluate the recovery rate of quinolone and
tetracycline residues in sample pretreatment.

2. Materials and Methods
2.1. Standards and Stock Solutions

Standards of the following twenty-two antibiotics were all purchased from Dr. Ehren-
storfer GmbH (Augsburg, Germany): Oxytetracycline (Oxytetracycline hydrochloride,
96.5%), Tetracycline (Tetracycline hydrochloride, 98.0%), Doxycycline (Doxycycline hyclate,
98.7%), Demeclocycline (98.0%), Methacycline (99.0%), Minocycline (99.0%), Chlortetracy-
cline (Chlortetracycline hydrochloride, 94.6%), Enrofloxacin (99.0%), Norfloxacin (99.1%),
Pefloxacin (Pefloxacin methanesulfonate dehydrate, 99.0%), Ciprofloxacin (Ciprofloxacin
hydrochloride, 94.0%), Ofloxacin (99.0%), Sarafloxacin (Sarafloxacin hydrochloride, 97.0%),
Enoxacin (95.8%), Lomefloxacin (Lomefloxacin hydrochloride, 99.5%), Pipemidic acid
(99.1%), Nalidixic acid (99.0%), Oxolinic acid (98.0%), Flumequine (98.5%), Cinoxacin
(99.0%), Danofloxacin (Danofloxacin mesylate, 94.0%), and Difloxacin (Difloxacin hy-
drochloride, (99.2%)). Individual standards were weighed using an electronic balance
(Metter Toledo, MS 205DU), dissolved in methanol at a concentration of 1.0 mg mL−1

or ethanol solution supplemented with potassium hydroxide (for antibiotics that were
practically insoluble in methanol), and provisionally stored at −28 ◦C.

2.2. Reagents and Chemicals

Methanol and acetonitrile of HPLC grade used in this study were procured from
Merck (Darmstadt, Germany). Ethanol of HPLC grade and formic acid (≥98%) were
acquired from Aladdin (Shanghai, China). Potassium hydroxide (G.R.) was purchased
from Macklin (Shanghai, China). Cleanert® C18 for QuEChERS was purchased from



Separations 2023, 10, 459 3 of 16

Agela Technologies (Beijing, China). Ultra-pure water was obtained from a Milli-Q water
purification system from Millipore (Bedford, MA, USA). Oasis® HLB SPE cartridges (6 cc,
200 mg) were purchased from Waters (Milford, MA, USA). Millipore filters (0.22 µm,
polytetrafluoroethylene) were obtained from ANPEL Lab (Shanghai, China). Sodium
chloride (A.R.) and sodium sulfate (A.R.) were calcined in a muffle furnace prior to use.
Citric acid (A.R.), disodium hydrogen phosphate (A.R.), and disodium ethylenediamine
tetraacetic acid (EDTA, A.R.) for sample preparation were purchased from Sinopharm
Chemical Reagent (Shanghai, China).

2.3. Instrumentation and Software

HPLC analysis was conducted on a Shimadzu LC-30AD system with a Waters BEH
C18 column (1.7 µm 2.1 mm × 100 mm, Waters, Milford, MA, USA). Regarding mass
spectrometric detection, all experiments were carried out in the MRM-IDA-EPI scan mode
using AB SCIEX QTRAP® 5500 (AB SCIEX instruments, Framingham, MA, USA). The
compounds were ionized in a Turbo V™ Ion Source (ESI) interface in the positive ioniza-
tion mode. An Analyst® software v. 1.6.2 (AB SCIEX instruments, Foster City, Canada)
was utilized to remotely control the chromatograph and mass spectrometer. A capillary
voltage of 5.50 kV and desolvation temperature of 500 ◦C were applied to the ESI source.
Nitrogen produced by the generator (Claind Nitro35, Tremezzina, Italy) was used as the
cone gas (50 psi), desolvation gas (50 psi), and collision gas. Quantitative analysis of the
experiments was conducted using MultiQuant® 3.0.1. The optimization of QuEChERS
using the response surface method was performed on Design Expert® 10.0.3.

2.4. Sample Collection and Processing

The samples were collected from local markets or supermarkets distributed randomly
across neighborhoods of the whole city, including swine, poultry, eggs, milk, and eight
cultured aquatic products (Parabramis pekinensis, Carassius auratus, Ctenopharyngodon idella,
Ophiocephalus argus Cantor, Macrobranchium nipponense, Macrobrachium rosenbergii, Penaeus
chinensis, Procambarus clarkia, Eriocheir sinensis, and Larimichthys crocea). The edible portion
of the aforementioned samples was ground and homogenized using a Mixer (BÜCHI,
B400, Eastern Switzerland) and stored in polypropylene bottles at −28 ◦C for the ensuing
analyses.

3. Results

In the sample pretreatment process using the SPE extraction method, 0.1 mol L−1

EDTA-Mcllvaine buffer solution (pH = 4.0), a non-volatile, non-poisonous, low-cost, and
eco-friendly solution, was used as the extraction solution for quinolone and tetracycline
residues [34,45–47]. Furthermore, when handling a large amount of sample, the SPE method
could enhance stability by increasing the level of automation without increasing human
operational time (Table A1). However, during the flowing sample purification procedure,
the aqueous solution extracted from high-fat samples, particularly egg-containing samples,
may potentially increase the risk of blockage in SPE cartridges and significantly prolong
the detection time.

3.1. Experimental Design

The QuEChERS sample preparation method could be applied as an alternative for a
quick analysis of quinolone and tetracycline residues in high-fat samples. As documented in
former research, the efficiency of the QuEChERS sample preparation method for quinolone
and tetracycline residues could be affected by multifarious factors, including the volume
of acetonitrile, pH value of the extracted solvent, and duration of the extraction process,
among others [35–40].

Attributed to the unique chemical structure of quinolones and tetracyclines, agent–
agent interactions [48] between antibiotics and metal ions from the experimental environ-
ment could influence the recovery rate. As in the EDTA-Mcllvaine buffer solution of the
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SPE method, EDTA acts as a screening agent for metal ions that could also be introduced
in the extraction process of the QuEChERS method. As illustrated in Figure 1, when the
amount of added EDTA ranged from 0 to 0.2 g in 2 g of the sample using the QuEChERS
preparation, the medium recovery rate of 22 antibiotics progressively plateaued at approxi-
mately 100 mg. According to the result of this experiment, 0.1 g of EDTA was selected as
the auxiliary reagent in the extraction process.
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Figure 1. Variation in recovery rate with EDTA (Enrofloxacin).

3.2. Optimization of QuEChERS Method Using the Response Surface Method (RSM)

The QuEChERS sample preparation method is multivariable for the optimization of
the extraction process. Its efficiency could be affected by multifarious factors, including the
volume of the acetonitrile (A), the additive amount of formic acid (B), the additive amount
of EDTA (C), and the extraction time (D). Nevertheless, the univariate experiment has
limited ability to evaluate the interactions of the extraction conditions in sample preparation.
To avoid interactions among extraction conditions while examining the optimal extraction
process, possible factors were comprehensively optimized via the response surface method
(RSM), including the volume of the acetonitrile (A), the additive amount of formic acid (B),
the additive amount of EDTA (C) and the extraction time (D). The median recovery rate of
the 22 antibiotics from standard samples (2.0 µg kg−1, n = 3) was chosen as the response.
RSM analysis was able to model the relationship between the response (recovery rate) and
the four factors. Based on a previous study [48], the respective low and high levels for
factors were coded.

The model’s F-value of 15.79 implied that the model was significant. This model can
be used to navigate the design space. The final equation in terms of actual factors is as
follows:

Recovery = 84 + 21.48 × A + 7.44 × B + 7.58 × C + 8.39 × D + 5.07 × AB + 1.95 × AC
+ 4.48 × AD + 1.32 × BC + 4.23 × BD + 4.67 × CD − 22.11 × A2 − 9.80 × B2 − 7.41 × C2

− 14.45 × D2
(1)

The p-value is generally employed to assess the significance of variables and can also
reflect interactions among independent variables [49]. A smaller p-value indicates that
the corresponding variable is more significant [50]. The ANOVA for the response surface
quadratic model is summarized in Table 1; in this case, A, B, C, D, A2, B2, C2, and D2 were
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all significant model terms, and the variable volume of the acetonitrile (A) and extraction
time (D) were more significant for the recovery rate.

Table 1. ANOVA for the recovery rate according to the response surface quadratic model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 12,099.48 14 864.25 15.79 <0.0001
A-MeCN 5538.40 1 5538.40 101.21 <0.0001

B-HCOOH 664.54 1 664.54 12.14 0.0036
C-EDTA 690.08 1 690.08 12.61 0.0032
D-Time 845.04 1 845.04 15.44 0.0015

A2 3171.17 1 3171.17 57.95 <0.0001
B2 622.75 1 622.75 11.38 0.0045
C2 356.24 1 356.24 6.51 0.0231
D2 1354.08 1 1354.08 24.74 0.0002

Cor total 12,865.58 28

R2 (Pred) = 0.7 R2 (Adj) = 0.8809. Significant at a 95% confidence degree (p < 0.05).

As displayed in Figure 2, the recovery rate of the 22 antibiotics was superior among
the solutions with the following settings: acetonitrile (A) = 8 mL, formic acid (B) = 150 µL,
EDTA (C) = 0.1 g, and time for extraction (D) = 8 min. Verification tests were carried out
six times under the above-mentioned optimized conditions. The median recovery rates
of the 22 antibiotics from six parallel tests were 75.4%, 81.6%, 85.9%, 73.6%, 77.9%, and
82.5%, with errors ranging from 7.8% to 15.1%. The sample preparation of the QuEChERS
method was finally optimized as the best solution from RSM, and the method is outlined
in Figure 3.
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Concerning purification, the addition of a cleaning agent, namely C18 powder, was
evaluated in fish to identify the highest detection rate of antibiotic residue. The crude
extraction of the spiked sample was adequately purified when 150 mg of C18 powder was
added (see Figure 4).
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Figure 4. Variations in total ion chromatogram with C18 addition (spiked in fishes): (a) 150 mg;
(b) 100 mg; (c) 50 mg; (d) no addition.

3.3. Optimization of Chromatographic Conditions and Mass Spectrometry

Quinolines and tetracyclines both contain several O and N atoms; consequently, it is
easy to obtain protons and a high response in the positive ion mode. To obtain the two ion
pairs for quantification, a mixed standard solution of 22 antibiotics at a concentration of
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100 µg L−1 was infused into the QTRAP mass spectrometer at a flow rate of 7.0 µL min−1 to
achieve automatic analyte optimization via the ESI in the positive mode. Under the optimal
mass spectrometry conditions, including declustering potential and collision energy, every
antibiotic was assigned two pairs of abundant ions for qualitative and quantitative analysis
with high sensitivity. To achieve minimum retention time and symmetric shape of ionic
peaks, the elution type, flow rate, and gradient were optimized in this study using the
C18 chromatographic column. Therefore, several classical compositions of the mobile
phase were performed, including acetonitrile, methanol, water, as well as water with
ammonium acetates or formic acid. Finally, water (A) and acetonitrile (B), which were both
supplemented with 0.1% formic acid, were chosen as the optimal mobile phase. The final
gradient elution at a total flow rate of 0.3 mL min−1 was as follows: 0–0.5 min, 5–20% B;
0.5–2.0 min, 20–25% B; 2.0–7.0 min, 25–45% B; 7.0–10.0 min, 45–90% B; 10.0–12.0 min, 90%
B; and 12.1–13.0 min, 95–5%. The column oven was maintained at a temperature of 40 °C,
and the injection volume was 10.0 µL. The representative total ion chromatogram (TIC)
was merged in Figure A2. The retention time (RT) and MS information for each antibiotic,
including precursor and product ions, DP, and CE, are presented in Table 2.

Table 2. Retention time and MS parameters of the 22 antibiotics.

No. Compound Retention Time
(min) CAS No. Precursor

Ion (m/z)
Product Ion

(m/z)
Declustering
Potential (V)

Collision
Energy (eV)

1 Pipemidic acid 2.88 51940-44-4 304.3
217.1 * 70 18
189.0 70 27

2 Enoxacin 3.32 74011-58-8 321.4
303.3 * 80 22
233.9 80 33

3 Minocycline 3.59 10118-90-8 458.5
441.4 * 80 20
352.4 80 30

4 Norfloxacin 3.64 70458-96-7 320.3
302.3 * 80 26
276.3 80 35

5 Ofloxacin 3.66 82419-36-1 362.2
318.3 * 80 26
261.2 80 38

6 Pefloxacin 3.70 70458-92-3 334.3
290.3 * 80 27
233.2 80 25

7 Tetracycline 3.74 60-54-8 445.4
410.4 * 80 24
427.7 80 19

8 Ciprofloxacin 3.75 85721-33-1 332.2
314.3 * 80 25
288.3 80 33

9 Methacycline 3.77 914-00-1 443.3
426.4 * 60 18
201.2 60 10

10 Oxytetracycline 3.78 79-57-2 461.4
426.4 * 80 25
443.6 80 17

11 Danofloxacin 3.82 112398-08-0 358.3
340.3 * 80 12

82.0 80 35

12 Lomefloxacin 3.87 98079-51-7 352.3
265.2 * 80 33
308.3 80 28

13 Enrofloxacin 3.96 93106-60-6 360.3
316.4 * 80 25
342.3 80 35

14 Doxycycline 4.00 564-25-0 445.5
428.5 * 80 24

154.0 80 35
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Table 2. Cont.

No. Compound Retention Time
(min) CAS No. Precursor

Ion (m/z)
Product Ion

(m/z)
Declustering
Potential (V)

Collision
Energy (eV)

15 Demeclocycline 4.07 64-73-3 465.3
430.4 * 75 23
448.4 75 28

16 Sarafloxacin 4.38 98105-99-8 386.3
342.3 * 80 25
299.3 80 38

17 Difloxacin 4.51 98106-17-3 400.1
356.1 * 80 28
299.1 80 41

18 Chlortetracycline 5.13 57-62-5 479.3
444.4 * 80 24
462.3 80 28

19 Cinoxacin 5.29 28657-80-9 263.1
244.1 * 80 25
188.8 80 35

20 Oxolinic acid 5.53 14698-29-4 262.1
244.1 * 70 26
155.9 70 40

21 Nalidixic acid 7.09 389-08-2 233.1
187.0 * 68 18
244.1 68 34

22 Flumequine 7.43 42835-25-6 262.2
244.1 * 70 19
202.1 70 32

CAS: chemical abstracts service; *: quantitative ion.

The EPI scan mode could be activated in the IDA experiment when the ionic intensity
exceeded the threshold of 1000 cps. The scan time (including pauses) was 1.57 s for all
MRM transitions. EPI mass spectra were acquired over a mass range of m/z 50–500 at a
scan rate of 10,000 Da s–1.

3.4. Fragmentation Approach for Quinolones and Tetracyclines

In the positive mode of electrospray ionization (ESI) mass spectrometry, the proton
first binds to the protonation site, usually at the N atom or O atom, and then triggers
cleavage by migrating to the reactive center. Although the most basic site in tetracyclines is
the dimethylamino group, protonated tetracyclines initially dissociate via the loss of H2O
or NH3 from the acylamino group. Regarding tetracycline, demeclocycline, and chlortetra-
cycline, there is no OH at C–6 sites, and, consequently, all presented with successive losses
of H2O and NH3. As depicted in Figure 5, tetracyclines without the tertiary OH at C–6
initially lose only NH3 [51].

According to the spectra acquired from the EPI mode (Figure 6), the reactive center
of quinolones was located in the carboxylic acid group. The abundant fragment ion
[M+H–H2O]+ was formed due to the dehydration of –COOH, while another abundant
fragment ion was characterized by the decarboxylation of this group. The neutral loss
of m/z 20 Da and m/z 30 Da was most probably formed due to the dissociation of –HF or
–CH2CH3. Moreover, another characteristic neutral loss of –CH=CH–NH2 (m/z 20 Da) was
produced from the cracking of the azine ring [52].
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3.5. Method Validation
3.5.1. Matrix Effect

To evaluate the matrix effects in LC-MS detection, six distinct types of antibiotic-free
samples were used as matrix-matched blanks on the ionization of 22 antibiotic residues.
The equation is as follows [53]:

ME =
AMatrix

AS
× 100% (2)

where AMatrix represents the peak area of the standard solution with the matrix-matched
blank, and AS stands for the peak area of the standard solution in the initial mobile phase.
The percentages of the matrix effects of the 22 antibiotics at three different concentrations (2,
20, 200 ng mL−1) ranged from 84.7% to 119.3%. When ion suppression and ion enhancement
at the chosen levels were considered, the blank matrix-matching standard curve was
adopted to eliminate the effect of the matrix.
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3.5.2. Linearity and Sensitivity

Satisfactory linearities (R > 0.99) were obtained for 22 antibiotics in blank matrix-
matched curves over concentrations ranging from 0.5 ng mL−1 to 200.0 ng mL−1. The
sensitivity of the proposed method was measured according to the limit of detection (LOD)
and the limit of quantification (LOQ) values. LOD and the LOQ were calculated using the
following equations [53]:

LOD = CS
3

S/N
(3)

LOQ = CS
10

S/N
(4)

where S/N denotes the average signal-to-noise ratio, and CS represents the concentration
of the specific antibiotic. The estimated values were tested using suitable spiked samples
containing the 22 antibiotics at the corresponding concentrations. When the concentration
ranged between 0.5 and 200.0 ng mL−1 (0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, 200.0, with
R.S.D. under 10%, n = 6), the LOD and LOQ values were 0.3 µg kg−1 and 1.0 µg kg−1,
respectively, demonstrating the sensitivity of the method for antibiotic residues.

3.5.3. Accuracy and Precision

The accuracy and precision of the method were measured using the intra- and inter-day
recoveries and relative standard deviation (R.S.D.). Therefore, the standard mixed solutions
of 22 antibiotics were spiked into distinct types of samples, including swine, poultry, eggs,
milk, fish, and crustacea, and 18 spiked samples (six types at three concentrations of 2,
20, 200 µg kg−1, shown in Table A2) were obtained. Notably, these spiked samples were
detected three times intra-day and three times inter-day. As anticipated, the recovery of
22 antibiotic residues (73.8–98.5%) fell within the recommended guidelines of 60–120%
(GB/T 27404-2008, China) [54]. The precision of the analysis measured as the relative
standard deviation (R.S.D.) of the recovery, which ranged from 5.80% to 12.4%, was well
under the criteria of 30% (GB/T 27404-2008, China) [54].

3.6. Sample Analyses

After validation of the analytical methodology through the above experimentation,
it was applied for detection using various real food samples, including swine, poultry,
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eggs, milk, and nine cultured aquatic products (Parabramis pekinensis, Carassius auratus,
Ctenopharyngodon idella, Ophiocephalus argus Cantor, Macrobranchium nipponense, Macro-
brachium rosenbergii, Penaeus chinensis, Procambarus clarkia, Eriocheir sinensis, and Larimichthys
crocea). In the last six years of detection (2017–2022, total of 781 samples), quinoline or
tetracycline residues from swine, eggs, milk, and Eriocheir sinensis were essentially not
detected. Compared with the research led by Prof. Treiber [55], tetracycline residues,
including tetracycline, oxytetracycline, and chlortetracycline, were also occasionally de-
tected but never exceeded the MRL (200 ug kg−1, GB31650-2019, China [56]) in poultry,
Macrobranchium nipponense, Macrobrachium rosenbergii, Penaeus chinensis and Procambarus
clarkia. Quinoline residues were generally detected in cultured aquatic products, with
the exception of Eriocheir sinensis. The detection rate of quinoline residues was highest in
fishes (Parabramis pekinensis, Carassius auratus, Ctenopharyngodon idella, and Ophiocephalus
argus Cantor), ranging from 11.36% to 37.51%, with the over-limit rate (MRL, 100 µg kg−1,
GB 31650-2019, China [56]) ranging from 1.85% to 9.07%. Furthermore, enrofloxacin and
ciprofloxacin were the dominant detected residues among the 22 antibiotics. Meanwhile,
among the 12 types of samples, Parabramis pekinensis, with a medium detected concen-
tration of enrofloxacin and ciprofloxacin of 179.9 µg kg−1 and 21.4 µg kg−1, respectively,
contributed the maximum detected frequency and value.

A simplified risk assessment of enrofloxacin and ciprofloxacin from fish could be
calculated using the following equations:

EXP =
Average consumption (g)× Average detection value (µg/kg)× p

BW
(5)

MOS =
ADI

Daily dietary exposure
(6)

where EXP represents the daily dietary exposure of enrofloxacin and ciprofloxacin, and
MOS denotes the margin of safety. The average consumption of fish is 24.3 g/d, according
to the Scientific Research Report on Dietary Guidelines for Chinese Residents of 2021. p rep-
resents the effect of food processing and was excluded from this simplified assessment; BW
stands for the average body weight (60 kg and 30 kg for adults and children, respectively).
According to the National food safety standard GB 31650-2019 [56], the sum of enrofloxacin
and ciprofloxacin residues in fish should not exceed 100 µg kg−1, and the related acceptable
daily intake (ADI) is 2.0 µg/(kg·d). The results revealed that consuming fish with high
levels of quinolone residues may increase the risk of adverse events in children.

4. Conclusions

The analytical approach for antibiotic residue using LC-QTRAP-MS developed in this
study is reliable and effective in daily risk monitoring and assessment for food safety. The
mass spectrum of each antibiotic obtained from the EPI mode could be used as a corrob-
oration of positive samples. Furthermore, the optimization of the sample pretreatment
using the response surface method (RSM) enhanced work efficiency. The analysis of real
food origin samples validated the robustness and applicability of the modified QuEChERS
method. Over the past six years, massive antibiotic residues have been detected in food
from animal origin. Detection rates exceeding the maximum residue limits (MRL, GB
31650-2019, China) have been decreasing year by year from 2020 owing to the strict legal
requirements imposed by the National Food Safety Standard—Maximum residue limits for
veterinary drugs in foods (GB 31650-2019, China).
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Table A1. Procedures for automated solid-phase extraction.

NO. Step Source Output Flow Rate
(mL/min)

Volume
(mL)

Time
(min)

1 Rinse sample path CH3OH 2.8
2 Rinse sample path H2O 2.8
3 Rinse plunger CH3OH Solvent 10 6 1.1
4 Rinse plunger H2O Solvent 10 6 1.1
5 Load sample Waste 2 20 22.3

6 Rinse 5%
CH3OH Solvent 3 3 4.3

7 Rinse syringe CH3OH 10 10 1.6
8 Elute CH3OH Collect 10 5 0.9
9 Air push Collect 10 5 1.1
10 End

Total time: 41.8 min.

Table A2. Recoveries and R.S.D. of 22 antibiotics spiked into fish at three levels.

Compound Background
µg/kg

Fortification
µg/kg

Average
Recovery

Rate
%

RSD
n = 3

%
Compound Background

µg/kg
Fortification

µg/kg

Average
Recovery

Rate
%

RSD
n = 3

%

Pipemidic
acid ND

2.0 74.2 8.85
Lomefloxacin ND

2.0 82.9 9.85
20.0 78.7 6.95 20.0 89.2 9.07
200.0 77.8 5.86 200.0 86.3 8.41

Enoxacin ND
2.0 73.9 9.12

Enrofloxacin ND
2.0 90.2 5.87

20.0 79.1 7.63 20.0 98.5 6.15
200.0 80.4 7.45 200.0 95.4 5.98

Minocycline ND
2.0 73.8 9.92

Doxycycline ND
2.0 86.2 12.4

20.0 82.6 8.43 20.0 88.4 10.7
200.0 75.9 8.31 200.0 84.9 11.3

Norfloxacin ND
2.0 80.5 9.01

Demeclocycline ND
2.0 79.3 11.9

20.0 78.3 7.65 20.0 88.4 9.90
200.0 85.4 6.14 200.0 89.0 10.2

Ofloxacin ND
2.0 75.2 10.2

Sarafloxacin ND
2.0 78.9 8.68

20.0 82.7 8.72 20.0 88.9 6.12
200.0 86.4 6.96 200.0 78.5 5.99

Pefloxacin ND
2.0 89.1 9.56

Difloxacin ND
2.0 83.7 8.69

20.0 92.4 9.17 20.0 84.0 6.81
200.0 88.5 7.88 200.0 85.9 7.04

Tetracycline ND
2.0 78.6 12.1

Chlortetracycline ND
2.0 78.4 11.7

20.0 83.0 10.7 20.0 88.1 8.94
200.0 82.7 9.57 200.0 82.7 9.10

Ciprofloxacin ND
2.0 82.2 9.07

Cinoxacin ND
2.0 75.5 9.94

20.0 78.6 8.19 20.0 80.2 8.71
200.0 89.5 7.54 200.0 83.4 8.07

Methacycline ND
2.0 77.3 10.8

Oxolinic
acid ND

2.0 77.3 10.4
20.0 85.1 9.76 20.0 83.9 9.29
200.0 86.4 8.33 200.0 79.8 9.38

Oxytetracycline ND
2.0 74.8 11.8

Nalidixic
acid ND

2.0 79.2 8.93
20.0 76.1 10.1 20.0 84.6 7.10
200.0 75.5 9.78 200.0 81.7 5.81

Danofloxacin ND
2.0 75.7 9.64

Flumequine ND
2.0 87.4 8.94

20.0 82.3 8.78 20.0 92.1 5.89
200.0 77.1 9.15 200.0 88.3 6.37
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